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ABSTRACT

We prove Newton’s binomial formulas for Schubert Calculus to determine num-

bers of base point free linear series on the projective line with prescribed rami-

fication divisor supported at given distinct points.
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Introduction

Let G(k, n) be the complex Grassmannian variety parameterizing k-dimensional sub-
spaces of Cn. In [6] (see also [7,17]), the intersection theory on G(k, n) (Schubert cal-
culus) is rephrased via a natural derivation on the exterior algebra of a free Z-module
of rank n. Classical Pieri’s and Giambelli’s formulas are recovered, respectively, from
Leibniz’s rule and integration by parts inherited from such a derivation. The gener-
alization of [6] to the intersection theory on Grassmann bundles is achieved in [8],
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by suitably translating previous important work by Laksov and Thorup [13, 14] re-
garding the existence of a canonical symmetric structure on the exterior algebra of a
polynomial ring.

It is natural to ask if the aforementioned derivation formalism for Schubert calculus
is worthy or if it is nothing more than a mere translation of an old theory into a more
or less new language. Indeed, a couple of years ago, K. Ranestad asked us to test our
methods to compute (and possibly to find a formula for) the total number, with mul-
tiplicities, of non projectively equivalent rational space curves of degree n + 3 having
flexes at given 2n distinct points. Any such a curve is the image of the morphism
φ : P1 → P3 induced by a very ample g3

n+3 on P1, such that the ramification sequence
(in the sense of [12, section 1.2]) at each of its ramification point is (1, 2, 4, 5). Results
by Eisenbud and Harris [4] ensure that such a number is finite and equal to the degree
of a suitable product of Schubert cycles (see section 4.9 for details). To compute it, we
rely on the two main results of this paper, Theorem 2.5 and Theorem 2.6, regarding
certain Newton’s binomial formulas, which cannot be expressed within the classical
Schubert calculus formalism (as, e.g., in [10]). Such formulas allow us to reduce, after
finitely many steps, the degree of any top codimensional product of Schubert cycles
into an explicit integral linear combination of degrees of Schubert varieties (the latter
already computed by Schubert in [20]).

The referee, however, suggested us that the same invoked results of [4] lead natu-
rally to generalize Ranestad’s question (and its answer) to that of finding the number,
with multiplicities, of gr

ds on P1 having pre-assigned ramification at prescribed dis-
tinct points. This last question was also raised by Osserman in [16], who conjectures
that the scheme of such linear series is reduced when the points are chosen in gen-
eral position. In the case r = 1, I. Scherbak proves, via arguments borrowed from
representation theory, a nice formula counting pencils on P1 with prescribed ramifi-
cations [18] (see also [19]), while in [16] some recursive formulas regarding the case
of higher dimensional linear series are proven. Similar counting questions have also
been studied by Kharlamov and Sottile in [12], in the more delicate context of real
enumerative algebraic geometry.

Our paper is organized as follows. Section 2 states, proves, and discusses Newton
formulas in Schubert calculus. They remarkably imply that to determine the product
structure of A∗(G(k, n)) is sufficient to know only one Pieri’s formula, namely that
expressing the product of a generator of A1(G(k, n)) with any Schubert cycle (see
remark in section 2.7). In fact, the product of any special Schubert cycle (see [10])
with an arbitrary one, can be reduced to that primitive case. We do think that this
observation is rather new.

In section 3, Newton’s type formulas are then applied to compute certain powers
of special Schubert cycles capped with arbitrary classes (modulo rational equivalence)
of Schubert varieties. Such entirely formal and straightforward computations will
finally be exploited in section 4 to count base point free gr

ds on P1, with certain
prescribed ramification divisors, for 1 ≤ r ≤ 3. In particular, we use the inclusion-
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exclusion formula (as done in [19] in the context of representation theory) to supply
an alternative proof of (a slightly modified version of) Scherbak’s formula within our
framework (Theorem 4.5). The method we use seems to be easily generalizable to the
case of Grassmannians of higher dimensional subspaces. However, we shall not follow
that path, as we think it is easier to express an integral in A∗(G(k, n)) as a linear
combination of degrees of Schubert varieties.

Combining the theory exposed in [4], or [12, section 1], with our Newton’s formulas
(Theorems 2.5 and 2.6), we are finally able to give explicit expressions for the total
number Na,b,c,d, with multiplicities, of plane irreducible rational curves of degree n+2
having a flexes, b hyperflexes, c cusps, and d tacnodes at a + b + c + d distinct points,
such that a+2b+2c+3d = 3n. Similarly, we offer an expression for the number fa,b,c,d

of space rational curves having a stalls, b hyperstalls (see 4.9), c flexes, and d cusps
at a + b + c + d distinct points such that a + 2b + 2c + 3d = 4n. For instance, putting
a = b = d = 0, one gets

f0,0,2n,0 =
∑

c1+c2+c3+c4=2n
0≤m≤c1+c2

(2n)!

c1!c2!c3!c4!

