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Nonparametric estimation of probability
density functions based on orthogonal
expansions

ALDO JOSE VIOLLAZ

ABSTRACT. Let (X;)/_, beiid.r.v.’seach with density function f, and let (k, (x, ¢))
be a sequence (a so-called kernel sequence) of Borel measurable functions defined on
RxR. Let £, (x) be the density function estimate defined by

Ja(x)=n-! Z_,‘=1 ky (%, Xp).

We prove that under general conditions on fand (k,), (f,(x)) is consistent in the
mean square sense. We find an asymptotic expression for the variance of the estimate
and prove that its asymptotic distribution is Gaussian. These results apply to a large
class of density estimates which includes the estimates considered by Parzen (1962),
Leadbetter (1963) with kernels with compact support and also those estimates derived
fron orthogonal expansions.

Density estimates derived {from trigonometric and Jacobi orthogonal expansions
are studied in detail. For f belonging to classes of functions defined in terms of the
derivatives of f, we find explicit bounds for the mean square error of the estimates,
holding uniformly over these classes. We compare the rates of mean square consis-
tency obtained with the best possible rates found by Farrell and Wahba, .

0. INTRODUCTION AND SUMMARY

0.1. Introduction

In all this work we 'only consider the estimation of one dimensional
probability density functions f with respect to Lebesgue measure on R.

There are at least two well known nonparametric methods for estimating
a probability density function (p.d. function), namely, the kernel method and
the orthogonal series method. Let (X;)/_, be n independent observations of
a random variable X with p.d. function . The kernél method consists of
choosing as estimator of the p.d. function at x the following

i n ‘ -
Julx)=— E kn(x—X;) [0.1]
L | _
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where k,, is a sequence of functions satisfying certain conditions and
m=m(n)is a sequence of integers depending on n. Essentially this method is
a generalization of the intuitive procedure which consists of choosing a
narrow interval around the point x and estimating f(x) by the number of
observations X, belonging to that interval divided by # times the length of the
interval. There are several papers about the local properties of kernel p.d.
functions estimators: Bartlett (1963), Rosenblatt (1956, 1971), Parzen (1962),
Leadbetter (1963), Woodroofe (1957), etc. See Wegman (1972) for more
detailed references. In the orthogonal series method we have to choose a
convenient orthogonal system of functions and write the p.d. function £ as the
corresponding orthogonal series expansion. In order to estimate f we first
have to cut the series keeping only a finite number of terms, and then estimate
the coefficients of this finite series. This method was studied among others by
Schwartz (1967) using the system of Hermite functions, by Kronmal and
Tarter (1968) using the trigonometric system of functions and by Cencov
(1962) using a general orthogonal system. See also Rosenblatt (1971), Watson
(1969), Crain (1974), Wegman (1972), Hall (1982) and Viollaz (1980).

The research in the area of nonparametric estimation of probability
density functions has grown exponentialy. In the last twenty years much
research work has been done, dealing with both the kernel and the orthogonal
series methods as well as with others nonparametric methods like the
penalized maximum likelihood of Good and Gaskins (1971, 1980), the near
neighbor estimators of Loftsgaarden and Quesenbarry (1965), the spline
methods of Wahba (1971) or the histogram type estimator of Van Ryzin
(1969}

The questions studied also covers a wide spectrum, running from
problems of consistency in several senses to problems of asymptotic
distribution of some functionals of the density estimator as in Bickel and
Rosenblatt (1973) or Viollaz (1976, 1980).

The important problem of the choice of the bandwith in the kernel
estimator or equivalently the choice of the number of terms in the orthogonal
series estimator has been studied by several authors. See Woodroofe (1970),
Kronmal and Tarter (1968), Duin (1976), Hermans and Habbema (1976), and
Viollaz and Cardozo (1980). See also Hall (1982) and Marron (1985) for more
recent works on this problem.

The present paper intends to throught light over the question: how much
different or how much similar are the kernel and the orthogonal series
density estimates?

For this, we introduce a class of density estimators of variable kernel type
which includes both the kernel and the orthogonal series density estimators.
For this class we study pointwise and uniform consistency in the Mean
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Square Error sense, we find an asymptotic expression for the variance of the
estimator and prove its asymptotic normality. The results apply to the
algebraic estimators of Parzen with compact support, to the Leabbetter
estimators with compact support and to estimators based on orthogonal
expansions in the trigonometric system and in the system of Jacobi poly-
nomials.

The contain and organization of the paper is as follow:

In Section | we state some results from Alexits (1961} which are used in
the sequel. Some elementary properties of kernel sequences are proved here.

In Section 2, some local properties of the estimators are studied. It s
proved that the sequence of estimators is consistent in the mean square sense.
We find an asymptotic expression for the variance of the estimator and we
show that its asymptotic distribution is Gaussian. The results of this section
apply for a general class of estimators which includes the so-called algebraic
estimators of Parzen with compact support and also classes of estimators
constructed using the orthogonal series method. The estimators derived from
the trigonometric and Jacobi system are included here. We hope the results of
this chapter will contribute to understanding the similarities and differences
between the algebraic estimators and the orthogonal series estimators.

In Section 3 estimators derived from Jacobi orthogonal expansions are
studied in detail. The results of Section 2 are applied to prove the mean
square consistency, to find an asymtotic expression for the variance of the
estimator and to show that its asymptotic distribution is Gaussian. For f
belonging to classes of functions defined in terms of the derivatives of f, we
find explicit bounds for the mean square error for the estimators, holding
uniformly over these classes.. We compare these rates of mean square
consistency with the best possible rates found by Farrell (1972) and Wahba
(1975). Explicit bounds for the Mean Square Error are obtained for
estimators derived from Legendre Series. It is shown that the estimator
derived from the Cesaro summation of the Legendre series is saturated with
rate n-23 in the sense that the best possible rate of convergence to zero ot
the Mean Square Error is n—2/3, independently of the smoothness of the
function f.

0.2. The Estimator

Let (¢,) -0 be a complete orthonormal system with respect to a weight
function p. It is known that if £ is a square integrable function with respect to
P, 1.e. ffzp is finite, then the orthonormal expansion of f,

oo

2 b, (x) [0.2]

v=0
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where

¢, =[f(x)$,(s)p (s)ds [0.3]

converges to f'in the L sense. Here ¢, stands for the complex conjugate of ¢,
which in general is assumed to be a complex valued function of a real
variable,

Let (X;)7_, be a sequence of independent observations of a random
variable X with p.d. function f and distribution function F, and let us assume
that its orthonormal expansion converges pointwise to f(x) at the point x, so
we can write

f)= 3 c,¢,(x) [0.4]
~ where ¢, is given by [0.3]. The infinite sequence of coefficients (c,)7_, is
unknown since f is assumed to be unknown, so it is not of much help to use
this formula for estimating f(x). But we can do the following: Cut the
expansion [0.4] keeping only a finite number of terms, say m=mn}
expecting that this finite expansion will be a good approximation for f(x),
and then estimate the finite sequence of coefficients (c,)7_,. Writing ¢, as

¢, =[b,(s)p (s)dF (s) [0.5]
a natural es.timate for ¢, appears to be
&= [8,(5)p () dF, (s) [0.6]

where F, is the empirical distribution function corresponding to the finite
sequence (X;)j_,. Therefore in-a natural way we are led to consider p.d.
function estimators of the form

min)
fr(9=3 4,6,05) [0.7]
where
. | A
G=— ,—Z'“g b, (X;)p(X,). [0.8]

In the same way we can consider more general estimators of the form

mn)

Jalx)= 2::0 a,(m)e, é,(x) [0.9]

where the a,(m) are known numbers and the ¢, are defined as above. This
kind of motivation can be found in the existing literature on the subject; see
Cencov (1962), Krommal and Tarter (1962), Rosemblatt (1971).
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After replacing &, by its expression [0.9] we obtain

So9=3, k(5. XD (X) [0.10]
j=

where
k,,(x, s)=§o a, (m) by (X) B0 (5): [0.11]

Parzen (1962), Rosenblatt (1956, 1971), Bickel and Rosemblatt (1973)
among others consider density estimators of the from [0.10] with kernel

x—1)

b(n)"

Following Leadbetter (1963) and Wegman (1972) we call these estimators
algebraic estimators. Rosenblatt (1956), Whittle (1958), Watson and Leadbetter
(1963) and Leadbetter (1963) consider estimators of the form [0.10] with
kernel k,,(x, 1)=25,(x—1t). Woodroofe (1957) considers estimators of the
form [0.10] with

Ko (%, [0.12]

1
Y

—1
k, (x, t):G(x. x ) [0.13]

We propose to study estimators of the form [0.10] independently of
whether they originated from an orthogonal expansion or not. This,
moreover, has two advantages,

(1) We get resuits which apply to the estimators derived from
orthonormal expansions in trigonometric functions and Jacobi polynomials,
and to the estimators considered by Parzen, Rosenblatt and Woodroofe
introduced above, under the restriction that their corresponding kernel have
compact support.

