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Fréchet spaces of Moscatelli type

J. BONET and 8. DIEROLF

ABSTRACT. A certain class of Fréchet spaces, called of Moscatelli type, is introduced and
studied, Using some shifting device these Fréchet spaces are defined as projective limits of Ba-
nach spaces L((X,‘)ke,u), where L is a normal Banach sequence space and the X,’s are Banach spa-

ces. The duality between Fréchet and (LB)-spaces of Moscatelli type is established and the fol-
lowing properties of Fréchet spaces are characterized in the present context: distinguishedness,
quasinormability, Heinrich's density condition, existence of a continuous norm in the space or
the bidual, and the properties (DN) and (£2)} of Vogt.

The aim of this article is to study a class of Fréchet spaces which has been
used recently quite often to find counterexamples that solved several open
questions in the theory of Fréchet and (DF)-spaces.

In 1980, Moscatelli [13] introduced a certain typé of Fréchet and (LB)-
spaces to find a twisted quojection, i.e., a Fréchet space which is a surjective
limit of Banach spaces, without a continuous norm but not isomorphic to a
product of Fréchet spaces each having a continuous norm. Such a space can-
not have an unconditional basis, according to [7].

The natural extension of the classical idea of Moscatelli yields the fol-
lowing construction. We start with a normal Banach sequence space (LI} I]),
two sequences of Banach spaces (X)), (Y)..n and linear continuous maps
f: Y, = X, (k e N). Then the Banach spaces F; = L{(Y)..{X):..), n€ N con-
stitute a projective sequence. The Fréchet space of Moscatelli type is defined
by F:= proj F,. i.e., the projective limit of the sequence (F,),.x-

This type of construction was used by the second author in [5] to find re-
flexive Fréchet spaces F such that /@ F = [ (F) is not distinguished, hence
L, (I, F’,) is not quasibarrelled. Bierstedt and the first author [2] characterized
the class of Fréchet spaces F such that /| (F) is distinguished in terms of the
density condition introduced by Heinrich [9]. Qur proposition 2.10 shows that
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a Fréchet space of Moscatelli type has the density condition if and only if it
is a quojection,

In 1985 Moscatelli and the second author [6] used spaces of the type de-
scribed above to provide examples of Fréchet spaces F with a continuous norm,
whose strong bidual F,” does not have a continuous norm. Recently, Terzio-
glu and Vogt [17] have characterized the Kothe echelon spaces of order I,
A,(4), such that A,(4); have a continuous norm. In doing this they introduce
the class of locally normable locally convex spaces.

We characterize the Fréchet spaces of Moscatelli type F such that (a) F has
a continous norm, (b) F,” has a continuous norm and (c) F is locally norma-
ble (see 2.16 and 2.17).

Taskinen’s first counterexample to the problem of topologies of Grothen-
dieck [15] is also a very elaborate Fréchet space of Moscatelli type. Our char-
acterization of distinguished Fréchet spaces of this type (see 2.4 and 2.5) yields
that Taskinen’s Fréchet space is not distinguished. On the other hand Taski-
nen proves in {16] that the space C(R) ~ L' (R) is not distinguished. In fact
he constructs a complemented subspace of C (R) n L' (R) which is a Fréchet
space of Moscatelli type to which our result 2.5 can be directly applied.

The duality between Fréchet and (LB)-spaces of Moscatelli type is pre-
sented, as well as the caracterization of the properties (DN} and (£2) of Vogt [20]
for this class (they only occur in the trivial cases).

Finally we mention that in [3] the authors used a variant of the Moscatelli
device to construct strict (LF)-spaces whose biduals are not (LF)-spaces,
answering in the negative a problem of Grothendieck [8, Question non-resolues
no. §].

Our notations are standard and we refer the reader to [11], [14] and [18].
The present article is closely related to our previous one [4].

1. DEFINITIONS AND PRELIMINARIES

In what follows (L. || [|) denotes a normal Banach sequence space, i.e., a Ba-
nach space that satisfies
(o) 9 Lc o algebraically and the inclusion (L[| [}>w is continuous.
(BIVa=(a)..n € L Yb=(b),., € © such that jb)<a) Vke N, we have be L and
bl <fiall.

Clearly every projection P, :—w, (2,),cn —={(@)ic.-(0)) onto the first n coor-
dinates induces a || ||-decreasing endomorphism of L. We will consider the
following properties on (L[ ().
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) llall= lim ||P(a)il Yae L.
() if ac o, sup [P (a)| <o, then ae L and llall= lim | P (a)ll
(e) limlla—P(a)|=0VacL.

