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Positive solutions of an elliptic equation
with strongly nonlinear lower order terms

FRANCOIS DE THELIN

ABSTRACT. In this paper we siudy the existence of positive solutions of the equation:
b+ glxu)=0

in the case when the growth of g(x,.) is allowed 10 be of exponential type.

INTRODUCTION

Let 1 < p < +oco and let Q be a bounded regular open set in RN, We look
for positive solutions, v e W/» (£2), of the equation:

(E) A u+gxu =0 in

where F(Vu) = [VulP-2 Vu and A, u = div F{Vu).
We are specially interested by the case when the growth of g near
¥ = + oo is not of polynomial type, for example of exponential type.

In the case when  is a starshaped domain and g{x,u) = lul-? % with
Y(N—p) > Np, it is well known [7,9,10,12,13] that (E) cannot have positive
solutions u € W/* (Q).

On the other hand, in the case when p=2 and Q=A4={xeR%p < Id <
R}iwith0 < p < R < + oo, recent papers have shown that (E) has positive
solutions:

- either for g(u) = O(u*), &k > —1, near u= + oo [3];
- or for R — p sufficiently small [2].

In this paper, proving that radially symmetric functions in W2 (4) are in
L=(4), we can obtain positive solutions of (E) for any p € ]I, +oc[, any
R — p > 0, and any growth of g near ¥ = +co.
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272 Francois de Thelin

In the limitcase N = p, W) () ¢ L=(Q) but [1] W, (Q) L, (Q), where
L, is the Orlicz space associated with the Young function:

M) = exp (1417 — 1),L§;—+ !

P

Trudinger [15] has shown that for p = 2, any g € ]0,2[ and any ¢ > 0,
-there are some A > Qand ¥ € W2 (Q) such that: '
u(x)

rexp(tdt de=c¢

Au + Au exp(luy = 0 and j
Q

In this paper we extend these results to p#2 and eliminate this A.

The particular case N = p, Q = B(0,R) is interesting because we can
prove that, for any growth of g near u = + oo, (E) can have positive radially
symmeltric solutions if R is sufficiently large; we extend to the case p # 2 the
results of Hempel [4,5] and Nehari [6].

As a conclusion, consider the example:

gx ) =I1C1exp(lLls)withs > p — land g >0

(E) has positive soluticns:

-for p> Nor( =4 (Theorem 1)
- forp = Nand g < p* : (Theorem 2)
—orp=NQ=BOR),R >R,

g > max(p—1,1)and g > | {Theorem 3)

1. BOUNDED SOLUTIONS

Let X be a closed subspace of Wi» (£2). g is asumed to be a Caratheodory
function satisfying the following conditions:

(HI) Vxe Q Ve R gx0 =0
and ¥x € Q, v{ > 0, g(x.[} > O;

(H2) VK > 0,3M > Osuch that forany { € R, 1{| € K, and for any
x e & gxb) < M

(H3) There exist some 6, > p — | and §, > 0 such that:
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V{2 &, £ —G%8) isanon decreasing function
T

where G(x,0) = Cg()c,s) ds.
0

Remark: It is sufficient to suppose that g satisfies (H1) and (H2) on R,;
it can be easily extended to a function satisfying (H1) and (H2) on R.

Theorem 1:

Let g satisfy the conditions (HI), (H2), (H3) and suppose that:

(N X < L=(Q).

(if) There exist some ;> 0, 6,>p—1 and c> 0 such that:

Vx e Q V{ e [0L) Gx{) < cla!

Then there is at least one positive solution ue X C(Q) of (E).