(2) We can better understand the similarities and differences between
density estimators constructed using different functions &,

1. SOME RESULTS ABOUT ORTHOGONAL SERIES
1.1. The Singular Integrals

As stated before we will study p.d. function estimators of the form

3. ko (%, X,)p(X;)

1
n =1

Salx)=
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where m=m (n), independently of whether they originated from orthogonal
expansions or not. Of course, we could absorb the factor p(X;)into k,, (x, X;)
but we prefer the above form since the conditions we will impose on the
kernel take a simpler form in this case,

Consistency of f), is equivalent to the following: Under what conditions on
km p, and f, does the Lebesgue integral

b (f. X)=[ ke (x. ) p (1) f (1) it [1.1]

exist and converge to f(x)? So we will start studying this kind of integrals
which were called by Lebesgue (1909) singular integrals. In this Section we
will state some theorems abouf convergence of singuiar integrals, we will
define orthogonal polynomial-like systems and will particularize these
theorems to them. Also we will present some results about the kernels of the
singular integrals.

Definition 1.1.1. Let (k,, (x, 1)) be a sequence of measurable real valued
Junctions defined on the finite square [a, b]x[a, b] and let p be an integrable
and a.e. strictly positive function on [a, b]. The pair ( (k. (x, 1), p(1)) will be
called a kernel sequence with singular point x if for every A>0 and every
subinterval [a, B] of [a, b], a<a<B=<b, the Sollowing conditions hold:

a) ,{’_’2 f: ke(x, )p(dr=1 and "{:_rg f; kn(x, )p(1)dr=0
where I=[a, bJ]N[x— A x+A], J=[a,B]—[x—\, x+ Al

b) supf|k,(x 1)|:t1€]a, bl—[x—=Ax+A]}=L(x, A)
where L(x, ) is a finite function of x and X but independent of m,

¢) s?p{ [k (x, )] 1€[a, Bl } = L, (x)<=.

The sequence of integrals (7, (f; x)) constructed using a kernel sequence as
above defined is known as a singular sequence of integrals (Lebesgue (1909)).

Theorem 1.1.1 (Lebesgue). Ler (I,.(f,1}) be a singular sequence of
integrals in the sense of Definition 1.1.1. A necessary and sufficient condition
Jor L.(f, x) to converge to f(x) for every Junction f which is continuous at x
and of bounded variation on [a, b] is

Condition 1.1.1. There exists a constant K independent of m but
eventually depending on x such that for every subinterval [A, B] of [a, b],
a<AS=B<bh

B
f K (x, Dp()dt | <K,
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holds uniformly with respect to the interval [4, B]. Moreover, if Condition
1.1.1 is uniformly satisfied for x e[c, d1Ca, b}, the function of finite variation
[is continuous in [c, d] (It is understood that f is continuous at ¢ from the left
and at d from the right) and conditions a) and b) dre uniformly satisfied for
x€[¢, d] then I, (f, x) converges uniformly to ffor x€lc. d].

Lebesgue (1909) proved this theorem and a proof is also given by Alexits
(1961). :

Theorem 1.1.2. Let (I, (f, x)) be a singular sequence of integrals in the
subinterval [c, d] of [a, b]. Then I, (f, x) converges at the point x€le, d] to
[f(x), for every.f which is L,-integrable and continuous in [c. d], if and only if
the following condition holds:

Condition 1.1.2. There exists a constant K independent of m, but
eventually depending on x, such that

. ,
Jlk,,,(x, Dp)dt=K.

b
Here and in what follows f L -integrable means thatj | f(t)| p(t)de is

a

finite. For a proof of this theorem, see Alexits (1961), pp. 257-260.

Remark. Condition ¢) of Definition 1.1.1 in Alexits (1961) is stated under
the folowing form: «..., assuming, that they (the singular integrals) exist for
every L,-integrable function». Both forms are essentially equivalent since
condition c) implies the existence of I, (f; x) for every L, -integrable function,
and the existence of I, (f, x) for every L -integrable function f implies that ess
sup { | k(% )| :a<t=b} is finite. See Alexits (1961), p. 247, In what follows
we shall refer to Alexits (1961) only by his name and corresponding page
numbers.

Theorem 1.1.3.  [f the function f€ L, is umférmly continuous in a subset
E of [a, b] and conditions a) and b) of Definition 1.1.1 and Condition 1.1.2
are uniformly satisfied for x€ E, then I, (f, x) converges to f uniformly in E.

For a proof of this theorem see Alexits.

Theorem 1.1.4 Let the integrals I, (f.x) be singular at the poini
x€[a, bl. If the function f is p-integrable, continuous at x and of bounded
variation in some interval [x — e, x+¢€] around the point x, and if Condition
1.1.1 holds, then I, (f, x)—f(x) as n—oo.

This theorem follows by combining the arguments of the sufficiency part
of Theorems 1.1.1 and 1.1.2.
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1.2, The Christoffel-Darboux Formula

In this paragraph we state some definitions and results about orthogonal
systems of functions that will be needed later,

Let p be an almost everywhere positive and integrable function on the
interval [a, b] of R, and let {(p,);_, be the (unique) complete system of
polynomials in x, orthonormal on the interval {a, ] with respect to the weight
function p, that is

b .
fpi (x)pi(x)p(x)dx=05;
where §;; is equal to one if =} and equal to 0 otherwise. If fis a p-integrable
function (on [a, b]) then the m'" sum of its orthogonal expansion can be
written as

w0=[ 0% p@rwpmar. [12)
The function
Ko (x. 1) = % Po ()P (1) (1.3]

is called the m' kernel of the system (p,). We have used the notation K,, for
this kernel instead of k,, because we want to reserve the latter for kernels
which satisfy the conditions of Definition 1.1.1 and it is not known vet if K,
satisfies these conditions or not.

‘Lemma 1.2.1 (Christoffel-Darboux formula). Let (p,) be the system of
orthonormal polynomials with respect to the weight function p, then

P (x)pm'i-] (t)_pm"H (x)pm (I)
i—x

[1.4]

S o (xIpy ()=
=0 m+1

where a, and any; denote the leading coefficients of p, and p,.,
respectively.

For a proof of this lemma see for example Alexits, pp. 25-26 or Szegd
(1939), pp. 4142,

The Cristoffel-Darboux formula holds for orthogonal polynomials.
Alexits, motivated by the Christoffel-Darboux formula, has defined orthogonal
systems that the calls polynomials-like. We now give Alexits’ definition.
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Definition 1.2.1. An orthonormal system (¢,) is called polynomial-like
for x€ E, if its m" kernel has the following structure

¥ 14 .
Rn(6 =3 Felu )% Vi bmri(t) bme; () [15]

ij=p

where p and r are natural numbers, independent of m, and the constants 7:‘?2)
have a common bound, independent of m while the measurable functions
Fi(x, t) satisfy the condition

Fo(x,)=0 (‘—) [1.6]

fr—x|
where O(+) is uniform in k and x€ E.

We agree here that ¢,.; with eventually negative indices are defined to be
identically equal to zero.

Since @,,/a,,4+; is bounded uniformly in m (see Alexits, p. 28), it is clear
that the polynomials (p,) which are orthonormal with respect to a weight
function p, form a polynomial-like system with p=1, r=1, 'y](f,",)zam/amﬂ,
75’,"{: — 0 Cpt1s 'y&"f:ﬂ and 'y,-?;:) =0 for all other indices, Fj(x, )=

(t—x)- 1.

The trigonometric system is also polynomial-like for x€[ —m+ 8, m— 8],
6 >0 (Alexits, pp. 178-179).

Theorems 1.1.1,1.1.2,1.1.3, 1.1.4 stated above can be applied to study
questions of convergence of the expansions in terms of the functions of
polynomial-like orthonormal systems. Following Alexits we will say that the
orthonormal system (¢,) is constant-preserving if ¢ is constant.