Typical examples of (L,}l {|) are the spaces (/, || ), 1<p< oo, (¢, | [l..) and
their diagonal transforms. The space (c, || ||,) has (¢) but not (8), whereas
(£, Il ll.) has (5) but not (&).

1.1. Definition. Let (X, r,),. be a sequence of Banach spaces and (L, || 1) a nor-
mal Banach sequence space. We put
L((Xk!rk)k = {x= (Xdken ‘i IEXJ(Q(X&))M nE L}

endowed with the norm x—||(r x)).ll.
The amalgams of [10] are particular cases of this type of spaces.

1.2. Proposition. Let (L, |) be a normal Banach sequence space and let
(Xor . be a sequence of Banach spaces. Then L((X,,r),.s) is a Banach space.

Proof. The completeness of (L.|| ||) and (@) yield the following property
(*) if (@), is a Cauchy sequence in (L,|| [|) and lim a;= 0 for all k& N, then

lim a*=0in (L.|| |).

Let (x"),., be a Cauchy sequence in L({X,.r)..y)- From (o) we obtain
Vv ke N 3x, e X.x"—x(n—>oo) in (X,r). For up=rfx"), knelN, it follows
from (B) that Ym,ne N: [lu"—wl| < l(r (o — x0),..«ll, hence (u7),. is a Cauchy
sequence in L. Consequently there is u € L with u"—u(n—co) in (LIl | ). We
can apply (o) to obtain u,=r/(x,) for all ke N and therefore x € L{(X,.7,),.n)-

Now set vi-=r(x1—x,), k,n e N. Clearly vi—0(n—c0) for all ke N. On the
other hand, for n,m € Nl we can apply (B) to obtain ||y~ vl < I|(rdxr — x)culls
therefore (v*), ., is a Cauchy sequence in (L,|| [I). According to (*) we have v—0
(n—oo) in (L] [|). Thus |[v]=(roc—x))all=0(n—c0) and the proof is
complete. [ ]

The proposition above was proved in [4] under the additional assumption
that (L,|| ||} has (y). The proof presented above was provided by P. Dierolf.

1.3. Definition. (Fréchet spaces of Moscatelli type)

Let (L,|| ) be a normal Banach sequence space and let (X, rcen {YoSdien
be two sequences of Banach spaces with unit balls A, and B,, respectively, and
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Sor every ke N let f: Y, =X, be a linear map such that f(B,)c A,. ForeveryneN,
the space F.:=L{(Yo5)i<r (Xuli)en) i @ Banach space according to 1.2, and
the linear map g, F, —F, (2)ien>(Z)icn f(2,). (Z).) is norm decreasing.

The Fréchet space of Moscatelli type associated to (or with respect to-- w.r.1.}
(LI 1Dy (Xordiens (YoSdeen and f: Y= Xk € N) is the Fréchet space defined by
F:= proj ((F)),.x(&)..n) L.€., the projective limit of the projective sequence of

Banach spaces (F,),.n with linking maps (g,},.n-

1.4, Proposition. The Fréchet space of Moscatelli type defined above coincides
algebraically with {y=0vcn EkHNY“ SR Dien € LUX,u 1) ion) . Moreover F has

the initial topology w.r.t. the inclusion j:F—II(Y,s) and the linear map
kel
f'F—’L((st Feen)- )= (fl;(yk))ke N

Proof. F coincides with the space {(#),.n€ [IF, : g(z+")=2 for all je N}, en-
JjeN
dowed with the topology induced by ILF. We denote by H the space

JeN
{y ekHNY,, S (fhen € LU(X, 1,0} endowed with the initial topology w.r.1. the

linear maps j and f Define y:F—H by y((2),.n): =(2*") . - It is a direct mat-
ter to check that v is linear, bijective and continuous (see [4,(1.3)(3)]). Since
F and H are both Fréchet spaces, v is also open the proof is complete. ®

From now on we shall make the identification indicated in Proposition 1.4.

We close this section recalling the definition of (LB)-spaces of Moscatelli
type and some of their properties from [4].

Let (L]l |l) be a normal Banach sequence space. Let (X7 o (YiSdien DE
two sequences of Banach spaces such that, for every ke N, Y, is a subspace of
X, and 5, >, |Y.. Then the unit ball B, of Y, is contained in the umt ball 4,
of X, According to 1.2, E, = L{{(X,7)icn( Y5, 15 @ Banach space, ne N.
The corresponding (LB)-space of Moscatelli type is defined by E:= ind E,. The

closed unit ball of E, will be denoted by B A basis of O-neighbourhoods (O-nghbs)
in E is given by the sets of the formk 6%8,(/4,(-!-8181, >0, g,>0(keN).

