Positive solutions of an elliptic equation with strongly nonlinear lower order terms

FRANCOIS DE THELIN

ABSTRACT. In this paper we study the existence of positive solutions of the equation:

$$\Delta_a u + g(x,u) = 0$$

in the case when the growth of $g(x_{i,j})$ is allowed to be of exponential type.

INTRODUCTION

Let $1 and let <math>\Omega$ be a bounded regular open set in \mathbb{R}^{N} . We look for positive solutions, $u \in W_{0,p}(\Omega)$, of the equation:

(E)
$$\Delta_n u + g(x, u) = 0 \quad \text{in} \quad \Omega$$

where $F(\nabla u) = |\nabla u|^{p-2} \nabla u$ and $\Delta_p u = \text{div } F(\nabla u)$. We are specially interested by the case when the growth of g near $u = + \infty$ is not of polynomial type, for example of exponential type.

In the case when Ω is a starshaped domain and $g(x,u) = |u|^{\gamma-2} u$ with $\gamma(N-p) > Np$, it is well known [7,9,10,12,13] that (E) cannot have positive solutions $u \in W_0^{1,p}(\Omega)$.

On the other hand, in the case when p=2 and $\Omega=A=\{x\in\mathbb{R}^n: p<1x\}$ with $0<\rho< R<+\infty$, recent papers have shown that (E) has positive solutions:

- either for $g(u) = 0(u^k)$, k > -1, near $u = +\infty$ [3];
- or for $R \rho$ sufficiently small [2].

In this paper, proving that radially symmetric functions in $W_0^{1,p}(A)$ are in $L^{\infty}(A)$, we can obtain positive solutions of (E) for any $p \in]1, +\infty[$, any $R - \rho > 0$, and any growth of g near $u = +\infty$.

¹⁹⁸⁰ Mathematics Subject Classification (1985 revision): 35J70, 35A05 Editorial de la Universidad Complutense. Madrid, 1989.

In the limit case $N=p,\, \mathbf{W}_{0}^{\perp p}\left(\Omega\right) \subset \mathbf{L}^{\infty}(\Omega)$ but [1] $\mathbf{W}_{0}^{\perp p}\left(\Omega\right) \subset L_{\mathbf{M}}\left(\Omega\right)$, where $L_{\rm M}$ is the Orlicz space associated with the Young function:

$$M(\zeta) = \exp (|\zeta|^{p^*} - 1), \frac{1}{p} + \frac{1}{p^*} = 1$$

Trudinger [15] has shown that for p = 2, any $q \in [0,2]$ and any c > 0, there are some $\lambda > 0$ and $u \in W_0^{1,2}(\Omega)$ such that:

$$\Delta u + \lambda u^{\sigma} \exp(|u|^{q}) = 0$$
 and
$$\int_{\Omega} \int_{0}^{u(x)} t^{\sigma} \exp(t^{q}) dt \ dx = c$$

In this paper we extend these results to $p \neq 2$ and eliminate this λ .

The particular case N = p, $\Omega = B(0,R)$ is interesting because we can prove that, for any growth of g near $u = +\infty$, (E) can have positive radially symmetric solutions if R is sufficiently large; we extend to the case $p \neq 2$ the results of Hempel [4,5] and Nehari [6].

As a conclusion, consider the example:

$$g(x,\zeta) = |\zeta|^{\sigma} \exp(|\zeta|^{q})$$
 with $\sigma > p-1$ and $q > 0$

(E) has positive solutions:

- for
$$p > N$$
 or $\Omega = A$ (Theorem 1)
- for $n = N$ and $a < n^*$ (Theorem 2)

- for
$$p = N$$
 and $q < p^*$ (Theorem 2)

- or
$$p = N$$
, $\Omega = B(0,R)$, $R > R_o$
 $\sigma > \max(p-1,1)$ and $q > 1$ (Theorem 3)

1. BOUNDED SOLUTIONS

Let X be a closed subspace of $W_0^{l,p}(\Omega)$, g is assumed to be a Caratheodory function satisfying the following conditions:

(H1)
$$\forall x \in \Omega, \ \forall \zeta \in \mathbb{R}, \ g(x,\zeta) \geqslant 0$$

and $\forall x \in \Omega, \ \forall \zeta > 0, \ g(x,\zeta) > 0;$

- (H2) $\forall K > 0, \exists M > 0$ such that for any $\zeta \in \mathbb{R}, |\zeta| \leq K$, and for any $x \in \Omega$, $g(x,\zeta) \leq M$;
- There exist some $\sigma_0 > p 1$ and $\zeta_0 \ge 0$ such that: (H3)

$$\forall \zeta \geqslant \zeta_0, \ \zeta \rightarrow \frac{G(x,\zeta)}{\zeta \sigma_0 + 1}$$
 is a non decreasing function where $G(x,\zeta) = \int_0^\zeta g(x,s) \ ds$.