The condition (i) is satisfied for X = W/» () and any bounded open set
Q in R" in the case when p > N the following proposition gives an other in-
teresting example,

Proposition 1:

Let 0 <p < R< +oo and Q be an annulus in R*:

Q={xeRVp<Ixl<R) Let X be the set of radially symmetric func-
tions in Wi» (L) . :

Then, there exist a positive constant C(N,p.p,R) such that:
Yue X, Vxe Qlux)l < ANppRNVul,
Examples:
Let A : R, - R, be a positive non decreasing continuous function and
&(x.0) = C° A(l) where 6 > p — 1; for instance g(x,{) = {° exp({8), 0 >p— 1,
g > 0; then g satisfies (H1), (H2), (H3) and (/).

In the case when € is an annulus and ¢ > 1, we obtain positive solutions
of
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Au 4+ w () =0 1n Q
without any limiting condition as g(u) = 0(u*) when u — +oo (GARAI-
ZAR {3]), neither R — p small (BANDLE - PELETIER [2]); besides we obtain
analogous results for p # 2 and ¢ > p — 1. On the other hand our conditions

are more restrictive than [2], [3] on the growth of g and on the limit of g(u)
when u — 0. ‘

Preof of Proposition 1
Let u(x) =¢ (| x1); we have

R
—ol x=0p(R)—o(l x)= 5 Q1) di
| x|

By Halder's inequality we get:

R uw o R Ug*
lu(x) | < L o'(1) IP"N_ldl) j JN == 1) )
I x| lx]
R 1
| @) Ib -t dr = ——j Vul(y)rdy
| x| " lixi<iyI<R
whence the result with:
R d 1
CN.pp.R)= NG ([ (N1 =1 ) P .
p

The proof of Theorem 1 needs the following lemmas.

Lemma 1:

For any ue X, let us consider:

Ja)y= ——|  wugordx —
P

Q

Glx,u(x)) dx

Q

Suppose that g satisfies (HI), (H2), (H3). Then any sequence (1) < X such
(u)! < Kand J' (u)— 0in X, is bounded in X.
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Proof:

For any ve X, we have;

Jv) = F(Vu). Vv — gy
Q o, Q
) being a bounded set we set:
1
= Il = ( j Tur ) ’
Q

Suppose that a subsequence denoted by , be such that lim [lufl, = +oo;

we get: f=te
j G(.u)
__K 1 Q ._K
lullz = p a2 lluel2
w e u)
-t <1- 2 < 2
lfzefl - llaa liz lla Iz
G(..u)
Q
whence lim _ 1
e 7
! u; gl.,u)
Q

(H3) gives for any § > §;: Lg(.,0) 2 (o,+ 1) G(.,{), whence:

1
GL,u) < C + u; gl u)
J e G|
G(.u)
Q
lim = GLI < 1
j~+m ujg(',uj) [ P

Q
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A contradiction, whence [|u |, is bounded. O

Lemma 2:

If the hypothesis of Theorem 1 are satisfied, J € C' (X) and satisfies the Pa-
lais - Smale condition.

»

Proof:

An easy consegence of Lebesgue’s thecorem shows that for u, — u,
lim_ llg (.u) — (g.wll,. = 0, whence J e C/(X).

Suppose that | J(1) | £ Kand J(1) - 0; by lemma 1, g(.,%) is bounded, and
the injection X" c L7 being compact, there exists a subsequence denoted by
which converges to « in strong L2,

So, lim [, =0 where

nmt— 400

In.m =

[F(Vu,)—FVu)].V(u,—u,)
(¢

={(J(u,) = (e N, —u,)+

[8(.4,)—&(. u, M(u, —u,).
Q

On the other hand we have:

o
G _ 1%
IVu,—Vu, i<t} 2 {1vuli+1vul) 2

=

where a=min(p,2} (for example see [L1}).
Whence u, converges to u in X; the Palais-Smale condition is satisfied. o
Proof of Theorem 1;

We shall apply Pass-Mountain Lemma [8] to the function J defined in Lem-
ma 1. J satisfies Palais-Smale condition and J(0) = 0.

