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On the complicatedness
of the pair (g, K)

NICOLAS ANDRUSKIEWITSCH'

In memoriam Atilio Bauchiero

ABSTRACT. Let g=f&p be the complexification of a Cartan decomposition of a
real semisimple Lie algebra g, and let K be the analytic subgroup of the adjoint group
of g with Lie algebra ad_(f). Let I be an algebraic connected linear reductive complex
group acting on a finite dimensional vector space V. In the study of the orbits of this
sort of actions, there are some criteria of «non complicatedness»: e.g., «cofreenessn
(the ring of all polynomial functions on ¥ is a free module over the ring of all L-
invariants), etc. From this viewpoint, we show that the pair (g, K) is complicated, at
least when g, is not a product of copies of so(n, 1) or su(n, 1).

1. INTRODUCTION

Let g, =f, @p, be a Cartan decomposition of a real semisimple Lie
algebra g and let g=Ff@p be the corresponding complexification. Let 6 be
the associated Cartan involution. Also let ag be a maximal abelian subspace
of p and let a be its complexification. Now let G be the adjoint group of g
and let K be analytic subgroup of G with Lie algebra ad, (F). Also let M be
the centralizer of a in K. This paper is concerned with the action of Kin g
given by the restriction of the Adjoint representation. If §”(g) denotes the
ring of all polynomial functions on g then clearly $' (g) is a G-module and a
fortiori a K-module.

If L is a reductive complex linear algebraic group, V is a finite
dimensional complex vector space and a:L — GL{V) is a representation
then, concerning the classification of the L-orbits in ¥V, there are some criteria
of «non-complicatedness». (See [K] or M 1], p. 160). To state them, let us
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recall that ¥/ L is the notation for the affine variety associated to S’ (V)t and
V2 V/L is the projection corresponding to the inclusion of rings. Let
N=T(V, L) be the fiber m—1(x (0)). The criteria are:

M is a finite union of orbits. Currently (¥, L) is visible.
All the fibres of 7 are of the same dimension.

S§'(V)is a 8" (V)L -free module. Currently (V, L) is cofree.
S’ (V) is a polynomial ring. Currently (¥, L) is coregular,
The isotropy subgroup L~ is non trivial for every xeV,

moame

In this paper we work out the classification of the pairs (g, K) as above for
which each criteria is satisfied; see propositions A, B, C, D, E below.

If L, and L, are groups acting on finite dimensional vector spaces ¥, and
V, respectively, and if we look L, x L, acting on ¥, x¥; in the obvious way
then it is trivial that

SV x Vo= §" (V) )L @ § (V, )1
so (Vix V3, Lyix Ly) is coregular (resp., cofree) iff (V), L,) and (V,, L,) are.

Furthermore, the isotropy subgroup (L, xL}»=[ *x [, the orbit
(Lix L)) (x, y)= Lixx Loy (Vix V) (Lix L)= V| Lix V3 L, and if € V[ L,
then m=1 (¢, &)= m—1 (£} x m1(&;). So (Vyx Vi, Ly x L) satisfies A (resp., B,
E) iff (V,,L,) and (¥V,, L;) do. Thus we can restrict our attention to the
irreducible pairs (g, K). As a synthesis, we get for irreducible g, :

Theorem: (g, K) never satisfies criteria B nor E; it satisfies criteria A, C, D
if and only if g, =so0 (p, 1) or su (p, I1).

We will use the application of the Luna’s Slice Ftale Theorem to the
Invariant theory developped in [KPV] and also used in {Sch 1] to classify all
the (V, L) coregular with L simple. Note that we can replace K by any
connected algebraic group K™ with Lie algebra f acting on g ‘with the same
infinitesimal action as K. Being a’ case by case analysis, we will follow E.
Cartan’s list as it appears in { He], chapter IX. Furthermore, it is clear that it
suffices to look at the types I and 1I, see [He] p. 327.

We want to express our thanks to Jorge Vargas, Alejandro Tiraboschi,
Oscar Brega and, specially, to Juan Tirao for helpful conversations.

2. PRELIMINARIES

Let V, L be as in the introduction, meaning of course by a representation
a morphism of algebraic groups. ForxeV, the conjugacy class of the
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1sotropy subgroup L~ is called an 1sotr0py class. If the orbit Lx is closed, L*
is reductive and the representation of L* in T, (V)/ T, (Lx) is called the slice
representatlon at x, where T, notes the tangent space at x. We say that (L~)
is a closed isotropy class.