Remark: It is sufficient to suppose that g satisfies (H1) and (H2) on \mathbb{R}_+ ; it can be easily extended to a function satisfying (H1) and (H2) on \mathbb{R} .

Theorem 1:

Let g satisfy the conditions (H1), (H2), (H3) and suppose that:

- (i) $X \subset L^{\infty}(\Omega)$.
- (ii) There exist some $\zeta_1 > 0$, $\sigma_1 > p-1$ and c > 0 such that:

$$\forall x \in \Omega, \ \forall \zeta \in [0,\zeta_1], \ G(x,\zeta) \leq c \ \zeta^{\sigma_1+1}$$

Then there is at least one positive solution $u \in X \cap C^{l,\alpha}(\Omega)$ of (E).

The condition (i) is satisfied for $X = W_0^{1,p}(\Omega)$ and any bounded open set Ω in \mathbb{R}^n in the case when p > N; the following proposition gives an other interesting example.

Proposition 1:

Let $0 < \rho < R < +\infty$ and Ω be an annulus in \mathbb{R}^{N} :

 $\Omega = \{ x \in \mathbb{R}^{N} : \rho < |x| < R \}$. Let X be the set of radially symmetric functions in $W_0^{1,p}(\Omega)$.

Then, there exist a positive constant $C(N,p,\rho,R)$ such that:

$$\forall u \in X, \ \forall x \in \Omega, \ |\ u(x)| \le C(N, p, \rho, R) ||\ \forall u ||_{p}$$

Examples:

Let $h: \mathbb{R}_+ \to \mathbb{R}_+$ be a positive non decreasing continuous function and $g(x,\zeta) = \zeta^{\sigma} h(\zeta)$ where $\sigma > p-1$; for instance $g(x,\zeta) = \zeta^{\sigma} \exp(\zeta^{\sigma})$, $\sigma > p-1$, q > 0; then g satisfies (H1), (H2), (H3) and (ii).

In the case when Ω is an annulus and $\sigma > 1$, we obtain positive solutions of

$$\Delta u + u^{\sigma} h(u) = 0$$
 in Ω

without any limiting condition as $g(u) = 0(u^k)$ when $u \to +\infty$ (GARAIZAR [3]), neither $R - \rho$ small (BANDLE - PELETIER [2]); besides we obtain analogous results for $p \neq 2$ and $\sigma > p - 1$. On the other hand our conditions are more restrictive than [2], [3] on the growth of g and on the limit of g(u) when $u \to 0$.

Proof of Proposition 1

Let $u(x) = \varphi(|x|)$; we have

$$-\varphi(|x|) = \varphi(R) - \varphi(|x|) = \int_{|x|}^{R} \varphi'(t) dt$$

By Hölder's inequality we get:

$$|u(x)| \leqslant \left(\int_{|x|}^{R} |\varphi^{s}(t)|^{p} t^{N-1} dt \right)^{1/p} \left(\int_{|x|}^{R} \frac{dt}{t^{(N-1)/(p-1)}} \right)^{1/p^{s}}$$

$$\int_{|X|}^{R} |\varphi'(t)|^{p} t^{N-1} dt = \frac{1}{\omega_{N}} \int_{|X| \leqslant |Y| \leqslant R} |\nabla u(y)|^{p} dy$$

whence the result with:

$$C(N,p,\rho,R) = \frac{I}{\omega_{N}^{1/p}} \left\{ \int_{\rho}^{R} \frac{dt}{t^{(N-1)/(p-1)}} \right\}^{\frac{1}{p^{*}}} \Box$$

The proof of Theorem 1 needs the following lemmas.

Lemma 1:

For any $u \in X$, let us consider:

$$J(u) = \frac{1}{p} \int_{\Omega} |\nabla u(x)|^p dx - \int_{\Omega} G(x, u(x)) dx$$

Suppose that g satisfies (H1), (H2), (H3). Then any sequence $(u_j) \subset X$ such $|J(u_j)| \leq K$ and $J'(u_j) \rightarrow 0$ in X, is bounded in X.