Theorem 1.2.1 Let (¢,(x)) be a complete orthonormal, constani-
preserving, polynomial-like system with respect to a weight function p on a
finite interval [a, b). Let the functions F (x, 1) be continuous on the square
[a b)x[a, b]. except possibly on the diagonal t = x. Assume that the sequence
(b, ) is dominated by a function w continuous on (a, b), a.e. positive on [a, b]
and such that pw is integrable on [a, b]. Then the sequence of kernels (k,,, p*)
where

ko (x, )= K, (x. )/ w()= i b (x) P ()fw (1)
p*()=p(t)}w(t),

satisfies the requirements of Definition 1.1.1 uniformly for xela+e, b—e¢],
e >0 '
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Proof. This theorem is a generalization of Theorem 4.3.1 in Alexits, pp.
264-266 and we follow closely Alexits’ proof.

We have to show that the conditions of Definition 1.1.1 hold. Since (¢,)
is polynomial-like the m kernel has the form

r I4
&ﬁmigﬂmuzvﬁmwmmmm

Lj=-p

Since by Definition 1.2.1 the Vf(fn/:) are uniformly bounded, Fj (x,t) 1s con-
tinuous on [a, b1 —[x— A, x+A], A>>0, and the ¢, are dominated by w, which
1s continuous on (a, b), it follows that

sup{lk,(xt)| - tela b]—[x—A, x+A]1=0O(1)

uniformly for x€[a+e, b—¢€], €>>0, s0 that condition b) of Definition 1.1.1
holds. The rest of the proof goes exactly like Alexits’ and it is omitted.

Definition 1.2.2 Let (¢,) be an orthonormal system of functions on
some interval [a, b] with respect 1o a weight function p. The Cesaro
summation kernel of the system (¢,) is defined by

&ﬁﬂzgp—;)mwmm. [1.7]

The following thecorem is useful to deal with the Cesaro kernels.

Theorem 1.2.2.  Let (¢,) be a complete constant-preserving orthonormal
system on an interval [a, b] with respect to a weight function p and suppose
that there exists a function w continuous on (a, b), positive a.e. on [a, b] and
such that sup,sup {| ¢,(1)| [w(1):1€[a, b]}<oo. Let us assume that ($,) is
polynomial-like for x<[c, d|Cla, b], the functions F, (x, t) are continuous in
the rectangle [c, d]x|a, b], except possibly on the line t=x. Let us assume
also 0= p (x)= constant and 3."_, &5 (x)= O (m) hold uniformly for x [, d].
Let k,, be the Cesaro kernel defined in [1.7). Define

ko (6 )=k, (x, )/w(®),  p*(t)=p()w(1). [1.8]

Then the sequence of kernels (k.. p*) satisfies the requirements of Definition
1.1.1 and Condition 1.1.2 uniformly for xc[c+e, d—e].

Proof. The kernel £, can be written as

-t

S K.x) [1.9]

1
M=o

krix, 1)=
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where K, is given by [1.5]. Therefore
m-1
KX (x, )= # S K, (x)lw(t). [1.10]
u=0

Using [1.10] and arguing essentially as in Theorem 1.2.1 it follows that
(kY. p*)is a kernel sequence in the sense of Definition 1.1.1. (See also Alexits,
Theorem 4.3.2, pp. 267-268). From Alexits, p. 210 it follows that the kernel
also satisfies Condition 1.1.2.

1.3. Some Properties of Kernels

In this paragraph we prove some elementary properties of kernels that
will be needed later for the discussion of density estimators. Leadbetter (1963)
proved analogous properties for the type of kernels he considers there.

Proposition 1.3.1. 'Let p and w be a.e. positive functions on [a, b] such
]

b
that J‘ p<29, f pw<o, Let (k,(x 1)) be a sequence of Borel measurable
functions from [a,b]x[a, b] to R such that for every xcl[c d]C[a b),
b

J‘k,ﬁ(x, t)p(t)dt<ee. Assume that (k,(x,t)/w()w(t)p(t)) is a kernel

sequence in the sense of Definition 1.1.1 satisfying a) and b) uniformly for
x€lc, d]. Define.
b .
am(x):f ki(x, )p(t)dr. , [1.11]
Then
n{im inf e, (x);a=<x=h}=oc.

Proof. for notational convenience we set p (1) dt = du (7). Since k2 is p-
integrable by Schwarz’s inequality we have that for every A>0

x+

" ko (5 el (T

[JXH\ km (x, I)

C =l w(z)du(z)P:[f

<t Keodeli[  dw)
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Taking the infimum for xc[c, d] and then limit inferior, by condition a) of
Definition 1.1.1 we have that the left-hand side becomes one, so that

x+X
I sf du (1) lim _inf inf {ka,?, (x, dp (1):c=<x=<d}.

a—k

Since p is an integrable function; this inequality is true for all A>>0 if and

b
only if lim inf inf {f ki(x, )du(t):c<x=d}=oo

Proposition 1.3.2. lLet p and w be a.e. positive functions on [a, b]
b b
f p<oo, f pw?<oo, Let (k,, (x, 1)) be a sequence of Borel measurable functions
a a A
Sfrom[a b]x[a b] toR such that for every xe[c, d]C[a, b],[ k2(x, 1) p(t)de<oe.

Assume that (k,, (x, t}w (1), w(t), w(t)p (1)) is a kernel sequence in the sense
of Definition 1.1.1 satisfying a) and b) uniformly for xe{c, d]. Let a,,(x) be
defined by [1.11]. Define

Ko (%, )= et (X) Ko (%, 1) W2 (1) [1.12]
p* (=w(t)p(t).

Then (k. p*) is a non-negative kernel sequence satisfying uniformly a) and b)
Jor xelc, d], and

F| kY (x| p*()dr= fb kltx, tp(tydi=1. [1.13]

|
o (x) Jq
Proof. Let J=[a,B]—[x— A x+A), aSa<B=h Then

k2 (x
O (X) W2 (1)

=y ()sup ikl (e 0)fwi(e): teJ}( *(t)di.

By Proposition 1.3.] inf {e,(x}):c=x=d}--=0. By condition b) of Defi-
nition 1,11 sup {sup{ k2 (x, )/w2(1)}:t€) }:¢=x=d}is finite. By hypothesis
pwlis integrable. Hence the right-hand side, and a fortiori, the left-hand side
tends to zero uniformly for x €[¢, d] as m — oc. That is, the kernel sequence

IL km (x, 1) p* (1)dt | = f p* (1)dt |
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(ky, p*) satisfies the first part of condition a). It is obvious that [1.13] holds,
and since the sequence (k,, p*) was just proved to satisfy the first part of
condition a) it follows that it also satisfies its second part.

Condition b) follows from condition b) of Definition 1.1.1 and

inf {a,,(x);c<x=<d}—co. Condition c) follows from condition ¢) of
Definition 1.1.1 and inf {a,,(x):¢c=x=d} - 0.

Proposition 1.3.3.  Assume that all the hypotheses of Proposition 1.3.2
hold. Then as m— oo

f e (6, D p (1) =0 (e (x))112]

where o[-] is uniform for xc{c, d].
Proof. Let A>>0 arbitrary, H=[a, b]—[x— A, x+ A]. Then,

b
f|k,,,(x,t)|p(z)dz L[|km(x.r)|/w(t)]p(z)wmdr

(&, (x))"? (o, (x))\?
x+A
[ e (x| p (0
(o, (x) )12
-]
suv{Ikm(x,t)I/W(t):teH}" pw
< Ja [1.14]
(ay, (x))!?

x+A
f Lo (2, )| p (1)t
@)

+
But, by Schwarz inequality we have

xr— X— a

f T (e 0 p = f " @ f k2 (x, ) (),

so that the second term in [1.14] can be made uniformly less than e by
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xth

choosing A such that sup {f pre=x=d}/inf{a,,(x):c=x=d}<e which

X=Xk

is possible because p is integrable. The first term of [1.14] tends to zero
uniformly for x€[c, d} because of condition b) of Definition 1.1.1 and Pro-
position 1.3.1.

Remark on Theorem 1.1.1. Since Condition 1.1.1 is necessary and suf-
ficient for the converge of every function which is continuous at x and of
bounded variation on [a, ], it follows that Condition 1.1.1 is the minimum
requirement that every kernel must satisfy if we want the corresponding
density estimator f, (x) to be asymptotically unbiased for every p.d. function
which is continuous at x.

1.4 Examples of Kernels

Several families of kernels have been proposed for estimating a p.d.
function. Here we present three examples,

(1) Kernels given by [0.12]. Parzen (1962) requires that the even Borel-
measurable function K satisfies

| kwadu=1,

sup{ | K(u)i:—eelu<oo}<oo,
lim | uK ()| =0,

tu| —o0
[ 1 Kadu| <o,

{(2) Kernels of the form k,, (x, 1)=4§,, (x — ). Leadbetter (1963) requires
that

f:am (wdu=1,

for every A>0, sup{| 8, ()| :ue R—[—A,A]}-0,

for every A>0,fn_H | B ()1 du=0,

sup [ 18, ()| du<oo.
m o
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(3) Woodroofe’s kernels given by [0.13] where G is a non-negative Borel-
measurable and bounded function defined on R2 such that

for every x, fu Gx,yldv=1,

as t —oo, SUP {fmz’ l¥| G(x, y)dv:xeR}—=0.