Lemma 1 ([KPV], [Sch 1]): Let V="V, V, be a direct sum of finite
dimensional L-modules. Then:

i) If(V,L)is coregulat then (V|, L) and (V,, L) are.

i) If (V. L) is coregular then every its slice representation is.

iii) If (H) is a closed isotropy class of V) then (V, L) coregular implies
(Vy, H) is.

iv) Inparticular, if the image of H in GL(V,)is a non-trivial finite subgroup
of SL(V,) then (V, L) is not coregular.

Proof: i) is easy and ii) follows from Luna’s Theorem (see [KPV]). iii) is
an application of i) and ii); iv) is a consequence of the well known Chevalley-
Sheppard-Todd Theorem, as it was pointed out in [Sch 1]. =

The unique minimal closed isotropy class is called the principal isotropy
class. For the Adjoint representation, it is a maximal torus. If 7 has a
L-invariant non-degenerate bilinear symmetric form (V is L-orthogonaliza- -
ble, for short) then the set of those x <V such that (L%) is prmc1pal contains
an open dense subset of V {see [L] and [R]). The hypothesis is certainly
fulfilled for the pairs (g. K), (p. K), (3. G) taking the Killing form. It is obvious
that g=f@p is a K-module decomposition.

Lemma 2: The principal isotropy class of (p. K) is (M).

Proof: By Lemma 20, in p. 803, of [K R] and in the notation therein,
My ==(Kg)* for all x «regular» in a. But M =M,NK, and K*=(Kg}NK, Vx
in the open dense subset of «regular» elements in a.m

We denote by [1(V) or I, (¥, b) the set of weights associated to the
representation of L in ¥ and a fixed Cartan subalgebra b of 1, the Lie algebra
of L.

The following resuit is a well-known consequence of the graded version
of the Nakayama Lemma and in the present form is useful to establish that
some graded ring is not regular.

Lemma 3: Let A=A,® A, @ ...be a graded ring with Ay=F a field;
AL =A\&... is the maximal homogeneous ideal.

i) Ais regular iff dim Krull A=dimp Ay [ A2, In such case, if't),..., 1, are
homogeneous elements of A such that their images in Ay[ A2 form an
F-basis, then they are algebraically independent over F.
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i) If Ay=0and1,,... 1, are F-linearly independent in A,, then A regular
implies t,, ..., t, are F-a.i.

i) If Ay=As=0, 1),...t, is an F-basis of A, and ts+1‘,.2., t,are F-1.i. in A,
such that A?PN<tyyy,..,4,>=0 then A regular implies 1,,...1,
Loty sy by are Fraiim

The non-coregularity of (g, K) will follow in some cases from the following
fact:

Lemma 4: Assume that rank g= rank [; that f=F,@F, is a direct sum of
Lie algebras where f,=51(2, C); and that as f-module, p is p,® py where py is
the natural representation of f, in € and dim p,=4. Then (3. K ) is not
coregular.

Proof: It is clear {rom Lemma [ that it suffices to show that (p, ) is not
coregular, where f is a maximal torus of K, whose Lie algebra is isomorphic
to b=b, @b,, a Cartan subalgebra of f, b, a Cartan subalgebra of f. Our first
task is to descript Il(p,b). If o is the weight of f, such that p,= V(a), then
(p)={F*o} ThenI(p,b)=f{a+a:acll(p,}} by abuse of notation. But b
is also a Cartan subalgebra of g and then if A TI(p,b), A is a non-compact
root in ® (g, b); so —Ae (p.b). Thus if aTI(p,), —a too.

Next, let {1, ., 1, . @€ 11(p,)} be a basis of p such that ly+, 18 @ vector
of weight et o and let {T, ,, T, _,} be the corresponding dual basis. Thus:

S'P)=g §'(p)f =@ <monomials in T, +, of weight 0>=¢ A;
= JZo

Zo JZo
Clearly, il j is odd then A;j=0. Also if Uy=T, .. T_, _,,then {U, acIl(p)}
is a basis of A,. As dim p; =4, there exist a, B[l (p)) such that ¢ £ 3. Put

Sep=Tao T 0oTp_ol p_o Obviouslty, 42N<S, 4, 85,>=0. But U,,
Sa. 8> Sp,0 AT€ NOL a.1. because S, 3 8y, = U, U_, Ug U_g and Lemma 3 applies.m

3. THE CASE BY CASE ANALYSIS OF COREGULARITY

Types I, IV: Here | is a simple Lie algebra over €, g=1Ixl and
0(x, y)=(v, x). Then it is easy to see that f=1 and as f-module, g is Ad @& Ad.
Looking at Schwarz tables in [Sch 1], we see that (g, K) is coregular iff
l=5i(2, C) (table 1.a.18).