Proof:

For any $v \in X$, we have:

$$J'(u)(v) = \int_{\Omega} F(\nabla u). \ \nabla v - \int_{\Omega} g(.,u) \ v$$

 Ω being a bounded set we set:

$$\|u\|_{X} = \|\nabla u\|_{p} = \left(\int_{\Omega} |\nabla u|^{p}\right)^{\frac{1}{p}}$$

Suppose that a subsequence denoted by u_j be such that $\lim_{j\to+\infty} ||u_j||_X = +\infty$; we get:

$$-\frac{K}{\|u_{j}\|_{X}^{p}} \leq \frac{1}{p} - \frac{\int_{\Omega}^{\cdot} G(.,u_{j})}{\|u_{j}\|_{X}^{p}} \leq \frac{K}{\|u_{j}\|_{X}^{p}}$$

$$-\frac{\varepsilon}{\|u_{j}\|_{X}^{p-1}} \leq 1 - \frac{\int_{\Omega}^{\cdot} u_{j} g(.,u_{j})}{\|u_{j}\|_{X}^{p}} \leq \frac{\varepsilon}{\|u_{j}\|_{X}^{p-1}}$$

whence
$$\lim_{j \to +\infty} \frac{\int_{\Omega} G(.,u_j)}{\int_{\Omega} u_j g(.,u_j)} = \frac{1}{p}$$

(H3) gives for any $\zeta \geqslant \zeta_0$: $\zeta g(.,\zeta) \geqslant (\sigma_0 + 1) G(.,\zeta)$, whence:

$$\int_{\Omega} G(.,u_j) \leqslant C_1 + \frac{1}{(\sigma_0 + 1)} \int_{\Omega} u_j g(.,u_j)$$

$$\lim_{j \to +\infty} \frac{\int_{\Omega} G(.,u_j)}{\int_{\Omega} u_j g(.,u_j)} \leq \frac{1}{\sigma_0 + 1} < \frac{1}{p}$$

A contradiction, whence $||u||_r$ is bounded. \Box

Lemma 2:

If the hypothesis of Theorem 1 are satisfied, $J \in C^{r}(X)$ and satisfies the Palais - Smale condition.

Proof:

An easy consequence of Lebesgue's theorem shows that for $u_j \to u$, $\lim_{j \to +\infty} ||g(.,u_j) - (g(.,u))||_{\mathfrak{p}^*} = 0$, whence $J \in C^1(X)$.

Suppose that $|J(u_j)| \le K$ and $J'(u_j) \to 0$; by lemma 1, $g(.,u_j)$ is bounded, and the injection $X \subset L^p$ being compact, there exists a subsequence denoted by u_j which converges to u in strong L^p .

So, $\lim_{n,m\to+\infty} I_{n,m} = 0$ where

$$I_{n,m} = \int_{\Omega} [F(\nabla u_n) - F(\nabla u_m)] \cdot \nabla (u_n - u_m)$$

$$= (J'(u_n) - J'(u_m))(u_n - u_m) + \int_{\Omega} [g(.,u_n) - g(.,u_m)](u_n - u_m).$$

On the other hand we have:

$$\|\nabla u_{n} - \nabla u_{m}\|_{p}^{p} \leq c\{I_{n,m}\} \frac{\alpha}{2} \{\|\nabla u_{n}\|_{p}^{p} + \|\nabla u_{m}\|_{p}^{p}\} \frac{1 - \frac{\alpha}{2}}{2}$$

where $\alpha = \min(p, 2)$ (for example see [11]).

Whence u_i converges to u in X; the Palais-Smale condition is satisfied. \Box

Proof of Theorem 1:

We shall apply Pass-Mountain Lemma [8] to the function J defined in Lemma 1. J satisfies Palais-Smale condition and $J(\theta) = 0$.

Let us show that, for $||u||_x = r$ sufficiently small, we have $J(u) \ge \alpha > 0$. By (i) there is some c' > 0 such that,

$$\forall x \in \Omega, |u(x)| \le c' ||u||_x$$
; for $||u||_x \le \frac{\zeta_1}{c'}$ we obtain with (ii):

$$G(x,u(x)) \leq c|u(x)|^{\sigma_1+1} \leq c(c')^{\sigma_1+1} \|u\|_{x^{\sigma_1+1}}$$

$$J(u) \geqslant \frac{1}{p} ||u||_{X}^{p} [1 - c''||u||_{X}^{\sigma_{1}+1-p}]$$

For
$$||u||_{x} = r \le \min\left[\frac{\zeta_{1}}{c'}, \frac{1}{2c''}\right]$$
 we get $J(u) \ge \frac{r^{p}}{2p} = \alpha > 0$.