If (LIl ||} satisfies property (y), then E is regular if and only if
IneN 3p>! Yk=n B,cpB, where B, denotes the closure of B, in (X,r).

In [4,Section 3] we associated to E a projective limit in the following way.
Given 3>0 and &> 0(k< N), the Minkowski functional of €.4,+8B, is de-
noted by Peo and it is a norm on X, equivalent to r.. Then E is the projective limit
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E= [} L(Xup, D0
The (LB)-space E is continuously injected in E and E is a complete (DF)-
space. A basis of O-nghbs in E is given by the sets

(e, + SR )NE, £,>0 (keN), 5> 0.

If E is regular, then E and E coincide algebraically.

2, STRUCTURE OF FRECHET SPACES OF MOSCATELLI TYPE

We keep the notations of 1.3 and let F denote the Fréchet space of Mos-
catelli type w.r.t. (LIl 1), (X.rds. n (YoSon and S Y~ X,(k € N). We will as-
sume in this section that (L,|| ||} satisfies the property (y).

Let A>0.u, > 0(k € N) be given. The Minkowski functional i, of the sub-
set Af,'(4,)p. B, of Y, is a norm on Y, equivalent 10 s, Therefore the space
F. =L{Y, G, )i.x) is @ Banach space. According to [4.(1.3)(3)], PLW 1S con-

PN{Th

tinuously mJected in £ (see Proposition 1.4).
2.1. Proposition. For every bounded subset B of F there are A>0,u,> 0(k € N)

such that B is a bounded subset of F,, . In particular F can be represented as
an (uncountable) inductive limit F _md ka,

Proof. Let Bc F be bounded. According to 1.4, there are A> 0.4, > 0(ke N)
such that sup I(riv D alreBI<h, sup (s (n)eBi<A (meN) We
choose (n,) € L such that n,>0(k € N) and [l(n)ll=1. We put p,=in, ' and
we show that # is bounded in F,, ,
Take ye 3. For every ke N one has v, € r,((3)); (A s(3)B,. We put

I ={k € N:”_Alsk(yk)s-l_lrk(ﬂ(yl))}'

= tk e N:A- lrk(f;(yk)) <U500) }
Iftkel, ye A (A DASHA)N R B,), whence

“((q'.\_pk(yk))ke.rla(o)kelz B (G0N (J’k)))ml»(o)mz” </

For every ke I, y, € u7's, (v (A A ) By, whence

1O 1, e )| S O 155D S O (BN L
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Thus ||(qwk(yk)),(s Jll <2, which proves the assertion. =

To establish the duality between Fréchet and {LB)-spaces of Moscatelli type
we consider a normal Banach sequence space (L, || ||) satisfving property (g).
Then the map A:L'—-o,u—ulp € o maps L’ onto the a-dual L= of L (cf.
[11,§30,1]), hence we may identify L’ with L*. Moreover the dual norm || |
of L’ satisfies (B). Therefore (L’,|| II’) is again a normal Banach sequence space
which even has property (8), as can easily be seen.

2.2, Lemma. Let (X, 1), . be a sequence of Banach spaces. Then we may nat-
urally identify (algebraically and topologically) the dual of L(X,r)..n) With
L ({X, . r ) w), where r,” denotes the dual norm of X”.

Proof. For f=(f)icn€ LU, 7 )n) and x=(x,),.n € L X7, )ion) we define

<®(f)sx>::kg,;(xk)‘ Sincekgﬁc(xk)ls “(rk ’(f;c))kel\l”‘“(rk(xk))keI\III, we have that @

is a well-defined, linear, injective and continuous map from L{(X,\r,)on )
into L{(X,r)..n V. We show that @ is also surjective, and hence open. Let
Je L{(X,r)en) of norm 1 be given. For each n € N the map j,: X, = L((X,.r)icn):
X—{(8,,x);.n 15 linear and continuous. We put f.=fj, € X, for all ke N. We
must show that (r,(f)),.n€L  or equivalently that k%rk’(f,()lakkoo for all

e=(a}.n L. Let aeL begiven such that o, =0 for all k< N. It is enough to
show that for all x=(x,),.x € IIr((0,1]) one has Slf(x)ia, < (o), nll. Given x

as above, we obtain for arbitrary ne i,

3 fee= 3 hex)= 3 flees)

(for suitable g, €K, lgl=1(keN)) =f(§jk(akakxk))s (et e, )|

<M Dienll-

Clearly & ((f)..n) and f coincide on NGBX,(, hence @(f), .=/ because (L.|| )

satisfies (g). ]