Types L, III: The Classical Structures

Type AL Here g=sl(n, C), f=so(n C) with n=3. (For n=2, it is iso-
moprhic to BDI, p =2. g=1). If (g, K) were coregular, then by [Sch 1], table
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3a, p must be ¢, the natural action in C". We get a contradiction computing
dim p=(n*+n)j2—1.

Type AIl: Here g=sl(2n, €), f=sp(n, €) withn=3. (Forn=2, it is
isomorphic to BDI, p=6, g=1). The Schwarz notation for Ad is ¢,2 so that
if (g. K) were coregular, by Table 4a, p must be ¢, the natural action on .
As dim p=2n?—n—1, we get a contradiction.

Type Alll: Here g=sl(p+q, €), f={(} {}ea: AT}, p={(3 S)eay
When ¢ = 1, corregularity of (g. K) was proved by Cooper in [C]. So,letg=2.
We can choose a as in [He], p. 368. As it was pointed out in the Introduction,
we may assume that K={(2 9YeSL(p+q, C), AcCP*"} and then it is easy to
see that M ={(} g) € K : Bis diagonal, 4 ={ (g 2) }. If we can show that (f. M)

is non-coregular, we are done.

Now, f=f@hef, where fi={(} %) cg}=sl(p, €), /L =5(4. C), and
1= C is the center of f. As M-module, f, admits a submodule isomorphic to
fzz{(g g)eg:A :(g g), with cesl(g, €)} and the action of M in f; is given
by B.(a)=(b;bj"ay) if B is the diagonal (b,...,b,). Let ¥ be the
M-submodule of sl(g, C), V={(a;): a;=0Vi}. Clearly, it suffices to show
that (V@ V¥, M) is not coregular. Note that g1 implies ¥#0. Putting
S(VM=A,0 A &..., a;, b;; the canonical coordinates of the first and the
second copy of ¥, respectively, then 4, =0 and 4,=<a;4;; biibji, aibyi>.
Thus Lemma 3 applies.

Type BDI: Here g=so(p+g, C), F=s0(p, C)@so(g, ©)=Ff a&f, and
p={(g OB): BeCP*4, B+'C=0}. We canchoosea ={(g g): Bis «diagonab, i.e.

We may assume that K=S0(p, €)X S0(q, €) and then it is easy to see
that M={(A,B)e K: B is the diagonal (¢, ...,¢,) with ¢?=1, [lg=1, and
Az(g 2) with CE SO (p—q. €)}. g=1: Then (g. K) is coregular by Cooper
[C], Benabdallah [B], or [Sch 1], Table 3 a.2.

g=3: It follows from Lemmas | and 2 that (9. K) coregular implies (f,, M)
coregular. Note that the morphism M — GL(f»), say p, depends clearly only
on B=(E|,...,Eq) and p(B)(XU)=(EJEjXU)' Then _ det ,O(B)=H"<j€,-6j=
=(I1,¢,)9'=1. For B=(1,—1,—1,1,..., 1), p(B)#1d; therefore p(M) 1s a
finite, non trivial subgroup of SL(f,) and Lemma | applies.

g=2: Here M= S0 (p-2, €) x{L L}, where I, is the identity of GL(2, ©.
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Now, as M-module, f =s0(p—2,C)@s0(2, )@ CigCr Y where
50 (p—2, ‘E):—:{(g 2) €fir Adeso(p—2,C)}, s0(2,C) similarly C?%g
CP_ZE[((.? ())() €fy Ye@P22 xoe 1yl =V Ifxcso (p—2,C) is semisimple
regular, then M*= T'x{+ I,} where T'is a maximal torus of so (p—2,C). Thus
it suffices to show that (V, Tx{+h}) is not coregular. If (4, e/) € M~ and
(Y, Y2)e ¥V, the action is given by (eAY,,eAY,). Then

S’(V) A= @j, even S'(V)jT: @j, even S’(V)j’

where using an appropiate characterization of so (7—2,€), the Cartan
subalgebra t can be chosen {(g _S): Dis adiagonal (d), ..., dy) }, if p—2 =k is
even. (The argument when p is odd is similar).

If vy, ..., v, Wi, ..., Wy is the dual basis associated with {(e;,0),(0,¢)} then
SV =<vivis, w, Witis ViWpiy Vegyw; > and Lemma 3 applies.

Note that £ must be=1,i.e. p=4. The remaining cases are (3,2) and (2,2);
respectively, sp(2, R) (type Cl) and sl(2, R) xsl(2, R} (type Al xtype Al).