Now, let us consider $u_0 \in X$ such that:

$$\forall x \in \Omega_0, u_0(x) \ge \alpha_0 > 0 \text{ and meas } (\Omega) > 0.$$

For λ sufficiently large, $\lambda \alpha_0 \geqslant \zeta_0$ and by (H3):

$$\int_{\Omega} G(.,\lambda u_0) \geqslant \int_{\Omega_0} G(.,\lambda u_0) \geqslant \beta \lambda^{\sigma_0+1}$$
where $\beta = \frac{1}{\zeta_0^{\sigma_0+1}} \int_{\Omega_0} G(x,\zeta_0) |u_0(x)|^{\sigma_0+1} dx > 0$

We then obtain

$$\lim_{\lambda \to +\infty} J(\lambda u_0) \leq \lim_{\lambda \to +\infty} \left[\frac{\lambda^p}{p} \parallel u_0 \parallel_{\chi}^p - \beta \lambda^{\alpha_0 + 1} \right] = -\infty$$

and there is some $v_0 \in X$, $v_0 \neq 0$, such that $J(v_0) = 0$.

By the Pass-Mountain lemma, there exists some $u_0 \in X$, $u_0 \neq 0$, such that $J'(u_0) = 0$:

$$\forall v \in X, \int_{\Omega} F(\nabla u_0) . \nabla v - \int_{\Omega} g(., u_0) v = 0.$$

By TOLKSDORF's regularity results $u_0 \in C^{1,\alpha}(\Omega)$ [14], and by VAZ-QUEZ's maximum principle [16], $u_0 > 0$ in Ω . \square

2. SOLUTIONS IN AN ORLICZ SPACE

Let us recall that a Young function M is an even convex function from \mathbb{R} to \mathbb{R}_+ , such that:

$$\lim_{\zeta \to 0} \frac{M(\zeta)}{\zeta} = 0 \text{ and } \lim_{\zeta \to +\infty} \frac{M(\zeta)}{\zeta} = +\infty.$$

The conjugate M^* of M is defined by:

$$M^*(\zeta) = \sup_{s \in \mathbb{R}} [\zeta s - M(s)]$$

The Orlicz space $L_{M}(\Omega)$ is the set of measurable functions u defined on \mathbb{R} such that there is some $\lambda > 0$ with

$$\left(\frac{M\left(\frac{u}{\lambda} \right) < +\infty.}{\Omega} \right)$$

 $L_{M}(\Omega)$ is a Banach space for the following norm:

$$||u||_{M} = \operatorname{Inf}\left[\lambda > 0: \int_{\Omega} M\left(\frac{u}{\lambda}\right) \leqslant 1\right].$$

Let $E_{\mathcal{M}}(\Omega)$ be the closure of $D(\Omega)$ in $L_{\mathcal{M}}(\Omega)$.

We say that M is superhomogeneous of degree $(\sigma+1)$ if there exists some K>0 such that [11]:

$$\forall \zeta \in \mathbb{R}, \forall h \in [0,1], M(h\zeta) \leq h^{\sigma+1} M(K\zeta).$$

Let Ω be a bounded regular open set in \mathbb{R}^{N} .

In the case when N=p, $W_0^{1,p}(\Omega) \subset L^{\infty}(\Omega)$, but $W_0^{1,p}(\Omega) \subset E_{M_1}(\Omega)$ [1] where

$$M_1(\zeta) = \exp |\zeta|^{p^*} - 1, \quad \frac{1}{p} + \frac{1}{p^*} = 1$$

So, we can get the following Theorem.

Theorem 2:

Let g satisfy the conditions (H1), (H2), (H3). Suppose that there exists a Young function of exponential type M such that:

- (i) The imbedding $W_0^{1,p} \cup E_M(\Omega)$ is compact;
- (ii) M is superhomogeneous of degree $\sigma_1 + 1 > p$;
- (iii) There are some $c_i > 0$ and $K_i > 0$ such that:

$$\forall x \in \Omega, \ \forall \zeta \in \mathbb{R}, \ \zeta g(x,\zeta) \leq c_i M \left(\frac{\zeta}{K_i} \right) ;$$

(iv)
$$\forall K > 0$$
, $\lim_{\zeta \to \infty} \frac{g(x,\zeta)}{M'\left(\frac{\zeta}{K}\right)} = 0$, uniformly in x .

Then there is at least one positive solution $u \in W_0^{1,p}(\Omega) \cap C^{1,\alpha}(\Omega)$ of (E).

Example:

Let
$$p = N = 2$$
; $g(x,\zeta) = \zeta^{\sigma} \exp(\zeta^{q})$ with $\sigma > 1$, $0 < q < 2$, and
$$M(\zeta) = |\zeta|^{\sigma+1-r} \left(e^{|\zeta|^{r}} - 1\right)$$
 with $q < r < 2$.

r < 2 gives (i) [1]; $\zeta \rightarrow e^{|\zeta|^r} - 1$ is superhomogeneous of degree r, whence (ii); (iii) is easy and q < r gives (iv).