The kernels defined by Definition 1.1.1 are defined on a finite square
“while those of Examples (1), (2) and (3) are defined on the whole R? and
therefore from this point of view the first kernels are less general than the
other ones. But if we only consider kernels with compact support, the kernels
of Examples (1), (2) and (3) are particular cases of kernels in the sense of
Definition 1.1.1 which satisfy Condition 1.1.2.

Typical examples of kernels which do not satisfy Condition 1.1.2 are the
m' kernels of polynomial-like orthonormal systems (see Alexits, p. 179).
Therefore, if we want to study a class of density estimators large enough to
include the kernels of the trigonometric and Jacobi orthonormal systems we
have to weaken Condition 1,1.2, This is the reason for considering kernels
satisfying Condition 1.1.1.

2. LOCAL PROPERTIES OF THE DENSITY ESTIMATOR
2.1. Introduction
In what follows we will study density estimators defined by:-

Definition 2.1.1. Let p and w be functions defined on a closed interval

[a, b], such that p and w are sirictly positive and continuous on (a, b),

f bp<°° and f bpw2<°°. Let (k. (x,t)) be a sequence of Borel-measur-
c:ble Sunctions }rom [a, b1x[a, b] to R such that at x€[a, b},

bk,,f (x, 1) p(t)dt <= and (k, (x, )w (), w(t)p(t)}isa kernel sequence in the

“sense of Definition 1.1.1. Let (X;)[_| be i.i.d. r.v.’s with p.d. function f and
distribution function F. Define

-]

1

)= Ko (5, X,)p (X)) b (X)) [2.1]

|

K

Where I, ;()=1 if a<¢=b and equal to zero otherwise.
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In this Section we discuss the consistency of the estimator [2.1], we find its
asymptotic variance and prove that its asymptotic distribution 1s Gaussian,
Since the conditions imposed on the kernel sequence are very general it is not
possible to obtain more informative and useful results than those of the
present Section. For example at this stage, without further assumptions on
k., it is not possible to obtain the rate at which the bias tends to zero. This
kind of question 1s discussed in Section 3 for estimators derived from Jacobi
series in general and for those derived from Legendre series in more detailed
form.

2.2. Consistency and Asymptotic Variance

Theorem 2.2.1. . Let f, (x) be the estimator of f(x) given by Definition
2.1.1. If either: (1) the p.d. function f is continuous at x, wp-integrable and of
bounded variation in some interval around x, the kernel sequence satisfies
Condition 1.1.1 of Theorem 1.1.1 and m(n}— o as n—oo; or (2) f is conti-
nuous at x, wp-integrable, the kernel sequence satisfies Condition 1.1.2 of
Theorem 1.1.2 and m(n}— o« as n—oo, then

Elfa(x)]=f(x) as n—oo. [2.2]
Proof. We have

ELf, ()] = f e (5, 1)/ (D (1)t

(wi(t)p(1)dr.

:fbk,,,(x,!)
= wi(t)

From the hypotheses it follows that either Theeorem 1.1:4 or 1.1.2 apply and
hence the right-hand side of [2.3] converges to f(x}.

Theorem 2.2.2. Let f,(x) be the estimator of f(x) given by Definition
2.1.1. If either: {1} the function f is continuous at x w? p-integrable and of
bounded variation in some interval around x, (k,,) satisfies the Condition
I.1.1 and m(n)— o0 as n—so; or (2) fis continuous at x, w? pl-integrable, (k,,)
satisfies the Condition 1.1.2 and m(n)— oo as n—oo, then as n—oo

aVar[ L | ppy [2.4]
o (x)p(x)

where a,, (x)=fbk,,€ {x, t)p(L)dt.
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Proof.
b b
Var £, ()= -1 [ ke (6, 0 (1) 9% (1) dt — f e (%, D (0)p (1) d1)?]

so that

" Varf, ()= — rm (o)W (wp)wyde  [2.5]
am(x) an(x)). wi(t)

1

@, (X)

[ [ ko (%, )f (1) ()2

Now fp being w2p-integrable applying Proposition 1.3.2 and Theorem 1.1.2
it follows that the first term converges to f{x)p (x). The integral

b
J knm(x, 1) f(t)p(t)dr converges to f(x) because of Theorem 2.2.1, and

a

therefore the second term in [2.5] tends to zero.

Indeed [2.4] holds under weaker conditions on the kernel than that of
Theorem 2.2.2 as is shown in the following theorem where neither Condition
1.1.2 nor Condition 1.1.2 is required. The conditions on f are a little stronger
since now the boundedness of f is required.

Theorem 2.2.3. Let £, (x) be given by Definition 2.1.1. If [ is bounded,

b
continuous at x ahd I fptwl< o, then as n, m—o

a

nVar[f, (x)]

ano(m 1

Moreover for all n and m

P (x)an (X) fianll

4

Var[f,(x)]=

where || 1o sll =sup{|f()}} :a=t=b}.

Proof. By Proposition 1.1.2 and Theorem 1.1.2 the first term in the
right-hand side of {2.5] tends to f(x) p (x), and the second term is bounded by
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L
®p, (X)

b
A f |k (%, 1) p (1) ]2

which tends to zero because fis bounded and Proposition 1.3.3 holds.

Theorem 2.2.4. Let the hypotheses of Theorem 2.2.2 hold. If mn) is
chosen such that a,,(x)=o0,(n), then Ja(x) is a mean square consistent
estimator of f(x), i.e.,

ELfy(x)~f ()] ~0 as n 0.
Proof. We have
ELf(x)—~f () P=Var[f; ()] +[b (f, (x)) 1
where b (f, (x) )= Ef, (x)~f(x) "is the bias of £, (x).
Consequently from the fact that o, (x)=o0,(n) and
nVar f, (x)/(¢n (x) p(x)) —f(x) it follows that Var f, (x) converges to zero,

and since by Theorem 2.2.1 Ef, (x) converges to S(x) the bias b (f, (x) } also
converges to zero.

Remark 2.2.1. If the kernel sequence satisfies the conditions of
Definition 1.1.1 uniformly on [¢, d]C[a, 4], and either: (B fis of bounded
variation and continuous on [¢, d] and Condition 1.1.1 hols uniformly on
[c.d] or (2) fis continuous on [c, d] and p-integrable and Condition 1.1.2
holds uniformly on [c, d), then Theorems 2.2.1-2.2.3 hold uniformly for
xefec+6,d—68),6>0.

2.3. The Asymptotic Distribution of £,(x)

Theorem 2.3.1.  Les the hypotheses of Theorem 2.2.2 hold. Assume that
J(x)>0 and that there exists some function q(x) and some v >0 such that

sup U kp(x, 1) | p():a=t=b}<q(x)[am(x)]. [2.6]
Then
VAL ()= Efy (D) N am (50 ()] (%) [2.7]

is asymptotically normal with mean zero and varignce one, Jor n - and
m(n) — oo such that a,, (x)=o0,[n"2v-D],
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Proof. Since we can write [2.7] as

fol)—Efp() __ _ L= EL() Varf(®)
ViTa,@p@ft)  VVaiktd  \ nan(e(x)f )

where the factor [n Var f,(x)/a,(x)p(x)f(x)]'/? converges to one by
Theorem 2.2.2, it will suffice to find the asymptotic distribution of

o (x)—Ef (01/[Var f (x)]12.

LO=Ehy B (29]
v var f (x) Var ﬁ" Xy
Where /=
Xy =hm (%, X;) 0 (X;)— E ki (x, X;) p(X;))] [2.10]

Since by hypothesis [2.6] holds it follows that | X,;| =2q (x) [a,, (x)]”. On the
other hand

" o2=Var 3, X, =nVarlkn (x X)p (X)]~nap (x)p ()f (x).
=1

Therefore choosing m(n) such that ea,,(x)=o(n'?¥—D) we have that
| X,,;l =0(1) 0,,. Hence given ¢>0 there exists N (e) such that 1 Xl <e€a, for
all n= N (e} and the Lindeberg condition

3, [ P2 dF,;(t)—0 asn —w

=1 |t=Zeoy,
holds.

Asymptotic normality was proven by Parzen (1962) for.density estimators
with kernels of the form [0.12], by Leadbetter (1963) for estimators with
kernels of the form §,, (x—t) and by Rosenblatt (1971) for estimators with
kernels satisfying Condition 1.1.2 but under different conditions than those
used here.