Let (L,]| |}) satisfy (€) and let F be the Fréchet space of Moscatelli type as-
sociated to (LI 1}, (Xordiens (YuSdrey and £ Y =X, (ke N). We assume that
f{Y) is dense in X, for all ke N. This is no loss of generality (indeed, take the
closure of f(Y,) in (X,,r,) instead of X,(k € N) to obtain the same Fréchet space
F). Moreover in this case the projective limit defining F is reduced. Then for
all ke N, the transpose f{(X .’ )}—={Y,5") is injective and maps the unit ball
Al of (X, r.") into the unit ball B, of (Y",s") (recall that f(B,)cA4,). Thus we
may form the (LB)-space E=ind E, of Moscatelli type w.r.t. (L’ || 1),
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(Y5 Yeeno (X127 Joen- According to 2.2, the strong dual F,,’ of F, coincides al-
gebraically and topologically with the space E,. Observe that E is regular. Kee-
ping the notations just stablished, we have proved the first part of the fol-
lowing result.

2.3. Proposition. Let F be a Fréchet space of Moscatelli type with f(Y,) dense
in X, for all ke N. Let E be the corresponding (LB)-space of Moscatelli type
w.r.t. the duals. Then there is a continuous identity map E—F,’. Moreover E
is the bornological space associated to F,, and F, coincides topologically with
the projective limit E associated to E.

Proof. Only the last assertion needs a proof. Let 8c F be bounded. By 2.1, the-
re are A>0,p,> 0 (ke N) such that sup| ll(qm GOhnllveBli<i. Put 8:=4-",
e.=n, (ke N). We prove that

W= (ien € EN@, sfenll 27 | B,

Let felt and y%. Since o, and the dual norm on ¥,’ of the norm Gy, ON Y.
‘hu satisfy 2- q“ P < qw ., we have

[S A0 23, P, 06,00 < 2P Dl g Gdcnll <1

This proves that the injection E—F; is continuous, Conversely, let 5> 0, g,> ¢
(ke N) be given and put A=38"1, p,=¢€;' (ke N) We prove that the polar of
the bounded set %: *‘tVE H Yell(gr (VD I<7} in F’ is contained in

={fe E:l{p, s(F ) nll’ <21 For fe#®° it is enough to show that
Z p., <2 Yor all a.=(a,) € L such that [ja/| < /. Given ae L with |lall< ]

and a0 for all keN we take yeIlY, with qkpk(yk)< KkeN). Clearly
ke

(a0}, .~ €8, therefore

PRI ACR AL

This implies ;Npaka(a Jr<2 (]

According to the prekus Proposition we have that a Fréchet space of
Moscatelli type F as in 2.3 is distinguished if and only if the corresponding
(L.B)-space E formed w.r.1. the duals satisfies E= E topologically. Now we char-
acterize when E is a topological subspace of E for arbitrary (LB)-spaces of
Moscatelli type which complements [4,(3.3) and (3.4)].

2.4, Lemma. Let E be an (LB)-space of Moscatelli type w.r.t. (LI 1), (X, rien
(Y5 and E the projective limit associated to E. Then E is topological sub-
space of E if and only if the following condition is satisfied
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(" 38,>0 (keN) Vye L((Y,s))nled, 3ImeN:((0),.. (500 < L.

Proof. Assume first that E is a topological subspace of E. Given the O-nghb
U=@®A4,+3, in E there are g,>0(keMN) such that (IlgA)nEcU

keN keN

(cf[4,(3.1)] We fix any element y € L{(Y..5),.n) " I1g.4,. Since ye E,, we have
kel

ye€ E, whence y=x42, with xe @4, zeB. Then there is meN such that
keN

x,=0 if k= m. Consequently y, =2z, (k> m). This implies
(D5 Gl < 1.

Suppose now that (*) is satisfied and let V:=®n,4,+ 88, be a 0-nghb in
keN
E. We prove that (IT min (0,2 'e8)4,+2-88)Ec V.
keN
It is enough to show that (IT1 min (,2-'¢8 J4,)NEc ®n, 4,4+ 2-'88,.
keN

keN
Take x in the left hand side. There is # € N with x€ E,, hence
{0),..(sx),) € L and moreover 28-'x,eg4, if kzn According to (*)
there is m>n such that [|((0),...(2 §-'5x))lI< 1, hence (0),..(XDss,) € 2783,

and ((xk)kc:ml(o)kam) Ekeilnﬂk.
This completes the proof. =

Clearly the condition (*) of 2.4 is satisfied if (Ll {}) has property (g),
taking g,= I(k € N). If there is m € N such that Y, is a topological subspace of
X, for k= m, then (*) is satisfied. The converse is true if (Z,|| [D=(.,| |..) by
[4,(3.4)].