Type DIIL: Here g=s0(2n, €), f=gl(n, R) and as f-module, p=p, @p,
where p==so(n,€) with actions o,(Z)(U)=ZU+U'Z, o (Z) (U)=
=—ZU-UZ

We can choose a={(V, V): V=3 \(ez_1.2—€3;2j_1), A;€C}. We can
assume that K= GL(n, €)and then it easy to show that M~ SL(2,C) x... x
SL(2,C), Atimes, if n=2h1is even and M = SL2,CY' xC*if n=2h+11is odd.
The isomorphism is realized by «blocks in the diagonal». By Lemmas | and
2 it suffices to study the pair (F, M).

Consider the M-submodule of §
V={Z€f:. Z;,=0if i=4 or j=4}

Obviously (V, M)=~(Ada V, o Va, s1(2,C) xsl(2, €)). Thus we look at
(Vi@ V3, T), where Tis a maximal torus of st (2, C) xs1(2, C) and the action
is given by (1, 1) (A, By=(tAr-"', rBt~"). Let a;, b; be the canonical basis of V.

j=12

IfS'(Vi@V)T=A4y@® A @..., then A1 =0, Ay=<ajay, ;a;, b by, by b3,
ay by, ay b, as by, ayby>. Thus Lemma 3 applies.

This method works for n=4, But forn=2, 3 g, is isomorphic to Alll and
AlxAl, respectively.
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Type CI: Here g=sp(n, C), f=gl(n, C) and as f-module, p=p, @ p, where
p;={Acgl(n C): A="'A}with actions a,(Z){A)=ZA+A'Z, o, the dual of
o,. We can choose a={(D, Dj: D is diagonal} and if we assume that
K=GL(n, C),itis easy to see that M ={X & K: X is a diagonal (e, ..., ¢,,) with
e=1t1}. Looking at the pair (f,M) it is immediately that
det Ad m=1I; (e, )=1,1f m={(e,,...,e,)eM. But m=(—1,1,...,1) acts non
trivially so that Lemma 1 1v) applies.

This method works for n>1. For n=1,sp(l, C)=s51(2, C), trivially
coregular.

Type CIl: Here g =sp(p+q, C); f=sp(p, C)P sp(q, C) and p== C¥r*29 with
the action (Z,, Z,) X=2, X—XZ,.

We can choose 0-’:{(8 2) tAeCP*, A=73 Ne;;}. We can assume that
K=5P (g C)xSP(gq, €) and then 1t is easy 1o see that M={(X,, X)) eK:

Xzz(:; :j) with 4/ diagonal in GL(g, C), 4} At—A4}A%=1 and X, =& gj)
with B=(¥ 9) (C C)eSP(p—q, ©)}.

That is, M=SL(2, €)? x SP (p—q, C). Now we can assume g > 1 because
for g=1, p=2 we are in the situation of Lemma 4 and g; =sp(1,1)=s0(4,1),
implies (g, K) coregular.

It-is clear that f; has a M-submodule isomorphic to f;, so we are done
proving the non coregularity of (f,@&f,, SL(2, C)9).

Put V,y=<e;; —€gt;g+6 €i —€qrigtjr Cigti T€ gt €qrij TEq4, i
if i5 j and l’_Vi=_<ei,r"_'eq+i,q+i) €qtiin €, q+i~: then

=@ W0 (@<, V,) and &, W~Ad(SLR.T)).

So we can restrict our attention to the pair (F,;@ V), T) where
T={(X),...,X,): X;is adiagonal in 5s1(2, €) }. If a,, B, are the dual basis to the
descripted above, and S (V@ Vi) '=—A;pA,@..then A,=0, A,=
<ajay, ayou, By By, BiBss o B, @2 B8y, @3 B4, @4 B3> and Lemma 3 applies.

The Exceptional Structures

Most of the cases follows from Schwarz tables [Sch 1} or from Lemma 4.
So we list them, The reference for the K-module structure of p is [F
de V].
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Type g f p Method

El 2 sp(4,C) 42 Table 4a.3,dimp#8
EIV e Ja " 5a4

EV e, sI(8,0) 70 * 1a.20, dimp8
EVIII €5 so (16, €) 128 " 3a2, dimpz£ 16
FII f,  50(9,0) 16 " 3a5, dimp#9
Ell e, 5i(6,C) xs1(2,C) AT Lemma 4

EVI e, 50(12,C)xs1(2,C)  As(spin) »

EIX e e;xsl(2,0) A, ”

Fl i sp(3,€) x s1{2, C) A; ”

G 2 s1(2, Yy < s1(2,0) V(3)=3x, ”

Note: under «p» we have listed dim p for [Sch 1], p, for Lemma 4. Here A; means the j-
fundamenial weight, as in [Hu].

There are two remaining cases:

Type EIlE: Here g=¢, f=50 (10, C)S T, p=p+Dp_. As K-module, p_is
dual to py; p4 is As(spin) as [f, f}-module and C =center of f acts by non-
trivial scalars.