Let us show that, for [lull, = r sufficiently small, we have J(1) = a > 0. By
(i) there ts some ¢’ > 0 such that,

Vx e Q, lu(x) < ¢ llully; for [lull, <% we obtain with (ii):

Glxu(x)) < dufx)ls! < cle)n Jull o
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Jwy > ==l (1 = el
. Q; | 4
For || # ||, =r<min [2~,—] we get J(u) 2~—~——= 0a>0.
¢ 2 2p
Now, let us consider #, € X such that:
Vx e Q, ufx) > o, >0 and meas (Q) > 0.
For A sufficiently large, A, = {, and by (H3):

[ G(.Awy) = j G(,Auy) 2 B Ao+
Q Q,

where p :;.
G°+

GL) | 1, (x) 10 dx > 0

]

We then obtain

Him JOw) <lim (2 || u, g—P A%+ 1] = —oo
A= 400 Avtoo P

and there is some v, € X, v, # 0, such that J(v,} = 0.

27

By the Pass-Mountain lemma, there exists some #, € X, u, £ 0, such that

Jlu)y = O
Yv e X,[ FVu,). Vv — j glou) v = 0.

Q Q

By TOLKSDORF's regularity results ¥, € C'%(Q) [14], and by VAZ-

QUEZ’s maximum principle [16], 4, > 0in Q. D

2. SOLUTIONS IN AN ORLICZ SPACE

Let us recall that a Young function M is an even convex function from R

to R, such that:

lim—M-&L= 0 and lim ﬂég— = 4oo.

70 &~ +oo

The conjugate M™* of M is defined by:
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M* (£) = Sup [Es — M(s)]
seR

The Orlicz space L. () is the set of measurable functions u defined on R
such that there is some A > 0 with

M(% < too.
Q
L,(£)) is a Banach space for the following norm:
lull,= Inf| A>0: Ml <1
Q x

Let E,(£2) be the closure of D{£2) in L,(Q).

We say that M is superhomogeneous of degree (¢ + 1) if there exists some
K > 0O such that [11] :

Vvl e R Vh e [0,1], M(h) < het M(KD).
Let © be a bounded regular open set in R",

In the case when N = p, Wie(€)) ¢ L=(£2), but W} (€2) E, (£2) [1] where

M () =explg” — I, —+ =1

So, we can get the following Theorem.

Theorem 2:

Let g satisfy the conditions (HI), (H2), (H3). Suppose that there exists a
Young function of exponential type M such that:

(i) The imbedding Wi»  E (Q) is compact;

(il M is superhomogeneous of degree 6, + 1 > p;
(iiiy There are some ¢, > 0 and K, > 0 such that:

VxeQ V(eR, t‘;g(x,C_,)s_c,M(—I%—) ;

(V) VK > 0, lim _Ex0 0. uniformly in x.
Al
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Then there Is at least one positive solution ue W () C'= (Q) of (E).
Example:
Let p = N = 2; g(x{) = {° exp(@) with 6 > 1,0 < g < 2, and
M) = e (@ — 1 ywithg < r < 2.

r<2gves([1:{ - A _ 1is superhomogeneous of degree r, whence
(ii); (iii) is easy and g < r gives (iv).

So, the equation:
AU + we =0
has at least one positive solution u € WH(Q).

In a similar case TRUDINGER ‘[15] proves that for any m > 0, there exist

A > 0and # > O such that G(.,u) = m and
Q

Au + A glxu) = 0.
Our method allows us to eliminate this A.
We obtain the same results for the equation:

Au+we =0
wherep=N22,0>p—1,0<q<;ﬂ—l-

J being defined in lemma 1, the proof of Theorem 2 needs the following
lemma. '

Lemma 3:

If the hypothesis of Theorem 2 are satisfied, J € C' (W) and satisfies
the Palais Smale condition.

Proof:

Let () be a bounded sequence in W),
By (i) there is some K > 0 such that:
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M(_u,-_

£ 1
K
Q

v,

Let ¢ > 0 be such that M"‘(%)meas(ﬂ) < | and:
¢

VxeQ, VLR, g (x O sLJFLM’(_%).