2.5. Corollary. Let F be a Fréchet space of Moscatelli type w.r.t. (L | ||) satisfy-
ing (€), (Xor)icns (YoS).on and f2Y =X, with dense range (keN). Let E be
the corresponding (LB)-space w.r.l. the duals. Then

(a) if (L"|| |I") has (&), then F is distinguished.

(b) if (LI D=L 11,), the following conditons are equivalent (TFAE):

(1) F is distinguished.

(2Y3IneN:E= ind E,_,, is a strict (LB)-space.

(I neNVkzn .Y —X, is surjective.

(4) F is a quojection.

Proof. Since (a) follows from our previous remarks, we only prove (b). F is
distinguished if and only if E= E holds topologically. According to the re-
mark above (1) implies (2). (2} implies (3) by the closed range theorem (cf.
[11, 33,4,(1)]). (3) implies that F is a strict projective limit of Banach spaces,
hence a quojection. Clearly (4) implies (1). [ |

The Fréchet spaces constructed by Taskinen in his thesis [15] to provide
counterexamples to the “probléme des topologies’ of Grothendieck are all non-
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distinguished. Indeed, Taskinen starts with a Banach space (G.g)} and con-
structs suitable equivalent norms g,,= g on G (n,k € N). He sets

(Y,5):=1{(G.8dmirensnds (X, 1):=1((G,&)mien.n) and then he forms the Fréchet
space of Moscatelli type F w.r.t. (/]I 1), (X.P,ons (Y.5)..n and the non-surjec-
tive continuous injections j:¥—X. According to 2.5, F is not distinguished.

In [16] Taskinen proves that C{R)~ LY{R) is not distinguished. In fact he
shows that this space has a compilemented subspace isomorphic to a Mosca-
teli type Fréchet space which is not a quojection, hence we can deduce that it
is not distinguished form 2.5,

Lemma 2.2 can be used to complete the duality between (LB) and Fréchet
spaces of Moscatelli type, if (L,|| || has ().

2.6. Proposition. The strong dual of an (LB)-space of Moscatelli type is the
corresponding Fréchet space formed w.r.t. the duals.

As a consequence of 2.3 and 2.6 we observe that there are plenty of re-
flexive Fréchet spaces of Moscatelli type. Take, for instance, (L[| [)=(LIl I|,),
1< p< oo, and all the Banach spaces (X,,r), (¥, 5,) reflexive. The situation is dif-
ferent for the properties of being Montel or quasinormable.

2.7. Proposition. The Fréchet space of Moscatelli type w.r.t. (L) 1), (XorDicn
(Yo5),.n and [ Y =X, (ke N) is Montel if and only if the dimension of every
Y, is finite and there is k(o) e N with f(Y,) ={0} for k= k(o).

Proof. We assume w.l.o.g. that f, has dense range for all ke N. If every Y, 1s
finite-dimensional, then I'I (Y,s) is isomorphic to w. If f(Y)= [0} for k= k(o)

then the map fF —»L((Xk,r,‘),“ ah f(y) (7{¥)):.n has finite-dimensional range.

We apply 1.4 to obtain that F carries a weak topology. Since F is Fréchet, it
is Montel, Conversely, the continuity of the inclusions

L{(Y, 50 N)_’F_*J‘{I’s Yos)

vields that each (Y,s,) is a topological subspace of F, hence finite-dimen-
sional. Consequently f(Y,) is finite-dimensional too, hence it must coincide with
X, because we assume that f, has dense range. Therefore F is a quojection.
Since F is Montel, it is either finite-dimensional or isomorphic to ®. In both
cases the embedding F—II(Y,s,) is a topological isomorphism onto its range,

keN
which contains GB Y, Since F is complete, F= 1'[(}’ s holds topologically.
Therefore f: F—-»L((X r,),‘m) is surjective and the Banach space L((X rJ..n) 18 a quo-

tient of F. Since F carries a weak topology, the Banach space is finite-dimen-
sional. Thus there is k(0) e N with f(Y,)={0} for k= k(0). =
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. The density condition, (DC), was introduced by Heinrich in [9] in the study
of ultraproducts of locally convex spaces. In [2] the density condition was
studied for Fréchet spaces. A Fréchet space F with a basis of absolutely convex
O-nghbs (U)), .y has (DC) if Y(A ).y, 1,> 0, YU e U (F) Im e N IBc E bounded

such that_(l\ljch B+ U.
j=

According to Vogt [19] a Fréchet space F with basis of O-nghbs (U),. sat-
isfies property (€2} for an increasing continuous function ¢:]0,00[—]0,00[ if ¥p
g VK AC>0Vr>0:U,cCp(nU,+r'U,