So, the equation:

$$\Delta u + u^{\sigma} e^{u^q} = 0$$

has at least one positive solution $u \in W_0^{1,2}(\Omega)$.

In a similar case TRUDINGER [15] proves that for any m>0, there exist $\lambda > 0$ and u > 0 such that $\int_{\Omega} G(.,u) = m$ and

$$\Delta u + \lambda g(x,u) = 0.$$

Our method allows us to eliminate this λ .

We obtain the same results for the equation:

$$\Delta_{\mathbf{p}}u + u^{\sigma} e^{u^{q}} = 0$$

where
$$p = N \ge 2$$
, $\sigma > p-1$, $0 < q < \frac{p}{p-1}$

J being defined in lemma 1, the proof of Theorem 2 needs the following lemma.

Lemma 3:

If the hypothesis of Theorem 2 are satisfied, $J \in C^1(W_0^{1,p}(\Omega))$ and satisfies the Palais Smale condition.

Proof:

Let (u_i) be a bounded sequence in $W_0^{i,p}(\Omega)$. By (i) there is some K > 0 such that:

$$\forall j, \int_{\Omega} M\left(\frac{u_j}{K}\right) \leqslant 1$$

Let c > 0 be such that $M^*(\frac{1}{c})$ meas $(\Omega) < 1$ and:

$$\forall x \in \Omega, \ \forall \ \zeta \in \mathbb{R}, \ | \ g \ (x, \ \zeta)| \leq \frac{c}{2} + \frac{1}{2} M'(\frac{\zeta}{K}).$$

We obtain:

$$(1) \int_{\Omega} M^* \left[\frac{g(.,u_j)}{c^2} \right] \leq \int_{\Omega} \frac{1}{2} M^* \left(\frac{1}{c} \right) + \int_{\Omega} \frac{1}{2} M \left(\frac{u_j}{K} \right) \leq 1.$$

Let u_j converges to u in $W_0^{1,p}(\Omega)$. For sufficiently small δ and for meas $(A) < \delta$, we have:

$$\int_{A} M^{*} \left[\frac{g(.,u_{i})}{c^{2}} \right]$$

$$\leq \frac{1}{2} M^{*} \left(\frac{1}{c} \right) \operatorname{meas}(A) + \frac{1}{4} \int_{A} M \left(\frac{u_{i} - u}{K} \right) + \frac{1}{4} \int_{A} M \left(\frac{u}{K} \right) \leq \varepsilon.$$

 $M^*\left[\frac{g(.,u)-g(.,u)}{c^2}\right]$ is then an equi-summable sequence and

$$\lim_{j \to +\infty} \left[M^* \left[\frac{g(.,u_j) - g(.,u)}{c^2} \right] = 0 \right]$$

By (ii) M^* satisfies the " Δ_2 -condition" [11], so $\lim \|g(.u_j) - g(.,u)\|_{M^*} = 0$; whence $J \in C^1(W_0^{1,p}(\Omega))$.

Suppose now that $|J(u_j)| \le K_1$ and $J'(u_j) \to 0$. By lemma 1, $||u_j||_{w^{1,p}}$ is bounded and, by (i), u_j converges in $E_M(\Omega)$; by relation (1), $g(.,u_j)$ converges for $\sigma(L_{M^*}, E_M)$. So the same proof than for lemma 2 shows that the Palais-Smale condition is satisfied. \square

Proof of Theorem 2:

Let us show that for $||u||_{\mathbf{w}_{0}^{1,p}} = r$ sufficiently small we have $J(u) \ge \alpha > 0$.

By (iii) and (ii), we have

$$\forall x \in \Omega, \ \forall \zeta \in \mathbb{R}, \ \forall h \in [0,1], \ G(x,\zeta) \leq c_i \ M\left(\frac{\zeta}{K_i}\right) \leq h^{\sigma_i+1} \ M\left(\frac{K\zeta}{K_ih}\right)$$

By (i)

$$\forall u \in W_0^{1,p}(\Omega), \|u\|_{M} \leqslant c \|u\|_{W_0^{1,p}}$$

Whence for
$$\|u\|_{\mathbf{w}_0^{1,p}} = r \leqslant \frac{K_I}{cK}$$
 and $h = \frac{cKr}{K_I}$:

$$\int_{\Omega} G(..u) \leq c_{i} \int_{\Omega} M\left(\frac{u}{K_{i}}\right) \leq c_{i} h^{\sigma_{i}+1} \int_{\Omega} M\left(\frac{u}{cr}\right) \leq c_{i} h^{\sigma_{i}+1} = c' \|u\|_{w_{0}^{1,p}}^{\sigma_{i}+1}$$

The same proof than for Theorem 1 gives $u \in W_0^{1,p}(\Omega)$, $u \neq 0$, solution of (E). The end of the proof is a consequence of the following lemma. \Box .