2 2
We obtain:
1 .
o] S]] b dwen
Q Q Q

Let u, converges to u in WiHQ). For sufficiently small & and for
meas (4) < , we have;

5 M*[ g(.,u1) ]
A | ¢

| w—u 1 u
< —=—M* M=\ 4y —| M[—
| )]

1
€

SE.

s 4|

A

A [_ﬂ_ll#)_] is then an equi-summable sequence and

im | [t ] g
j—= 4o Q ¢

By (ii) M* satisfies the “A,—condition” [11], so lim [lg(.u) — g(.wll,. =
0 ; whence J e C{W}r(L2)).

Suppose now that U(u)l < K, and J(u) — 0. By lemma 1, ||y ,» is boun-
ded and, by (i), ¥, converges in E,, (Q) ; by relation (1), g(..u) converges for

ofL,., E,). So the same proof than for lemma 2 shows that the Palais-Smale
condition is satisfied. O

Proof of Theorem 2:

Let us show that for {|ull,i»=r sufficiently small we have J(x) > a > 0.
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By (iii) and (ii), we have

VxeQ, V(eR, Vhe[0,1], Gl < ¢, M(—é—)s hore M(?K%—

By (i)

Vu € W), lull,, < ¢ llull |
Wo'

cKr

Whence for ||u|| =r <—5—— and h =

) < c,[ (-———) h“n*'g ( ¢, et = ¢ lull 0'”
O .°

The same proof than for Theorem 1 gives ue Wir (Q), u # 0, solution of
(E). The end of the proof is a consequence of the following lemma. o

Lemma 4:

If all the hypothesis of Theorem 2 are satisfied, ue C'* (£2).

Proof:

This proof is very similar to OTANTI's one [9] (see also [13]). By (iii) there
is some s > | such that ug{x,u) € L7 (QQ).

Consider the following sequences:
g, = 2ps* = 2ps /(5-1)

Gy = 2p+4q)

0 =s*gq,.

Multiplying (E) by lul* u, we obtain:

1+i p
( p )5 |v(u P ) 1 25 g0 10) ™
Prad 1q Q

< llu Gl Huee |l o < ol ull

M being of exponential type, W'e (£2) 1, L?** (£2) and there is some K such
that:
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1 Qk i
p+ay + —
< Ko ' p )[

PG

v

Q
We then obtain:

UNEE Kptg) V", e
lll, " < C(—) I udl,,
k+ 1L p

This formal proof can be made rigorous by using some regularized equa-
tion [13].

Observing that p+ g, < 4*' 4ps*, we get:

I a

Bst 28,
ot (aksmpes amms| g |

Let:
E, =8, Log Il ull,
a = 4te¢
b = Log [¢*" (2Ks*)e~]
r,=b+ (k—1)Log a.
We then obtain:
E. €r + 2E

Whence, following OTANI [9], we deduce:

6,

k= + 00

llzell, < lim exp (—‘EL-)< +00
So we L=(£2) and by TOLKSDORF's results « e C*(£2). O

3. A PARTICULAR CASE : QIS A BALL

In the particular case when Q is a ball and N = p, we can obtain radially
symmetric solutions of (E), for any growth of g near infinity.

For simplicity we suppose that g does not depend on x ; we assume the
following conditions:
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(H4) ge C(R),g>0Oandg(0) =0,
(H5) gand g are non decreasing on R, ;

(H6) lim -8 _ 9

-0
Theorem 3:

Let N = p 22 and let g satisfy the conditions (H4), (H5), (H6). Then,
there exists R, such that, for R = R, the equation

{E) Au + glu) = 0in Q = B(O,R)
admits at least one positive radially symmetric solution u € W ().
Example:

For any 6 > max(l,p—1) and any g > 1, g({} = | { Ir exp | { I satisfies
(H4), (H5), (H6).