By [12] a Fréchet space is quasinormable if and only if it has (€,) for some
¢. By [21, 0.3] a Fréchet space F has (f1,), for I(r)={ for all r€]0,00[ if and
only if F” is a quojection, and this is equivalent to the fact that F does not
satisfy the condition (*) of Bellenot and Dubinsky (cf. [1]). A Fréchet space F
with a basis of O-nghbs (U/)),., is said to satisfy property (Q) (cf. {20]) if Vp
3¢ Vk 3In, C>0:U,cCrl+r'U,Vr>0

To study all these properties in the context of Fréchet spaces of Moscatelli
type, we need two Lemmata, perhaps well-known.

2.8. Lemma. Let X, Y be Banach spaces and fY—X a continuous linear map.
Let A and B denote the closed unit balls of X and Y respectively. If the fol-
lowing condition is satisfied (+)¥e> 0 u> 0:Aced+pAB), then [ is surjective.

Proof. Condition (+) readily implies that fY) is dense in X. Therefore we
have the continuous injection j:=f"X,>7Y,’

Forming polars w.r.t. X’ we obtain from (+)

Ve> 0 u>0e'd*np-'ABFc A° or

Ve> 0 38> 0:5/- (B ynA°ced’.

This implies that the topologies B (X', X) and the initial topology w.r.t. : X'—Y,’
coincide on 4 Since A4° is a O-nghb in X, we obtain that j-X,> Y,  is a topo-
logical isomorphism onto its range. By the closed range theorem, f is
surjective. ]

2.9. Lemma. Let X,Y be Banach spaces and :Y—X a continuous linear map
with dense range.Let A and B denote the closed unit balls of X and Y, respect-
ively, and let C:=ANRY). TFAE:

()Ve>0 u> 0:Aced +pflB),

(iiWe=0u>0:CceC+pufB).

Proof. (i) clearly implies (ii). Assume that (i) holds. Then if
Cce2-'C+pf(B), we have
A=C " c(e2-'C+pfiB)) *ce2 'C+ufiB)+e2'Ac e4d+pufiB). =



Fréchet spaces of Moscatelli type 87

2.10. Proposition. Let F be a Fréchet space of Moscatelli type w.r.t. (L, 1)),
(Xor)ionw (YoSdiow and f2Y — X, with dense range (ke N). TFAE
(1) F has the density condition.

(1)'The bounded subsets of F, are metrizable.

(1} 1, ®_F is distinguished,

(2) F is quasinormable.

(2)' F satisfies property (Q,) for some .

{3) F has property (Q). X

(3Y' F is a quotient of |, (I} ®s for some index set I.

(4) F" is a quojection.

(4)’ F has property (£).

(5) F is a quojection.

(6) Ime N Vk=m [, is surjective.

Proof. Clearly (6) implies (5) and (5) implies (4). (4} is equivalent to (4)" ac-
cording to [21,0.3]. By the very definition, (4)' implies (3). The equivalence of
(3) and (3) for arbitrary Fréchet spaces is proved in [20,3.1]. Clearly (3) im-
plies (2)". The equivalence of (2) and (2) follows from the result for Fréchet
spaces in [12]. For the equivalences of (1), (1) and (1)” we refer to [2,1.4].
Clearly (2) implies (1. It remains to show that (1) implies (6).

Put A:=|re F(rf(rON.. | €Il A basis of O-nghbs in F is given by the
sets

;Hn:( l/n)(Am (Hk<an x nk;nyk))(n € N)

Put A, = n{neN), We apply (DC) to (A,),., and 2-'A 1o obtain e N and a
bounded subset 3 of F such that

M a,c2 348,

Consequently. there are /e N and 8 bounded in F such that

A1, B xII,, Y)c2 'A+8,

k<m Lzm

Since the k-th projection of A in Y, is p /" .(4,), where p:=|l(3,).l, and the
k-th projection of B in Y, is bounded in (¥,.5,)(k € N), we obtain

Vkzm Jo,>0..(A)c2-'f(4)+a,.B,. This implies

Vkzm VpelN Ja,,>0 f;(4)c 2% (A)+a,,B, hence

Ykz=m Ve>03u,>0 f1(A4)cef M 4) +p. B, whence

VikzmVe> 03> 0:A4,nf (Y)ce(dNf(Y )+t (B). According to 2.8 and
2.9, £, is surjective for k> m and (6) is satisfied. [ ]
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Let F be a Fréchet space of Moscatelli type w.r.t. (L, | |l), such that (L’ |
has property () (e.g. (LIl l)=(Z.Il II,), 7<p<oo), and two sequences of Ba-
nach spaces (X, r).. and (Y,.5,),.y such that Fis not a quojection. Then F is
distinguished by 2.5 (a), but /®_F is not distinguished, or equivalently L(/,F)
is not quasibarrelled, according to Proposition 2.10, The first example
of this type was given in [5].