Lemma 4:

If all the hypothesis of Theorem 2 are satisfied, $u \in C^{1,\alpha}(\Omega)$.

Proof:

This proof is very similar to OTANI's one [9] (see also [13]). By (iii) there is some s > 1 such that $ug(x, u) \in L^s(\Omega)$.

Consider the following sequences:

$$q_1 = 2ps^* = 2ps / (s-1)$$

 $q_{k+1} = 2(p+q_k)$
 $\theta = s^* q_k$

Multiplying (E) by $|u|^{q_k}$ u, we obtain:

$$\left(\frac{p}{p+q_k}\right)^p \int_{\Omega} \left| \nabla \left(u^{1+\frac{q_k}{p}} \right) \right|^p = \int_{\Omega} u \, g(.,u) \, |u|^{q_k}$$

$$\leq \|u g(.,u)\|_{s} \|u^{q_{k}}\|_{s^{\bullet}} \leq c \|u\|_{s^{\bullet}}^{q_{k}}$$

M being of exponential type, $W^{1,p}(\Omega) \cup L^{2p*}(\Omega)$ and there is some K such that:

$$||u||_{2, r^{\bullet}(p+q_k)}^{p+q_k} \leqslant K^p \int_{\Omega} \left| \nabla \left(u^{1 + \frac{q_k}{p}} \right) \right|^p$$

We then obtain:

$$\|u\|_{\theta_{k+1}}^{\theta_{k+1}/2\,,\bullet}\leqslant\ c\left(\frac{\underline{K(p+q_k)}}{p}\right)^p\|\ u\|_{\theta_k}^{\theta_{k'}\,,\bullet}$$

This formal proof can be made rigorous by using some regularized equation [13].

Observing that $p + q_{k} \leq 4^{k-1} 4ps^{*}$, we get:

$$\| u \|_{\theta_{k+1}}^{\theta_{k+1}} \le c^{2s^*} (4Ks^*)^{2p s^*} 4^{2(k-1)p s^*} \| u \|_{\theta_k}^{2\theta_k}$$

Let:

$$E_k = \theta_k \log ||u||_{\theta_k}$$

$$a = 4^{2} p s^*$$

$$b = \text{Log} [c^{2s^*} (2Ks^*)^{2ps^*}]$$

$$r_k = b + (k-1) \operatorname{Log} a$$
.

We then obtain:

$$E_{k+1} \leqslant r_k + 2E_k$$

Whence, following OTANI [9], we deduce:

$$||u||_{\infty} \leq \overline{\lim_{k \to +\infty}} \exp \left(\frac{E_k}{\theta_k}\right) < +\infty$$

So $u \in L^{\infty}(\Omega)$ and by TOLKSDORF's results $u \in C^{l,a}(\Omega)$. \square

3. A PARTICULAR CASE : Ω IS A BALL

In the particular case when Ω is a ball and N=p, we can obtain radially symmetric solutions of (E), for any growth of g near infinity.

For simplicity we suppose that g does not depend on x; we assume the following conditions:

(H4)
$$g \in C^1(\mathbb{R}), g \geqslant 0 \text{ and } g(0) = 0$$
;

(H5) g and g' are non decreasing on \mathbb{R}_+ ;

(H6)
$$\lim_{t \to 0} \frac{g(t)}{t^{p-1}} = 0$$

Theorem 3:

Let $N=p\geqslant 2$ and let g satisfy the conditions (H4), (H5), (H6). Then, there exists R_0 such that, for $R\geqslant R_0$ the equation

(E)
$$\Delta_n u + g(u) = 0 \text{ in } \Omega = B(0,R)$$

admits at least one positive radially symmetric solution $u \in W_0^{l,p}(\Omega)$.

Example:

For any $\sigma > \max(1, p-1)$ and any q > 1, $g(\zeta) = |\zeta|^{\alpha} \exp |\zeta|^{\alpha}$ satisfies (H4), (H5), (H6).