Theorem 3 is a consequence of the following proposition. Let us consider
the following system:
vi(x) = | w(x) P'-2u{x)
O i = - £ el

where p* -2
p—1

Submitted to the conditions:

lim v(x) = m

K= + 00

lim w(x) =0.

X 00

(L.C)

Proposition 2:

Let p = 2 and let g satisfy the conditions (H4), (HS), (H6). Then, for any
m > 0,(S) + (L.C) admits one and only one solution (v,w) ; there exists some
a = 6(m) € R such that:

wWa) =0 and v> 0 on Jo, +oo).



284 : Francois de Thelin

Moreover 8 is continuous on R and lim 6(m) = —oco.
m-0

Proof:

Let us consider the following iterations;
v, = Oand forn ¢ N :

W, () =§ T o
¥ )

+ 00
v (x) = m _K Lw, (1) 172w, (1) dt.
X

We have;
w, (X) —&m) e > w,=0
Jid

Vi) = m 8 expl (¥ )x] < m = v, (x)
P> 1

There is some M(m,p) such that:

. Vx = M(m.p), vix) 2=7= > vx) and
+ 00 o f(—%—)

w, (x) = — gy dt =2 — e,
T glvin)] e

By induction we can prove that for any ¢ € &, v,_1s a nondecreasing se-
quence, v, ., is a noninncreasing sequence and v,, < v,,,, ; whence for any »
we have citherv, < v orv,, € v,

+1? LES)

Suppose that nz2 and v,<v,,, ; we have w<w, , and v, <v

"+l LER] n+l*

p* € 2and w, = w, whence :

(=2 w, (1) — “VV,,(t)"’"2 w(f) < (p*=1) w2 [w, () — w, ()]
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We then obtain:

-2

expl—(* ~2x]  Sup  wy.)
te[x,+00]

n¥ . |

0hus) (0 =vrs (0 <=5

Ao
24

—w, (Dl
On the other hand, by (H3), we get:

W (6) — wi) <—EUE qup () — vl

< ly
74 te[x, + ]
Therefore:
Sup v, (x) — v, () < ox) Sup v, (6) — v
te[x,+o0] t e [x, +00]

And, for x = M, (m,p) = M(m,p), we have:

dvy

I

-2
g (m)
r

exp[—(p*—1)x] <l

By Picard’s theorem we obtain a unique solution (v,w) of (8) + (L.C) for
x =z M, (m,p). By classical differential equations theory this solution can be
continued for x < M, (m,p). Since v has increasing gradient, it has a last zero
ata point x = o = 8(m).

Let us set:

+ oo
H{x,m)= ‘ Iw(t, )P =2w(t, m)dt — m
. ;

cH
ox

(o, m) # 0 and by implicit functions theorem 9 is continuous.

For x € Jo, +oo], we have 0 < wx) < m, whence:

+ o0 —t -
W(x) sg %g(m) =37g(m)
X



286 Francois de Thelin

= ! d
— 1 <
m E v (x) dx <

a

g(m) -1 o-wt-tia
P

-1
m—0 m—0\

lim (p*—1) pre@-m < 1im( 2 ) =0

whence lim- 0 (n1) = —co.[]
m—0

Proof of Theorem 3;

By proposition 2, there is some @, such that foranya = —p Log R < a,,
{S)+ (L.C.) has one and only one solution such that Wa,m) = 0. :
The change of variable x = —p Log r, v(x) = ¢{r) transforms (8) into the
equation:

A () -2 o . B
2 e P g7 (1) 1+ 7 glo(n) = 0

which is the radial form of the equation (E), with boundary condition
o(R) = 0.0

Remark: The deep study of the case p = 2 made by HEMPEL [5] and NE-
HARI [6] shows that there is no hope to find a solution of (E) for any R, if
the growth of g has no bound when ¥ —» +oo.
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