2.4. Examples

In order to illustrate the applications of the results of the present Section
and show that the conditions imposed to the estimator are not too stringent
we present here some estimators which will be studied in more detail in
Section 3.
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Let X, ..., X, be n independent observations of a random variable X with
p.d. function £ Let (¢,) be a complete system of orthonormal functions on an
interval [a, 5] with respect to a weight function p. Define the m* kernel and
the Cesaro kernel, respectively, by :

e (%,)= 3, 6, ()(0)p () oy (0 [2.11]
— m—1 v
k(1) = 3 (1 A LA LNOLIOY W0 [2.12]

and define

||M=

1
—?'T km(x,Xj).

o= 5 5 ke %), (0=

s

1 1
In the case we take ¢y (x}= , @ (x)=
V2 v

cosvx, v=1,2, ..,

¢, (x)= sin vx, v=—1, =2, .., [-7r=x=], we obtain
m
R, (xp=_1_ sinlim+1/2)(x—1)]
2w sin[(x—1)/2)
Em(x, )= 1_ [ sin[ m(x—1)/2] s
2rm

sin[ (x—1t}/2]

where the sums in [2.11] and [2.12] were calculated for v running from —m
to m and from —m+1 to m—1 instead of from 0 to m and from 0 to m—1,
respectively. It is easy to check that the system of trigonometric functlons
satisfies all the conditions of Theorems 1.2.1 and 1.2.2 and therefore k

satisfies Condition 1.1.2. The kernel &,, does not satisfy (1.1.2) but satlsfles
{I.1.1) (see Beta Sz-Nagy [1965], pp. 402-404) On the other hand, as it is easy
to show a,, (x)= O (m), &, (x)=Q(mj where the symbol b,, = {} (m) means
that b,/m is bounded away from 0 and oc. It follows at once that
sup {| k,n(x, 1) —m=<t<{sr}= O(m) holds for both k and k,,; therefore
[2.6] holds with g (x)=constant and v = 1. In conclusion, from the above
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discussion it follows that all the theorems proved in this Section apply for
both estimators: £, (x) and £, (x).

Let us consider now estimators derived from the system of Jacobi
polynomials. Denote p, 8 the v normed Jacobi polynomial (see Paragraph
3.1 for a definition of these polynomials). The weight function of the system
is p(x})=.. —x)(1+x)8. Let o’=max {a, —1/2}, f'=max {B,—1/2}. In
Section 3 it is proved that the polynomials p (=-# (x) are dominated by a
constant times w (x), where

wx)={(1—x)y-o/2=14(] +x)=B72-1/4,

and that the kernels (k,, (x, £)/w (1), (wp)(t)) and (k,, (x, 1)/ w (1), (wp)(t)) are
kernels in the sense of Definition 1.1.1. Theorem 1.2.2 guarantees Condition
1.1.2 for the kernel (k,,/w, wp). In Section 3 we prove that Condition 1.1.]
holds for (k,/w,wp) and that o, (x)~a (1 —x)"2m, a,(x)~3m)"!
{1 — x)~Y2m. Moreover the following bound holds (see Szegs [1939], p. 164)

max { | p, @B (x)| - 1=x= 1} 0()v”
where ¢'=1/2+max {«, 8,—1/2}.

From the results just cited it follows at once that Theorem 2.2.1, Theorem
2.2.2 and Theorem 2.,2.3 apply to both estimators £, (x) and £, (x). Theorem
224 also applies to them and here the condition «,,(x)=o0,(n} means
m=o,(n) because &, (x)=0,(m) and a,, (x)=0,(m).

From &, (x) =Q,(m), &n,(x)=0,(m) and the bound for p=# given
above it follows that condition [2.6] of Theorem 2.3.1 is satisfied with
g{x)=0(1)(1 —x2)~Y2 and y=3/2, provided that min {e, 8}>0, and
therefore Theorem 3.2.1 applies to both estimators under the restriction
min {«, 8} >0.

Unfortunately condition [2.6] is too stringent for Jacobi polynomials in’
general, since it is not satisfied for min {e, 8} <0, ruling out some important
cases as for example that of Tchebychef polynomials of the first kind.
Condition [2.6] is far from being the best possible and it would be desirable
to have a better one but we do not pursue in this direction.

Finally, let us consider the algebraic estimators of Parzen defined in
Paragraph 1.4 and assume that the kernel satisfies the conditions stated

x—t) is a ker-
) .

there and has a compact support. Then the kernel b-' (n) K (

nel in the sense of Definition 1.1.1 which satisfies Condition (1.1.2) and [2.6]
with g =constant and y=1.
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3. DENSITY ESTIMATORS DERIVED FROM EXPANSIONS
IN JACOBI POLYNOMIALS

3.1. Introduction
In this Section we study the local properties of p.d. function estimators
derived from orthonormal expansions of the p.d. function in terms of the

Jacabi polynomials.

The Jacobi polynomials are orthogonal on [—1, 1] with respect to the
weight function

px)=(1—x)(1+x)8, a>—1I, B> —1.
The unnormed Jacobi polynomials PP are defined by the equation

=

(1—x)=(1+x)8 P8 (x)= Srn]

()" L0 =g (1 exma)

Some special cases of Jacobi polynomials are: (1) the Tchebychef polynomials
of the first kind obtained for @« = 8 =—1/2, (2) the Tchebychef polynomials of
the second kind obtained for &« — 8= 1/2, and (3) the Legendre polynomials
obtained for a=8=0.

We denote by pi*# the normed Jacobi polynomials, that is those that
satisfy the equations

f PR 00 R (1P dr= [3.2]

where §;; is equal to one if j=4 and equal to zero otherwise. The relation
between the normed and unnormed Jacobi polynomials is

5 f;:;i[ ?{-ﬁ;&;ﬁﬁ;;ﬁ;; "2 ples, [3.3]
ther'efore
LB (x)= O (m2) PS8 (x). [3.4]
Define

kn(x. =5, p*9 () p*® (1 BN
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~ m—I1
kn (5, )= 3, (1= 3P (x) 7P (1) [3.6]

From Szegd (1939), p. 70 it follows that

2-eh D (m+2) T (m+a+B+2) Py (%) Pt (1) = Prvis () P (1)

k, (x t)=
1) et [M(m+a+ ) I'(m+B+1) r—x

where P,, means P&5,

3.2. Technical Lemmas

Lemma 3.2.1.
PGP ()= (1 — x)==2= V4 (L4 ) #1214 O (m112) [3.7]
—1<x<1, a>—1, >—1,

where o' =max{a, —1/2}, B’=max{B, —1/2}.

Proof. From Szegd (1939), p. 164 we have that

PP (cos ) = 9120 (m~112), 0<H= 21 a= —1f2 [3.8]
=0(m 112, 0<o< 21 —1<a<—12
Since PP (x)=(—1)m P{>F (—x) we also have
PeB (cos @) = (m — ) F-1i2 O(m—"12), ;—r‘56<n’, g=—1/2 [3.9)]
=0(m-"12) ,"’2’-59<1r, —1<g<—1)2

It is clear that we can replace 8 by 2 sin(8/2) in [3.8] and (m—#6) by
2 cos (8/2) in [3.9]. With these substitutions the lemma follows from [3.8] and

[3.9]. -
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Lemma 3.2.2. LlLet I}m be defined by [3.5]. Then

N DO —

mV1—x2
where as usual ~ means that the ratio of both quantities tends 1o one.

Proof. To keep the notation simple, we write p,, and P,, instead of p&-?

and P# respectively. By Parseval’s relation we have

. m a
[ opmdi=3 px)=ky(xx), [3.10]
- v=>0
Calculating lim k., (x, 1) as t— x we obtain,

2«8 T'{m+2)T'(m+a+B+2)

o 05 X)= 2mtatftl D (m+a+1)T (m+B+1) (3-111
[P (%) Py(x)— P, (X) Py (X)].
On the other hand (see Szegd, pp. 192, 230)
P, (costh=m V2 k() cos(MO+v)+0(m=32) [3.12)

“'Pwd#:mwk(o)[—sin(Me+~y)+0(m—lj]

where M=m+(a+B+1)/2, vy= —m(a+1/2)/2 and

k(0)==n"12(sin g)—a—lﬂ. (cos “3) ~B-1/2,
From [3.10], [3.11] and [3.12] the lemma follows.