Theorem 3 is a consequence of the following proposition. Let us consider the following system:

(S)
$$\begin{cases} v'(x) = |w(x)|^{p^*-2}w(x) \\ w'(x) = -\frac{e^{-x}}{p^p} g[v(x)] \end{cases}$$

where
$$p^* = \frac{p}{p-1}$$

Submitted to the conditions:

$$(L.C.) \begin{cases} \lim_{x \to +\infty} v(x) = m \\ \lim_{x \to +\infty} w(x) = 0. \end{cases}$$

Proposition 2:

Let $p \ge 2$ and let g satisfy the conditions (H4), (H5), (H6). Then, for any m > 0, (S) + (L.C.) admits one and only one solution (v,w); there exists some $\alpha = \theta(m) \in \mathbb{R}$ such that:

$$v(\alpha) = 0$$
 and $v > 0$ on $]\alpha, +\infty]$.

Moreover θ is continuous on \mathbb{R}_+ and $\lim_{m\to 0} \theta(m) = -\infty$.

Proof:

Let us consider the following iterations; $v_{\theta} = 0$ and for $n \in \mathbb{N}$:

$$w_n(x) = \int_{-X}^{+\infty} \frac{e^{-t}}{p^n} g[v_n(t)]dt$$

$$v_{n+1}(x) = m - \begin{cases} +\infty \\ x \end{cases} | w_n(t) |^{p^{n-2}} w_n(t) dt.$$

We have:

$$w_{i}(x) = \frac{g(m)}{p^{p}} e^{-x} > w_{0} = 0$$

$$v_2(x) = m - \frac{g(m)}{p^p(p^*-1)} \exp[-(p^*-1)x] < m = v_1(x)$$

There is some M(m,p) such that:

$$\forall x \ge M(m,p), v_2(x) \ge \frac{m}{2} > v_0(x) \text{ and }$$

$$w_2(x) = \int_{-x}^{+\infty} \frac{e^{-t}}{p^p} g[v_2(t)] dt \ge \frac{f(\frac{m}{2})}{p^p} e^{-x}.$$

By induction we can prove that for any $q \in \mathbb{N}$, v_{2q} is a nondecreasing sequence, v_{2q+1} is a noninnereasing sequence and $v_{2q} \leq v_{2q+1}$; whence for any n we have either $v_n \leq v_{n+1}$, or $v_{n+1} \leq v_n$.

Suppose that $n \ge 2$ and $v_n \le v_{n+1}$; we have $w_n \le w_{n+1}$ and $v_{n+2} \le v_{n+1}$.

 $p^* \leq 2$ and $w_n \geq w_2$, whence:

$$|w_{n+1}(t)|^{p^{\star}-2} \ w_{n+1}(t) \ - \ |w_n(t)|^{p^{\star}-2} \ w_n(t) \ \leqslant \ (p^{\star}-1) \ |w_2(t)|^{p^{\star}-2} \ [w_{n+1}(t) \ - \ w_n \ (t)].$$

We then obtain:

$$0 \le v_{n+1}(x) - v_{n+2}(x) \le \frac{p^* - 1}{p^* - 2} \left(\frac{g\left(\frac{m}{2}\right)}{p^p} \right)^{p^* - 2} \exp[-(p^* - 2)x] \sup_{t \in [x, +\infty]} |w_{n+1}(t)| - w_n(t)|.$$

On the other hand, by (H5), we get:

$$0 \leqslant w_{n+1}(x) - w_n(x) \leqslant \frac{g'(m)e^{-x}}{p^p} \sup_{t \in [x, +\infty]} |v_{n+1}(x) - v_n(x)|.$$

Therefore:

$$\sup_{t \in [x, +\infty]} |v_{n+1}(x) - v_{n+1}(x)| \le c(x) \quad \sup_{t \in [x, +\infty]} |v_{n+1}(t) - v_n(t)|.$$

And, for $x \ge M_1(m,p) \ge M(m,p)$, we have:

$$c(x) = \frac{p^* - 1}{p^* - 2} \left(\frac{g\left(\frac{m}{2}\right)}{p^p} \right)^{\frac{p^* - 2}{2}} \exp[-(p^* - 1)x] < 1$$

By Picard's theorem we obtain a unique solution (v, w) of (S) + (L.C) for $x \ge M_1(m,p)$. By classical differential equations theory this solution can be continued for $x < M_1(m,p)$. Since v has increasing gradient, it has a last zero at a point $x = \alpha = \theta(m)$.

Let us set:

$$H(x,m) = \begin{cases} +\infty & |w(t,m)|^{p^{\bullet}-2}w(t,m)dt - m. \end{cases}$$

 $\frac{\partial H}{\partial x}$ (α , m) $\neq 0$ and by implicit functions theorem θ is continuous.