Type EVIL: Here g=e¢;, f=e, @ C. p=pL @ p_, p+ 18 A, etc.

We develope an argument for both of them. Let b=t&d be a Cartan
subalgebra of f, where t is a C. s. of [, f] and & is the center; let H be the
corresponding maximal torus. The goal is to prove the non-coregularity of
(p, H). Let o €d* associated to the action on p,.; 070 because g has trivial
center. By abuse of notation we call also ¢ the extension to b vanishing on t;
the same convention for A e [T(p,,1).

Then IT{py, b)={A+o: AcIl{ps, t) }. As usual, let {x,} be the basis of p,
where x, is a vector of weight A+a, A=1l(p.,1); let {y,} be the basis of p_
where y, 1s a vector of weight —A —o, and let {X), Y.} be the corresponding
dual basis. If §'(p, H)= @z A; then A,=<X, .. X X X
iz Nt 0)+ S, (N —0) = 0>, Thus A,,= 0 if m is odd and 4,=<X, Y,>.
Now assume that there are some A, ..., A4 in [T{py, t) such that A+ A, = Ay+ Ay
and A 7 Ay, Ay Then X, X, , N, X, A, Ta, 1o, do not belong to A3 and
Lemma 3 applies.

The preceding hypothesis is fulfilled in both cases, as we can see easily;
note that, as rank g =rank f, we may look at the non-compact roots in p,.

From the preceding analysis, we have:

Proposition D: (g, K) is coregular if and only if it corresponds to
g =s0(p, 1) orsu(p,1).m
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4. THE OTHER CRITERIA

Here we assume that L is a semisimple complex algebraic group, and that
V is L-orthogonalizable; see section 2.

Proposition E: i) If every root it in the Z-span of 11(V), then the principal
isotropy class of (Ad@ V, L) is (the class of)

Ker (L — GL(Ad@V)).

ii) If L is simple and V is non trivial, then every root is in the Z-span of
(V)

iii) If g is simple, the principal isotropy class of (g, K} is trivial, discarding
the trivial case when p=0.

iv) (@. K) never satisfies criteria E.

Proof: i} Let H be the maximal torus of L whose Lie algebra is k and pick
any element xch such that L= H. As V= @, .1y ¥, We can choose y =3,
W M E V){*O It follows that

L= N=HNL={AcH: Ay,=y, for all A€ II(V)}
Now such A=exp a, for some ach, and
(Ad; A) yy=(exp e}y, =@y =),

Then A(a)e2miZ for all Aell(¥) because y,#0. By hypothesis,
u(a)e2wil for every root u and then A€ Ker Ad L.

As V is Igorthogonalizable, the same is true for Adg V. So, it only
remains to show that the set { Zel@ V: LZ=Ker Ad L} is dense in l@ V.

Let U be a Zariski open non empty subset of 14 F; its image under the
projection map 1@ ¥ — | is open so it exists x regular semisimple such that
for some yeV, x+ye U. Now 1% the centralizer of x in 1, is a Cartan
subalgebra of 1. From the conjugacy theorem, it follows that $(l. X} is
contained in the Z-span of II(V, 1Y), {ycV: x+ye U} and {yeV: y\+#0
V Aell(V, )} are both open non empty; taking y in the intersection,
x+yc Uand L¥*y=Ker Ad.

ii) Let W be the subgroup of k* generated by IT (V) and let =& (1, k).
We claim that & = (&N W)U (SN W), 1t suffices to show that & — WL C W.
If o € ® — W, there is some u & T (V) such that (a, ) #0. The a-string through
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piS p-ra, ..., p+ga with r—g = (e, p) #£0; thus p T a1 (V) and a € W. Since
1 is simple, ® is irreducible; as 0, W0 and d=SNW.

ifi) Let L be the connected subgroup of K with Lie algebra 1=[F, f], let
V=pand leth, W, ® be as in the proof of ii). Then @ =(L N W) U (2N B~).
Let f, and f, be the ideals of 1 such that : if k; is a Cartan subalgebra of f; given
by k;=hkMf, then the root systems @ (f,, 1) and ®(f,, hy) are 1dent1ﬁed with
oM W and M W= respectively. If AcT1(p, k), A (h;) =0. Thus the action of
f, in p is trivial. Now Jacobi implies that [p, p] is an ideal of f and that [f,, [p,
p]]1=0. Then if d=center of f, [f+d+p, BL]=0 and f,+d+p, f, are ideals
of g. By hypothesis ;=0 and $=® N W. Assume here that dim d=1: as f-
module, p=p,@p and d acts in p.(in p_) via o0 (via —0a). Also
M(p_,h)=—TI(py, k). Recalling that & U (Il(py, k) x{a}) U (I (p . k)
x{—0a})=® (g, h+d) it is also true that {aed: (a, I (p,, k))>0}=d, for
some choice of a base A. '