Lemma 3.2.3. Let k,, be defined by [3.6]. Then

1

— m.
m/1—x2

o) [ Bix0p (r)dr~%

1 -~
Proof. Define a,,(x) :fl kX (x,t)p(t)dt. Then using [1.9] we can
write -



Nonparametric estimation of probability density functions... 65

[ voma=] & mgo ku(x, 01 p (1)t

el 1 m—1 v
=13 [ Beooma2s 3 3 F)
m? s - p=1 vy i=0
m—1 m—1 V
=15 a@2'3 3 am). -
m u=0 p:l U<F

’

The lemma follows using Lemma 3.2.2 and Toeplitz lemma (Loéve [1963], p.
238} in [3.13].

3.3. Convergence of Jacobi Series

In this section we show that the Jacobi polynomials satisfy the hypotheses
of Theorems 1.2.1 and 1.2.2.

Define

w(x)= (1 — X2t (L gy fr2=us [3.14]

where ¢’ =max {e, — 1/2}, 8'=max{B,—1/2}. From Lemma 3.2.1 it follows
that p/=# is dominated by a constant times w. Without loss of generality we
can take w as being the function w of Theorems 1.2.1 and 1.2.2. Since w is
positive and continuous on (z, b) and the function.

p(x)w(x)=(1—x)e—oi2-14(1 +x)8-F/2-1/4 [3.15]

is integrable, the function w satisfies all the requirements of the theorems just
cited. From Christoffel-Darboux formula it follows that the functions
Fy {x, 1) of Definition 1.2.4 of K, (x, t) (=k,.(x, 1)) are equal to (x—¢)~! and
therefore they satisfy the required conditions. The condition 3™  p2(x)=0(m)
for xe[—1+¢,1—¢] follows from Alexits, p. 39. Therefore the kernels
(km/w, wp) and .(k,/w, wp) satisfy the conditions of Definition 1.1.1
uniformly in every inner subinterval of [—1, 1]. Moreover (k,,/w, wp) satisfics
uniformly (1.1.3). In order to guarantee convergence of the singular integrals
with the kernel k,,, we have to show that Condition (1.1.1) holds.

Lemma 3.3.1. Let (k,(x t)/w(t) w(t)p(t)) be the Jacobi kernel
defined by [3.5]. Then Condition 1.1.1 holds uniformly for xe[ —1+e, 1—¢],
>0, ‘
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The present lemma is apparently a standard result, but no explicit proof
could be found in the- literature. It seems that most authors study the
convergence of orthonormal expansions in series of Jacobi polynormals by
reducmg the problem to one of convergence of a Fourier series via a
equiconvergence argument. In Appendix B we give a proof of the lema.

Remark. Since the convergence and Cesaro summability of orthonormal
expansions in Jacobi polynomials is a well known matter (see for example
Szegd) we could restrict ourselves to these results. The reason for adopting
the above approach is intended to give a unified treatment of the problem of
convergence of £, (x) to f(x) in the mean square sense, which we hope, will
help to better understand the behaviour of d1fferent density functions
estimators,

It should be noted that the normalization in order to pass from the kernel
(km o) to the kernel (k,,/w, wp) does not change the corresponding singular
integral or the density estimator.

3.4. Density Estimators Derived from Jacobi Polynomials

Let f be a p.d. function defined on R whose support is not necessarily a
finite interval. In order to be able to construct an estimator of the type
discussed in this work we first have to decide in which interval we want to
estimate /. Call [a, b] to this interval. Without loss of generality we can take
a= —1 and b=1 since we always can map [a, ] onto [—1, 1] by means of a
linear transformation applied to r.v. X.

Let k and k be the kernels defined by [3.5] and [3.6], respectively.
Define

Fu09= 4y 3, (2. X)) a1 ), [3.16]
Fo)= 35 3 k(5 X,00 () a9 (%), [3.17]

That _f",, and f, satisfy the requirements of Definition 2.1.1 follows from the
b
previous section and fromf pw?<ee, Therefore the following theorems are

corollaries of the corresponding theorems of Section 2.

Theorem 3.4.1. Let f,(x) be defined by [3.16] and pw be defined by
[3.15]. If f is continuous at x, of bounded variation in a neighborhood of x

1 ~
andflpr<°°, then asn, m—so  Ef,(x)—f(x).
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Proof. The conclusion follows from Theorem 2.2.1.

Theorem 3.4.2. Let f,(x) be defined by {3.17] and pw be defined by
[3.15). If f is continuous at x, andf Swp<°°, then as n, m—oo ,
Efy(x)~f(x).

Proof. The conclusion follows from Theorem 2.2.1.

Theorem 3.4.3. Let f,(x) and f,(x) be defined by [3.16] and [3.17]
respectively and pw be defined by [3.15). If fis bounded, continuous at x,

1
andflfwl’p2 oo, then as n, M — o

—X
ftx)  mn)

Varf,‘,(x)~ Y T
V—x .

where a,~ b, means lim(a,[b,)=1.

Proof. The conclusion follows from Theorem 2.2.3 and lemmas 3.2.2
and 3.2.3.

Theorem 3.4.4. Assume that the hypotheses of Theorem 3.4.1 holds and
that m(m)=o (n). Then f, (x) and f,(x) are mean square consistent estimators

of f(x), ie.
Elfp(x)=f(x)} —0
hold for both estimators.

Proof. The conclusion follows from Theorem 2.2.4, Lemma 3.2.2 and
Lemma 3.2.3.

Theorem 3.4.5. Assume that the hypotheses of Theorem 3.4.]1 hold.
Assume that {(x)> 0 and min {a, 8} >0. Define c=3/2+max {a, B,—1/2}.
Choose m(n)= O (nliGe=1i) Then as n, m—co

7] 4/
AR \/TLfn(x) Ef (] 2N (. 1)

V=X E L. Nw1
Vir B Lt - Ehen Lo,
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Proof. The conclusion follows from Theorem 2.3.1, Lemma 3.2.2,
Lemma 3.2.3 and the bound (see Szegd [1939], p. 164)

max{|pef ) —1<x1}<=me-1

Several remarks are in order.

3
Remark 3.4.1. The condition f] fw?p?<eo looks rather restrictive at

least for the case min {a, 8} <C~~1/2, because in this case this condition implies
that f(x)is o(l) as x — %1,

Remark 3.4.2. Theorem 3.4.3 shows that the asymptotic variance of
f,, (x) andf,,(x) does not depend on a and B provided, of course, that the
hypotheses of this theorem hold. Therefore if we were only interested in
density estimators derived from Jacobi orthonormal expansnons we should
look at their bias to decide which is better since their variances are equal
(asymptotically).

Remark 3.4.3. Theorem 3.4.3 shows that the variance of both estimators
tends to be large for x near to the end points £1. Algebraic estimators do not
have this unpleasant feature. Assume that fis continuous at x and let f, (x} be
the algebraic estimator with kernel b='(n) K[ (x—t)/b(n)]. If we assume
that K has compact support then from Theorem 2.2.3 it follows that

the asymptotic variance of f, (x) is f(x)b(n)anz(z)dl and there is no
instability of the variance at any point.

A way of meeting this difficulty with polynomials estimators is to choose
the original interval [a, b] larger than the interval in which we want to
estimate f.

3.5. . Rate of Convergence of the Bias and the Mean Square
Error to Zero

Let s, (f, x) and o, (f, x) be the m'" partial sum and the m" Cesiro sum
corresponding to the orthonormal expansion of the function f in Jacobi
polynomials. Then the biases of £, (x) and f, (x) can be written as

b (fn(x) )= 5 (f, X)— f(x)
B (x))=0n(f, x)—f(x)

Therefore we can use known results about orthogonal expansions to estimate
the bias of f,(x) and f, (x).

For the Jacobi expansions we state the following result.
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Proposition 3.5.1.  Assume that the p.d. function f has a continuous k™
derivative %, Let  w(8, ™ }=sup{|f®(x)—f®(y)|: | x—y| <8,
X, ye [~ 111} be the modulus of continuity of f®. Then :

fogm
mk

|3 0 X)—f(x) | < K

(o

For a proof of this statement see for instance Alexits, pp. 287, 308, Lorentz
(1965), Timan (1963).

We do not try to find a bound for the bias of £, (x). In the next paragraph
we prove a negative result about f,, (x).

The rest of this paragraph is devoted to the special case of Legendre
polynomials. In what follows we find a more precise bound than that of
Proposition 3.5.1, for the estimator £, (x) derived from Legendre polynomials.

Let ﬁ,(x) be the p.d. function estimator defined in [3.16] for the case
a=f=0, that is,

m

n ] =»
Saf)=—- Zu 2 PP (X} h_ (X)) [3.18]
J=

v=0
where p,,v=0, |, ... are the normed Legendre polynomials.