For $x \in]\alpha, +\infty]$, we have $0 < v(x) \le m$, whence:

$$w(x) \leqslant \int_{x}^{+\infty} \frac{e^{-t}}{p^{p}} g(m) = \frac{e^{-x}}{p^{p}} g(m)$$

$$m = \int_{\alpha}^{+\infty} v'(x) dx \leq \left(\frac{g(m)}{p^{p}}\right)^{\frac{p^{n-1}}{p}} \frac{e^{-(p^{n-1})\alpha}}{p^{n-1}}$$

$$\lim_{m \to 0} (p^* - 1) p^p e^{(p^* - 1)\theta(m)} \le \lim_{m \to 0} \left(\frac{g(m)}{m^{p-1}} \right)^{p^* - 1} = 0$$

whence
$$\lim_{m\to 0} \theta(m) = -\infty$$
.

Proof of Theorem 3:

By proposition 2, there is some α_0 such that for any $\alpha = -p \operatorname{Log} R \leq \alpha_0$, (S)+ (L.C.) has one and only one solution such that $v(\alpha, m) = 0$. The change of variable $x = -p \operatorname{Log} r$, $v(x) = \varphi(r)$ transforms (S) into the equation:

$$\frac{d}{dr} \left\{ | r \varphi'(r)|^{p-2} r \varphi'(r) \right\} + r^{p-1} g[\varphi(r)] = 0$$

which is the radial form of the equation (E), with boundary condition $\varphi(R) = 0$. \square

Remark: The deep study of the case p=2 made by HEMPEL [5] and NE-HARI [6] shows that there is no hope to find a solution of (E) for any R, if the growth of g has no bound when $u \to +\infty$.

References

- [1] R.A. ADAMS, Sobolev Spaces; Academic Press, 1975.
- [2] C. BANDLE and L. A. PELETIER, Problèmes de Dirichlet non-liméaires dans des anneaux; C.R. Acad. Sc. Paris t. 303, Serie I n. 5, 1986, 181-184.
- [3] X. GARAIZAR, Existence of positive radial solutions for semilinear elliptic equations in the annulus; Journal of Diff. eq. 70, 1987, 69-92.
- [4] J.A. HEMPEL, Superlinear variational boundary value problems and non-uniqueness; Thesis, Univ. New England, 1970.
- [5] J.A. HEMPEL, On a superlinear differential equation; Indiana Univ. Math. Journal, vol. 26 n.° 2, 1977, 265-275.
- [6] Z. NEHARI, On a class of nonlinear second order differential equations; Trans. Amer. Math. Soc. 95, 1960, 101-123.
- [7] W.M. NI and J. SERRIN, Existence and non-existence theorems for ground

- states for quasilinear partial differential equations; Proc. Acad. Lincei (to appear).
- [8] L. NIRENBERG, Variational and topological methods, in nonlinear problems; Bulletin of the A.M.S., vol. 4 n.° 3, 1981, 267-302.
- [9] M. Otani, Existence and non-existence of non trivial solutions of some nonlinear degenerate elliptic equations; J. Funct. Analysis, vol. 76 n.°1, 1988, 140-159.
- [10] S.I. POHOZAEV, Eigenfunction of the equation $\Delta u + \lambda f(u) = 0$; Soviet. Math. Dokl n.° 6, 1965, 1408-1411.
- [11] F. DE THELIN, Régularité de la solution d'une équation fortement (ou faiblement) non linéaire; Annales Fac. Sciences Toulouse, vol. 2, 1980, 249-281.
- [12] F. DE THELIN, Quelques résultats d'exisence et de non existence pour une E.D.P. elliptique non linéaire; C.R. Acad. Sc. Paris, t. 299, Serie I n.º 18, 1984, 911-914.
- [13] F. DE THELIN, Résultats d'existence et de non existence pour la solution positive et bornée d'une E.D.P. elliptique non linéaire; Annales Fac. Sciences Toulouse, vol. VIII n.° 3, 1987, 373-389.
- [14] P. TOLKSDORF, On the Directlet problem for quasilinear equations in domains with conical boundary points; Comm. P.D.E., n.° 8, 1983, 773-817.
- [15] N.S. TRUDINGER, On imbeddings into Orlicz spaces and some applications; J. of Math. and Mech. vol. 17 n. 5, 1967, 473-483.
- [16] J.L. VAZQUEZ, A strong maximum principle for quasilinear elliptic equations; Appl. Math. and Optimization, n.° 12, 1984, 191-202.

Recibido: 17 noviembre 1988

Université Paul Sabatier 31062 Toulouse FRANCE