Pick xef,c€9, y €p such that K**¢= Hx Z is a maximal torus of K. We
want to show that K¥Fety= Kxte N Ky = Ker Ad, (K). Let H,€h, H,b such
that exp (Jf,+ ;)€ K¥. Then V A1l (py, h) A(H[)+0(H2)€2m facd,,
a=A;—A,, for some A;€ll(p4, ) (look at the a-string). Then o (Hy) €27il.
Hoed,, a=k—A,, for some A;eIl(py, k) (look at the o-string). Then
a(H)e2niZ and we can follow the line of the proof of i).

iv} For types II-1V it follows from ii); in other case from iii). m

Next we will study the dimension of g/ K. We return to the assumption : «L
reductiven,

From Algebraic Geometry we know, for [ V/L:

, dim -t @b/ L2dim V. - {1
‘ : . .
Furthermorc there exists an open dcmc sulnct i of V uchhl V le rr( Uj. .
the cquahty in [1] holds.

Lemma 5: dimo/K=dimp

Proof: If V/L has genérically closed orbits (i.e., the uniofi of the closed
orbits contains a non empty open set) then it is follows from[1] that
dim V/L=dim V—dim L+dim H, where (H) is a principal isotropy class.
Being dim H—=0 from Proposition E, dim ¢/K=dim g/K=dim g —dim
K=dim p.m

Our following task is to compute the dimension of M, the cone of unstable
points in Mumford’s terminology, using the ideas exposed in [Sch 2], via the
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Hilbert-Mumford criterion. For convenience, we will summaryze them. See
also [M 1], Ch. II or [M 2], p. 41.

Let A: €C* — L be a morphism of algebraic groups, briefly a 1-PS. Put
Zy=f{veV:A(z})v—0if z—0}. From the well known characterization
NV, D={veV:f(v)=0V feS (V) homogeneous of positive degree }it
follows that ¥ contains the various Z,. In fact, the Hilbert-Mumford
criterion insuresthat T (V, L}=U, |_ps Z,. Now if T'is a maximal torus of L
and A is a 1—PS, IM A is conjugated to a subgroup of T and

NV, L)=Us 1_psinTL. Zy.

Let t be the Cartan subalgebra of the Lie algebra of L, 1, corresponding to 7.
If Aisa 1—PSin 7, note by X its infinitesimal generator. If V= &, cny Vs
then u(A)e Zand VveV,, zeC* A()v=22Mv. S0 Z, = B,. .0 ¥, thus
T(V, L) is union of a finite number of L. Z,. Call ¢y =codim L. Z,; then

codim N=inf{c,: Aisa 1—PSin T}

Now let p, be the (parabolic) subalgebra of 1 that normalizes Z;, u, the
subalgebra of 1 generated by the root vectors not in p,, U, the connected
algebraic subgroup of L corresponding to u,. Following [Sch 2] we have
l=p,@u, and

¢,=dim V¥—dim Zy —dim Uy+ey=dim V—dim Z, —dim U, [2]
where ey =dim Uy —sup {dim (T,(U,2)+Z,)/ Zy:2€ Z,}

Furthermore, t=b@d, where b is a Cartan subalgebra of [1,1]. Then
A=A, +A; (obvious notation). Call «, the unigue element in b* such that
@, (H)=Xilling (A,, H)Yheb. Now, VuecP([L1], b): (¢), #) =p (M) <Z and
then ¢, € E= R-span of @ ([1,1], b) in b*. (See[Hu], p. 40 and p. 67).

Finally, y() ={Aet: A=dA(1) for some 1 —PS A in t}is isomorphic to
T(T)={A: A1 —PSin T} via A — X; then it is isomorphic to (Z4, d=dim t.
Moreover, v (1) is a lattice in t and then identifying v (b) with{p,: A€y (b} },
v(b) meets every open cone in E. (See [Ch], 9-06). As usual, rk denotes the
rank.

Lemma 6: codim N=1/2 (dimp+rkg+rkf)

Proof: Let t, be a f-stable Cartan subalgebra of g such that t=t,Nfis a
Cartan subalgebra of f. As above, t=b@é, with b a C. s. of f"=[f,f]. Put

b= (i’ (g- tg)-

i) Let first L=K actingon V=fby Ad. Let Abeal—PSin 7. If A is
regular (i.e., ¢, lies in the interior of some Weyl chamber) then Z, —f. for
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the ordering defined by ¢,. If not, an easy argument shows that Z, C f for
some fy. Now the Chevalley Restriction Theorem guarantees that
dim (f/ K)=rk f. For A regular p,=f+®t, wy=f_. Then from [1] and [2]:

rkf=codim N (f, )= dim f—dim f —dim f_=1k f.