In [17] Terzioglu and Vogt introduced the following definition, A locally con-
vex {1.¢.) space F is called locally normable if there is a continuous norm on
E such that on every bounded set in E the norm topology and the space to-
pology coincide. They proved that if E is locally normable, then its bidual pro-
vided with its natural topology E.” has a continuous norm. We recall that if E
is quasibarrelled, then E” = E; (the strong bidual). We now characterize the
L.c. spaces such that £ admits a continuous norm.

2,11, Proposition. Let E be a 1.c. space. TFAE

(i) E; has a continuous norm.

(ii) there is a continuous norm p on E such that the norm topology induces on
every bounded subset of E a stronger topology than the weak topology o(E, E).

Proof. (ii) implies (i). Let U/ be the unit ball of the norm p in £. We have to
show that for every bounded subset B of E, E'is included in w (nU®) + B

Let B be a closed, absolutely convex bounded subset of E and ue E°. By as-
sumption, there is # e N such that n-'Un~Bc{ul’. Thus

uelul*c{n-'"UnBy c nU° + B~

(i) implies (ii). By assumption there is an absolutely convex O-nghb U in E
such that the linear span / of U” is dense in E,”. Since H is also dense in E,
U defines a continuous norm on £. Now let B an absolutely convex bounded
subset of £ and u,e E’,I<i<k. There is me N such that
2uemU 4 B°, Igigk

Therefore {u,,...,u, )" 2(2-(mU+ B om-U"nB*=m-'UnB. =m

A locally convex space E is called a Schur space if every sequence in £
which converges to the origin w.r.t. the weak topology o (E,E’) also converges
to the origin w.r.t. the original topology of E. Every Kothe echelon space of
order | is a Schur space (cf. [18,p. 181,(5)]).

2.12. Corollary. Let E be a Schur 1.c. space. Then E has a continuous norm
if and only if E is locally normable. In particular, a Kothe echelon space of or-
der [ is locally normable if and only if its strong bidual has a continuous norm

(cf [17)).
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Proof. According to 2.11, E. has a continuous norm if and only if there is a
continuous norm p on E such that if (x,),., 1s a bounded sequence in F with
lim,__p(x,)=0, then (x,),., tends to 0 for the weak topology a{E,E "), hence for
the original topology of E, since E is a Schur space. This implies that E is lo-
cally normabile. ]

Let 9:]0,00[—]0,00[ denote a strictly increasing continuous function with
lim @(r)= + co. Let F be a Fréchet space with a sequence of seminorms (|| [[.),.
such that U.:={xe Fllxll,<}(n e N) form a basis of O-nghbs in F. F is said
to satisfy property (DN,) (cf. [19,p.373]) if

3n(o) Vm In,C>0 Yxe F ¥r>0:ixil,, < Co(Dllxil o, + rllxll .

Clearly || Il is a continous norm on F. If ¢(r)=r for all r>0(DN,) is called
(DN) (cf. [20]).

2,13. Proposition. Let F be a Fréchet space. if F satifies property (DN,) for
some @, then F is locally normable.

Proof. According to [19,5.6] F has (DN,) for some ¢ if and only if 3 n(o)
V¥mz n(0) Inz m: every sequence in F which is bounded w.r.t. || ||, and con-
verges 10 0 w.r.t.|l ||, even converges to O w.r.t. || ||.. This is equivalent to the
following condition In(o) Vm = n{o) An=m: the norm topologies associated
to || ., and | [|,, coincide on the unit ball U,

Assume now that this condition is satisfied and fix an absolutely convex
bounded subset B of F. To prove that the norm topology associated to | ||,
coincides with the origina! topology on B, we fix m= n(0). According to the
assumption we select 7= m and then A> 0 such that Bc AU, Since the norm
topologies associated to || ||, and || !, coincide on U, they also coincide on
B. Thus F is locally normable. ]

The converse of Proposition 2.13 does not hold in general. Indeed, clearly
every Fréchet Montel space with a continuous norm is locally normable, and,
by [19.5.7], a Fréchet Schwartz space has (DN,) for some ¢ if and only if it is
countably normed. There are Fréchet nuclear spaces with a continuous norm,
hence locally normable, which are not countably normed (see e.g. [22]).

We now characterize the properties mentioned above in the context of Fré-
chet spaces of Moscatelli type. We keep the notations at the beginning of this
section.