Theorem-3.5.1. [f on [~ 1,1] the p.d. function is absolutely continuous
with an absolutely continuous derivative whose derivative f” is of bounded
variation, then,

. 8
Ef, (x)— < e
| Efo(x)—f(x}| NS

T mie

Jor |x|<1 m=2

2 / |
&CV” -—]— Jor |x|=86< m=2

BRI <SSV e

where V"[—1,11= V" is the total variation of li=1.0), where [ |i_; 1y, is the
second derivative of the restriction of f 1o [—1,1].

Proof.

J&)~Ef(x)="3 cp(x)=S a,P,(x)

v=m-+| u=nt

|
where a,=[ (Zv+ l)/2][ J() P,di, and P,=0, 1, ... are the unnormed Legendre
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polynomials. Since (2v+1) P,= P}, — P,_, (see Sansone [1959], p. 178) and

since P,(1)=1, P,(—1)=(—1)* (see Sansone [1959], p. 180), integrating by
parts we obtain

a,,:%f fix)(2v+ 1) P, (x)dx

1 1 !
=~5-U(x)(Pu+|(x)—P_:(X))| —-f (Por1 ()= Py (x))f"(x}dx]

= f Pt (0f (dx =3 |

IPU+1 (x)f (x)dx. [3.20]

Note that we have obtained the recurrence formula

f_‘! Fx)2v+ 1) P, (x)dx [3.21]
- f Poos (%) £ (x)dx— f Pori f(x)ds.
Applying [3.21] to [3.20] we have
e P | I YA R [3.22]
— f P, 17— [ Pz /7).

Now, by the second theorem of the mean value for m= l_

f P S ()dx= V" [ dPu(x)dx [3.23]

-~
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and from Sansone (1959), p. 200,

” Pu(x)dx’< [3.24]

4
» VT oFL Qul)

Hence from [3.22], [3.23] and [3.24] it follows that

a, << V”

4 1 1 1
\/;{20—1[ V=1 (2v-3) ) Vvl Qu+1) ]

+ +

I 1 1
243 [ Vol Qusl) Vu+3 Qu+5) ”

Since for v=2 the quantity inside the braces is less or equal to v=5/2 we have
that ‘

4y~

L
RNV

Since | P, fx)] =1 for |x| =1 from [3.25] it follows that

[3.25]

n|[<_’ E I D | M 4 V"l 1

Ty Tyl i
v=m+| - Ve 3 m3f2

for|x| <1, m=2. Since | P,(x)| <4+/2/m

1
— for
Vv Y =%2

|x| =8<C1 (see Sansone, p. 198} it follows that

< e 4 . 42 1 1
a, P,0)|< X la,P(x} < %4
u=2m+| v=m+l T 1,0‘1]- \4,0‘1_62 2m2

*

S apm|<B2y 1]
=m+l T &1 — 82 m?

for [x] <6< 1, m=2, and this completes the proof of the theorem.
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For the proof of this theorem we have followed the proof of a similar
theorem due to Jackson {see Sansone, p. 205). Using the same approach it is
easy to prove that if f has a (r — 1)* derivative which is absolutely continuous
and its »'* derivative is of bounded variation, then

. Vik)
| Ef, (x)— f(x)| =————— O (m~) for |x| <6<1

,4/1 —_ 62

where O(-) is uniformly for |x|<8<1 and V™ is the total variation of
Sy

We want to point out that in the formula for the asymptotic variance and
in the square of the second bound of Theorem 3.5.1 the same factor
(1 —x2)~"/2 appears. Of course we can’t conclude that the bias behaves as a
function of x in the same way as the corresponding bounds. However, we feel
that where their order in m is concerned the bounds are the best possible.

Let us assume that the hypotheses of Theorem 3.5.1 hold, i.e. on [—1,1]
the p.d. function f is absolutely continuous with an absolutely continuous
derivative whose derivative f” is of bounded variation. Then from Lemma
3.4.2 and Theorem 3.5.1 it follows that E(f,, {x)})— f(x))? is asymptotically
dominated by

A-’S— + B’% [3.25]
where
72
gt g 128 : [3.27]

rV1=% w2 V1—x2

Then it follows from straightforward calculations (see Parzen [1962]) that
[3.26] is minimized by taking

m=m(n)=| i}in]”s, [3.28]

and the corresponding minimum is

_i_ 4 AMS BUS p=45 [3.29]
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From [3.26], [3.27] and [3.28] it follows that the mean square error of f, (x)
is asymptotically dominated by

S s vt — s, [3.30]
4

1—x?

The expressions [3.28] and [3.30] are useful for choosing a right m. Since
we are trying to estimate f(x), ¥ and f(x) as a rule will be unknown. Given
a sample (X;)/_, of the r.v. X we have to choose m. If we have a rough idea
of the order of magnitude of f(x) and V" we should use this information to
choose m. Observe that the expression [3.30] is rather insensible to variation
in V" since it appears to the power 1/5. This fact makes the choice of m a
little easier.

3.6. Uniform Rate of Mean Square Consistency over Classes
of Density Functions

Definition 3.6.1. For k=1, 2, ... and 'y >0 define the class Ay, as being
the class of p.d. functions f such that their restrictions to [ —1,1] satisfy the
Sfollowing conditions a) and b):

a) The (k—1)* derivative f*-U}_, 5 is absolutely continuous.

b) The k™ derivative fM)_, 5 exists everywhere and satisfies the
condition V®&I[—1,11<~ where V[—1,1] is the toral variation of
S® gy -

Theorem 3.6.1. Let fe A, k=12,... Let m=m(n)=Kn"/C+t1 K
constant and let f,,(x) be the estimator given by [3.16] constructed using the
Legendre polynomials. Then for xc(—1,1),

sup E}[fn () (x) 2 =0 (n=2k{Ck+1) ),
fe Ak-y

Proof. Arguing as in Theorem 2.2.2 it follows that Var Fa(x)=

| fle=r.ny Il & (x)é,, (x}n~! . Since &, (x)=0,(m) where 0, (m) does not depend
on f we have that

Var £, f1nll p(x)n=t O, (m). [3.31]
From the remark after Theorem 3.5.1 it follows that

| Efu(x)—~f ()| SO VE[-L1]O(m )= O,y O(m™h).  {3.32]
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Since by the Lemma of Appendix C sup{|| f|—; Il -f€ Ay} is finite, the
conclusion of the theorem follows from [3.31] and [3.32].

Theorem 3.6.2. lLet feA,, k=12, ... Assume that m=mn}=

=Knli?+1) K constant and let [,(x) be the estimator given by [3.16]
constructed using the Jacobi polynomials. Then for xe(—1,1),

sup E/f f, (x)—f ()1 = O (n-2k1@k+D) logn).
JeA,

The proof is argied like that of Theorem 3.6.1.

Farrell (1972) has found the best possible rate of consistency in
probability that can be attained umiformly over certain classes of p.d.
functions. Wahba (1975) using Farrell’s approach has found the best possible
rate of mean square consistency that can be attained uniformiy over the
classes C;*’ defined below.

1
Definition 3.6.2. Let I<p=<eo Define ||f|i..nl,=[] 01 if
1<P<°° and | fl—inle= WMl nll=sup{|f()| :—1=t=1}. For k=1,
2, ... and v>>0 define the class Cj (p) as being the class of p.d. functions
satisfyving the conditions:

a) For r=0,1,.... k=1 the derivative f is absolutely continuous on
[—=1.1) and || f1_,.n W, is finite.

b) The derivative fi*) exists everywhere on [~1,1] and satisfies the
condition ”f(k) |[__1,1] ilpS

Theorem 3.6.3. (Wahba). Ler (3, (x)) be the cluss of all density estimators

of f(x) at the point x. Define A (m,p)=(2m—2/p) 2m+1—2/p). Then, for
every € > (). '

sup E[ 6, ()—f(x)}]> = b, n—rmpte
fec

implies that there exists D, such that b,>> D, for infinitely many n.

We do not know the best possible rate for the classes A,.,. However the
following inclusion relation gives a rather precise bound for such best rates.

Proposition 3.6.1.  For every class A, there exists a <= such that

Ck+] e P ciy.
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|
Proof. The first inclusion follows from V("):j | fEED | <2 || fEHD |,
—1

Using the same argument as in Appendix C it follows that there exists «
such that sup { [ /% ||« f€ Ay, } <o and then the second inclusion hoids.

Assume that fe A,,. Then Theorem 3.6.1 guarantees for the Legendre
estlmator 7. (x) the rate n—z"" (@k+1) which is the best possible rate for the class
C,m . Therefore in view of Proposition 3.6.1 the rate of f,, (x) if not the best it
1 near to it. We mention here that with algebraic estimators we can attain the
best possible rate over C,“, . For the Cesaro estimator f,, {x) we prove the
following negative result.