All of this is well known; the profit for us is that e, =0; so there exists
Zefy such that dim (T, (U, Z)+ f1)/fr=dim [_.

ii) Let now (¥, ﬁ)z(g, K) and let F be the R-span of ¢. If rk g=r1k [,
then t;=t it is clear that there are 1 —PS in 7, regular in both t and t,. We
claim that the preceding is true even if rk f<rk g.

For pet*, put o, ct,* as follows: w in t, 0 in t;N p. & induces ¢ — @,
a — af and hence F— F, called also 8. Clearly {xe F: Ox=x}={xeF:
x=a, for u=x,}

Next for ac¢, put B=ay. Il o=ab, a=o04 and g,=gp. If not, put
So =84 D 3ep =Gg; It is O-stable and ag=1/2(a + af). Under the above map,
@{(f.t) is contained in F, hence E. We identify E with its image.

Now{xc F:Ox=x}'={xe Frx=—x}={xe F:x,=0} D <{l/2{a—ab):
ac¢}>. As the Killing form on F is non degenerate, E={xe F: 8x=x},
E@ F'=F and the restriction of the Killing form on £ to E is still non
degenerate.

We must prove that the Zariski open cone in £, EN{He F: H is regular}
is non empty. If not, putting P, ={He F: (o, H)=0}, a € ¢, we have EC U, P,
and by irreducibility, EC P, for some a. Now o = ay+ay, a; € E, ay € F-. Thus
(a;, £}=0, hence &y =0 and a € £~ That is, a;,=0, a6 = —a. Pick Xes5,N [:
X=X,=X_ with X, ceq,, X €g_,. ¥V Het[H X]=[H X+]+ [H, X_]=0;
then s,MNFCs,NtCs,Nt;=0-5,Cp. Then Yy et.Np [v,51C [p.p]
M5, C FMN p=0. Then a, =0, a contradiction.

iii) From the preceeding and as in i), it can be shown that T is the union
of the various K. Z, with, in the open cone { X & E: X is regular in both t
and t,}. Clearly, ¢U0 —II(g,t), @ — o, is surjective. Thus Z, = Ba.pin>0
8z =g+ for the order defined by A. Even more,
2D @gpnyzo fe=F+ pa=Ff1 @t and uy=f_.

Pick Ze f; such that dim (75 (U, Z)+f4)/f; =dim f_; then
dim (77 (Uy Z)+g4+)/g+=dim f_; so e,=0 and codim N =dim g—dim
g+—dim f_=1/2 (dim p+rk g+rk f). m

Lemma 7 ([Sch 3], p. 129): (V, L) is cofree < (V, L) is coregular and
codim N(V/L)=dim V/L.u
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Proposition B: (g, K) satisfies criteria B <> g =so(n, 1) or su(n, 1),

Proposition C: (g, K) is cofree <> g, =so(n, 1) or su(n, 1)

Proofs: If (¥, L) is visible, A (¥, L) is the closure of an orbit and then it
codim RN =dim (g/ K) holds iff g, =so(n, 1) or su(n, 1}. In view of Lemma 7
and Proposition D, this implies Proposition C. Also, we have =sin
Proposition B. But cofreeness implies flatness and then all the fibres have the
same dimension. am

Remark: The cofreeness in case so(n, 1) is also proved in [Sch 2].
Proposition A: (g, K) is never visible.

Proof: If (V, L) is visible, TU (¥, L) is the closure of an orbit and then it
follows easily that codim M =dim (¥/L). (See [K], Lemma 3.5). Furthermore,
for L linear reductive (¥/ L) visible implies that the multiplicity of any non-
zero weight is at most 1, ([K], 3.4).

These two facts show the non-visibility of (g, K) in most the cases, in view
of Lemma 6 and the following well known fact:

If rk g > rk f, then there is some o € II; (g) with multiplicity greather than
one. (In the notation of Lemma 6, we must pick ac(g.t) such that

anp#0).