2.14. Remark. A Fréchet space of Moscatelli type F admits a continuous norm
if and only if there is neN such that f.Y—X, is injective for k = n.

Proof. First suppose f; injective for k= n. Then
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)= max s+ [[CATATA)) D

is a continuous norm on F. Conversely, if ¢ is a continuous norm on F, we
find ne N and C> 0 with

a1 = Clmax s(v)+ (DD eenll).

One easily checks that f; is injective for kzn. B

2.15. Lemma. Let E be a regular (LB)-space of Moscatelli type w.r.. (LA D,
(Xor)ion (YouSdion Lot E be the praojective limit associated with E. There is
ne N such that E, is dense in E if and only if there is ne N such that Y, is
dense in (X,r) for k > n.

Proof. Suppose first E,= L((X,#,)c.n (Y 5)s,,) dense in E. Fix m>n and take
X, €X,e>0. ThEI:I x=(X,8,.)icn € E=E. There is y={(y.n€ E, with
X-ye (kI{aA,,+1':‘s,)mE. This implies x, — v, €ed4,+ Y. Since y,€ Y,, we have

x,€ed,+Y,, and Y,_ is dense in (X,r,). Conversely, suppose Y, dense in
(X, r) for k> n. We prove that E, is dense in £. Fix x=(x,),.y € E, §,> 0(k e N},
8> 0. We select m>n such that xe E_. For n<k<m, we take y, & Y, with
x,—y, € €A, Then define y.=x(l<k<n or kzm), y.=y, (n<k<m) and
yi=(en. Clearly ye E, and x-—ye (e, + 38)NE. The proof is com-
plete. a €

2.16. Corollary. Let F be a Fréchet space of Moscatelli type w.r.t. (L] |} with
(&), (Xordienw (YuSien and f2Y,— X, with dense range. TFAE

(/) F,” has a continuous norm.

(i) AneN: fUX,) is dense in (Y,,8,) for k = n.

Proof. This follows from 2.15 applied to the corresponding (LB)-space £
formed w.r.t. the duals, since F,” has a continuous norm if and only if there is
an equicontinuous subset of £~ such that its linear span is dense in F,'= E (see
2.3). [

2.17. Proposition. Let F be the Fréchet space of Moscatelli type w.r.t. (L]l ),
(Xordion (YuSdien and f0Y,— X (ke N). TFAL

(1) Fis locally normable.

(2) F has (DN,) for some .

(3) F has property (DN).

(4) ImeN Vkzm f, is a topological isomorphism onto its range.

(5) Fis a Banach space.

Proof. By 2.13, (1) is a consequence of (2). We prove that (1) implies (4).
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There is m € N such that the seminorm

y—>”((Sk(yk))k<ma(rk(ﬂ(yk)))k>m)||

is a norm on F which induces on every bounded subset of F the original to-
pology. Let B, the unit ball of (Y,s,) (keN). Then for all k= m, the set
B, =1{(8,x),.\:x € B} is bounded in F. Thus the topologies generated by s, and
.o, on Y, coincide on B, and hence on Y,, since B, is a 0-nghb in (Y,s,).
Therefore (4) is satisfied. Now (5) clearly follows from (4), because (4) implies that
F is a topological subspace of F,. Finally the implications (5)}=(3) and (3)=(2)
are trivial, [

2.18. Remark. (1) Take Banach spaces (X,r) and (¥,s) such that the injection
JA{Y.s)»{ X.r} is continuous and has dense range but (X} is not dense in
(Y57 (e.g. j:(2,]l 1)=(4l II,) ) and any normal Banach sequence space (L,| |))
with property (g). Then the Fréchet space of Moscatelli type F w.r.t.
(LA 1N,(X.Piens (Yo$)ien and f,=j (k € N) has a continuous norm but F,” does
not have a continuous norm. The first example of this type can be found in [6].

(2) There are Kothe echelon spaces of order 1, A,(4), which are, via some
rearrangement, Fréchet spaces of Moscatelli type. One of the most relevant
examples is given by the Kothe matrix A=(a),.» a{if):=1{ = n), a(ij)=Ki<n),
for (i.,/) e N x N. This example, due to Kathe and Grothendieck, is a non-dis-
tinguished Fréchet space. Terzioglu and Vogt [I7] gave the following
example. a,(i,):=f (i>n), a(i)= j* (i<n). The bidual of A,(4) has a continuous
norm, hence it is locally normable, but it is not distinguished (cf. [17]). Ac-
cording to 2.17, A,(A4) is a non-distinguished Kothe echelon space which can-
not be isomorphic to a Fréchet space of Moscatelli type.
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