Let f be the p.d. function defined by

| 1
—+ — pi(x}, —1=x=1
soo=1{2 &

0 , otherwise

where p, (x)=+/3/2 x is the Legendre polynomial of degree one. Then

EUn (1= ()~ p1 ().

Therefore the mean square error tends to zero no faster than n—2/3 despite
feA, ,qa) for some y(k), all k. Viollaz (1976) have proved that the same
happens for the Cesaro estimators constructed from trigonometric orthonormal
expansions. We think that for the estimator f, (x) in the Jacobi case, it 1§
possible to prove, following the same approach as that used in Viollaz that
-.under appropriate conditions on ./ the mean square error tends to zero at the
rate n—2/3, We have not checked this guess.

We want to emphasize a resuit of the previous discussion. For the
estimator f,, (x) the smoother the function fthe faster the corresponding mean
square error tends to zero, while for the estimator f,(x) the rate of
convergence is not faster than #—2/7 no matter how smooth the function fis.

APPENDIX A
PROOF OF CONDITION 1.1.2 FOR JACOBI POLYNOMIALS "'

Let p,(:’ﬁ) and P,(,‘,"‘B) be the normed and unnormed Jacobi polynomials
respectively, which we will denote also by p,, and P, respectively. The fol-
lowing results about Jacobi polynomials are needed in the sequel (see Szegd):
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(D sup Vo sup{| PP ()] i —1+6<Sx=1—8)<oo

(ii) PP (x)=0(m?) B, (x)

Gii)  POPcos0)= P, (cos B)=m—12k (B)cos (M, 0+v) + 0 (m=3/2)

where
! I L
k@)=n 7 (sin-D) "2 (cos Ly F 2
2 A
(a+—=)m
My=me OBl 27 o<e<n

2 Y= 2

and the bound b(m—m) for the error term holds uniformly in the interval
[e, m—€].

Lemma B. let lAcm (x,t) be the Jacobi kernel given by [3.1.5]. Then
Condition 1.1.2 holds uniformly for xc[—1+6,1-8], 6>0.

Proof. Let ~1=<A<B=1. Since

B X B
f b (%, 8) p (1) dt = f K (x, ) p (1)dt + f ke (%, ) p (1) dlt

A A

B

x

because the same arguments apply for j )

we will consider only [
A

X

Let € be a number which will be fixed later. Then

B-\ .r+l; xte B R
fkm(x,r)p(:)dm[f +f ,+f Vo (x.0) p (1) dt

X x

:[1+12+I3. . [l]

In what follows we assume that —1+8=<x=1—4§ and without loss of gene-

rality we assume that —}+8 = x+ %E 1— % Because of conditions (i) and (ii)
it follows that
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|1.|sf ;éo | o (0P, ()] p()dt=0(1) 2]

where O(1) is uniform for —1+8< x<1—8&. From the expression for £, (x, t)
given in Section 3.1 it follows that

fon 5= O(m) PPt 0 Puer () P .

Define x =cos#, t =cos ¢. Using (i), (i1) and (iii) 1t follows that

k. (x )= O k() cos[Mpy, d+vl— O() k(d)cos[M,, ¢p+y]+ C(m")
meeT cos¢p—cosh :
Define cos 6m=x+-nl'—1, cos n=x+e. Then
I 1
- o, 5in 27 (c0s 27T (cos[Mynes 7]
12:[ ' km(x’ f)P(f)dt=O(l)j d¢l
e ki cos ¢p—cosf
| 1
9, (sin %’)”? (cos %)B 7 (cos[ M, d+v]
— o i
Jn cos¢p—cosd
xte
- dt
+0(m l');[r-ﬁ-—t- =
= 121+122+[23 . [4]
Define

. ¢ u+i ¢ g+l
_ (sin%) 2z ({cos-%) 2
g(e)=— 2 2

cos¢p—cosf

For ¢ small enough we have that g is monotone in the interval [#, 8] and the
maximum of |g| in the interval [, 8,,] is attained for ¢ =#,,. Note that since
g does not depend on m we can assume that 5<8,,<8.
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o — e _— .
Let [LW12 M,1.] be thi integer part of —— 1 M, .. The function

cos(M, .+ p+vy) has N=[ "Lr: M,,.1]+1 zeros in the interval [7, &,]. Let

us denote them by ¢, <<¢<... <<y Then

a8
Iy = f £(6)cos (Mys) b+v) dd

:[Fm +F~ + ... +J: | lg(d)cos (M1 d+y)dd.

N b N_1

Except eventually for the first term this sum has terms with alternating signs

and monotone decreasing absolute values. Hence the whole sum is less than
or equal to the sum of the absolute values of the first two terms, i.e.

tfmsL’" |8 () cos[ M, b +7]| do, 5]

Define 1y_, =cos ¢py_;. Since
| &
—]+65x<x+E£tN_ISx+e<l—?
it follows that
Arccos(—1+8)=0>0,,=d¢,_,=n> Arccos (lmg).

Therefore

ptL

sup{ (sin%)“*“%(cosizb) 7|y =6<6,]<K, (6]

where K;<(o= 1s independent of x and m.
On ther other hand
m}n{min{ [cost—cosd|:dy_, quSBm}}:n}in fcos@—cos8,,}
1
>1— 1
=1—cos(1 m) [7]

=

3|2
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where K,>>0 is independent of m. From [5]—[7] it follows that

K 2T
””'STI m )
2 Mo

Since M, =m+(a+B+1)/2 it foliows that &, is uniformly bounded with
respect to x&[—1+8,1—38] and m. Since the same arguments apply to I it
follows that I, is uniformly bounded with respect to x€[—1+8, 1—6] and m.

For I,; we have

ate
;123|=0(m—')|f | ’dfx |=O(m—1)|loge+logm|=0(l).
: x+— T )

m

Therefore I, is uniformly bounded with respect to xe[—1+86, 1—8] and m.

For I; we have

o) w(t) o (1) dt
ft—x|

|Iglsr Iﬁm(x.t)lp(z)dusj

+e xTe

| !
570(1)1 w(t)p(1)dt

x+e

where w (1)=(1—x)=e/2-1/4(1+x)—F12=1/4 Since for xe[~1+8, 1—3] e can
chosen independent of x (see the definition of € after formula [4]) we have
that the above bound is O(1) uniformly for x in that interval. This completes
the proof of the lemma.

APPENDIX B
A bound for the classes C{7/

Proposition C. Ler C, = Cf’;) be the classes deﬁned by Definition 3.6.2.
Then, for every C., there exists L(v,k)<eo such that sup{f:fe Ci}=
=L{vy, k) )

Proof. Without loss of generality we assume that [a, 5]=[0, 1]. Integrating
~ k times we obtain.
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£29) al f] (1—A)*=1 f® (A x)dA [

) k-1
fe)=% x ==+ k=11,

Integrating again we obtain

Fix)= Eo xrt j; (0)‘ + (k—ll)!J:le (1=AY=t fR (A x))dhdx, [2]

Since the integral in the right-hand side of [!] is bounded by = the
proposition will follow if we prove that 3~} x7/®(0)(r/)~'is uniformly

bounded for fe Cy,. To prove this let us note that since Fis a d.f. there exists
M > such that

k
sup  sup ’E a, —Y"S
feG., 0=x=<] =! [3]

where a,= =30/ (r—1D!, r=1,2, ..., k. Define
z{(alsn'$ak): Sup|zarxrl<M
0< <l r=1
The proposition will be proved if we show that there exists 4 >>0 such that

(a),...,ap ) A implies |a,|=< A4 for r=1,2, .. k.

Let (a,...,a; J€ A and let g, be an arbitrary component of (a,, ...,a, ). If
a,=0 certainly {a,[| =< A. If 4,50 we can write

[4]

<x <1 x'a,/a, .
0=x ’2 faﬂ

Now the fundamental theorem of linear approximation of functions (see
Lorentz [1965] or Davis [1973]) guarantees the existence of a polynomial of
degree k, say, T{’ which minimizes the left-hand side of [4] among all the
polynomials Wlth coefficient 1 in x”. Since T'{” is not constant, || T{|| >0.
Therefore || T} < M/|a,| and then |a,| < M/ 7. Taking
A= M/mml] T(’)Il it follows that |a,| = A4 and the proposition is proved.

Remark. By using the same proof as above, it can be shown that for
every class (., there exist numbers L/ (y, k) such that

sup {1LfV] : f€ G 3= L7 (y, k).
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