There are two remaining cases:
g, =su(n, 1): Here g=5s1(n+1, C), f=[(3 2) cg: Acgl(n,C)} and hence we
may assume that K={ (’: 2) € SL(n+1, €): Xe GL(n,C)}. Choosing as usual
b=(3%| Hie,: 3 H;=0}as Cartan subalgebra of both g and |, it is well
known that ¢ (g, b)={a;;; o ;(H)=H;— H; if H=3Y H;e;; i#j}. Take
dr={o;; (i<jand j=nori<n)or (i=n+1, j=n)}. It corresponds to the
1—PS A given by A (z)= the diagonal (z, 22, 23, ..., 27", z"). Thus, g+ C. Put
for ceC: yc———-(T L‘) where T=Y,¢e; 4, u=e,_ and v=ce, We claim that:

v

Y. EKyy = c=d.

Let (’: ;’) € K such that (ff :)yc:yd. Then XT=TX, Xe,_|=xe,,
cxe, =de, X. Now it is easy to show that X=xI,;,+ be; 5 and thus c=d.

g, =s50(2n, 1): Here g=50(2n+1, C}; we will follow the notation of [ Hu],
p. 3. Then f={xeg: b)=5b,=0},p={xeg: m=n=p=0} and we assume
that K={(: ':)GSL(2n+l, ) 'XsX=5s)
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Choosing b={ Heg: H is diagonal } as Cartan subalgebra of both g and f,
it is known that there is some ordering for whichg.={x<g¢: »;=0, p=0and
m is upper triangular JC T,

Put for ceC: y,=(b,=e,, m= T as above, n=c(e,_| ,— €, 1)) Then it
is not so difficult to prove that y,=y, iff y.e Ky,.

5. SOME REMARKS ON THE UNSTABLE CONE

As a corollary of the proof of Lemma 6, we can state: T (g, K) is the union
of the various K.g,. Furthermore, codim (N (g, K))= codim K.g. for every
such g,. This suggests us that the irreducible components of T are those K.g....
Actually, this follows from a general fact {as in [ G], Corollary 2, p. 142). Let
(V, L) be as above, P a parabolic subgroup of L, W a linear subspace of V
such that P.WC W. Then L. Wis closed (because of the completeness of L/ P).

The following step i1s to compute g, the number of irreducible components
of M. Assume first that rank f=rank g; then N(g. K)= U, K.g:+. From

EVETy g,

([G], Corollary 2) we also know that K.g, = K.g,' if and only if there is some
o< W(f.t) such that v(g:)=g+". (Use Bruhat decompaosition). Thus.

en=|Wi(g. t) |/ | W( t)]
Assume now rank f<rank g. We prove now some easy facts in order to

compute cq. As usual N, (S) (resp. C,(S))} is the normalizer (resp., the
centralizer) of § in L.

i} Ngt)CNg(t)

Proof: Let Ze N (1), Becll(g.t). Then Z.95Cap1. In parti(;ular,
Zg,=Zt,Ct, o

i) Cg(t)=Ng(t)N Ca(ty)

Proof: We only need to show Cg(t)C Cs(ty). By i), Cx(t)C Ng(ty). Let
Zc Cg(t) and call {its class in Ng (t)/ Cq () = W(g. t;). As  fixes every A in
E, regular in g, then {=id; i.e. Z& C5(t,).

From the preceding, we get the following injections of finite groups:

W= Nk(t)] Cx (1) — Ne ()/ (N ()N Co(ty)) — N (t)/ Ca(ty) = W(g. t,)

Call W, the group in the middle. (Note that all of this can be done if
rank f=rank g: then W = W(g.t)).
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Pick A, i in the open cone of regular elements both in g and in f, included
in E; call g4*, g+* the respective maximal nilpotent subalgebras of g. If o € W,

agit =94
iii) If o€ W(g, t,) sends g+ to g4* then o€ W).

Proof: - Pick we W({f.t) such that w(f4*)=f;*; then ow! sends g"* to
g.+* so we can replace A by wA and assume that f.*=f* Le., o (P2 (f, 1)) =
=&_#(f,t). But then a (*(f, t) ) = ®* (f. t) and o normalizes t = 3, o2 [For Fo);
i.e. gc Wl-

We summarize the preceding in:
Lemma 8: The irreducible components of N (g, K) are the K.g; where g;
corresponds to some A€ E regular both in g and in [. The number of

components is ex= | W[/ | W(F,t)|.m

Finally, we list some information about W) and ¢y for those (g, K)
satisfying rank f<rank g. We left to the reader the task to verify it.

Type g f W n
Al sl(n+1, C) so(n+1, C) ZEx %, I
n=2%k

Al, sl(n+1,€) . so(n+l,C) Thx, 5, 2
n=2k+1

All sl(2n, €) sp{(2n, C) 73 xu B, 1
BDI, so(p+g, ) s0(p, €Y X 255,y B, (fjf)
p=2r+l, so0(g, C)

g=2s+1

El [h sp(8, C) 3
EIV e fa |
11 1x1, 1 simple diag () wQ) 1
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