(
c1 + c2

m

)
ωI(c1,...,c4;m), (1)

where ωI(c1,...,c4;m) is, up to a sign, the degree of a certain Schubert variety explic-
itly described in section 4.11. Formula (1) is our answer to the original Ranestad’s
question. In the same vein, putting a = c = d = 0, one obtains

HSn = f0,2n,0,0 =
∑

b1+···+b5=2n
0≤l≤b2+b3

(2n)!

b1! · · · b5!

(
b2 + b3

l

)
ωI(b1,...,b5;l), (2)

which is the formula expressing the number (with multiplicities) of (non projec-
tively equivalent) space rational curves having hyperstalls at prescribed 2n distinct
points. Indeed, the r.h.s. of (2) is equal to the degree of the 0-dimensional cycle
σ2n

2 ∩ [G(4, n + 4)], where σ2 is the second Chern class of the universal quotient bun-
dle sitting over G(4, n + 4). One may wish to compute the list of HSn, n ≥ 0, by
directly evaluating the above degree via a mere iteration of Pieri’s formula (as, e.g.,
in [10]). However, computations get very messy already for small values of n. More-
over “Schubert,” the celebrated Maple c© package designed by Katz and Strømme [11],
is apparently unable to go beyond n = 12 (see [15]). Using Schubert2 on Macaulay2,
by Grayson and Stillman [9], one can do much better: on a computer with cpu speed
2.2 Ghz, 16Gb RAM, 4Gb swap, Jan-Magnus Økland obtained the list of HSn up to
n = 40, with HS40 running for about 8 hours. Our formula (2), by contrast, requires
no special computer package to be evaluated, since it is nothing else than a sum of
products of multinomials. In fact, we have been able to write a trivial CoCoA code,
successively improved by Økland [3], to write a list of HSn via (2). It computes HS42

to be

201517182255943002813954873119143476157329393137457696988123090973997900
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in about half a hour, showing that the high computational efficiency of our formulas
is out of reach by the up to now available packages for doing Schubert calculus.

1. Preliminaries

1.1. Let X be an indeterminate over Z, Mn := XZ[X ]/(Xn+1) and εi := X i+(Xn+1).
As m > n implies εm = 0Mn

, the Z-module Mn is freely generated by εn = (ε1, . . . , εn).
Let n be the set of the first n positive integers. The weight of I := (i1, . . . , ik) ∈ nk

is wt(I) :=
∑k

j=1(ij − j) =
∑k

j=1 ij −
1
2k(k + 1) (a non negative integer if the entries

of I are all distinct). In
∧k

Mn, the kth exterior power of Mn, we shall often write εI

instead of the longer expression εi1∧· · ·∧εik . Let Iτ := (iτ(1), . . . , iτ(k)), where τ ∈ Sk,

the symmetric group on k elements: then εI = εIτ

. In particular, εI = 0 if at least
two entries of I are equal. If εI �= 0, the equality wt(εI) := wt(I) defines the weight

of εI ∈
∧k

Mn.

1.2. Let Ik
n = { I := (i1, . . . , ik) ∈ nk | 1 ≤ i1 < · · · < ik ≤ n } be the lexicographi-

cally (totally) ordered set of all the strictly increasing sequences of k positive integers
not bigger than n. We also write Ik,w

n for the set of all I ∈ Ik
n such that wt(I) = w.

Let
∧k

εn := (εI : I ∈ Ik
n) be the natural Z-basis of

∧k
Mn induced by εn. Denote

by (
∧k

Mn)w the free submodule of
∧k

Mn generated by the elements of
∧k

εn of

weight w. Clearly (
∧k

Mn)w = 0 if w > k(n − k). Then
∧k

Mn gets a structure of

graded Z-module,
∧k Mn =

⊕
w≥0(

∧k Mn)w.

1.3. The fundamental element of
∧k

Mn is the unique element gk,n ∈
∧k

εn of

weight 0, i.e., gk,n := ε1 ∧ · · · ∧ εk. The point element of
∧k

Mn is the unique el-

ement πk,n ∈
∧k

εn of weight k(n − k), i.e., πk,n := εn−k+1 ∧ · · · ∧ εn.

1.4. By [8], there is a unique sequence D := (D0, D1, . . . ) of endomorphisms of
∧

Mn,
the exterior algebra of Mn, such that, for each p,q ∈

∧
Mn, each h, l ≥ 0, and

each i ≥ 1,

⎧⎪⎪⎨
⎪⎪⎩

Dh(p ∧ q) =
∑

{h1,h2≥0|h1+h2=h}

Dh1
p ∧ Dh2

q (hth Leibniz’s rule),

Dlε
i = εi+l (initial conditions on

1∧
Mn := Mn).

(3)

Equations (3) imply that Dh(
∧k Mn)w ⊆ (

∧k Mn)w+h. Thus Dh is a homoge-
neous endomorphism of degree 0 of the exterior algebra. The induced endomorphism
of

∧k
Mn, for each k ≥ 1, is homogeneous of degree h, with respect to the weight

graduation of
∧k

Mn. The initial conditions (3) and an easy induction show that the
endomorphisms {Di}i≥0 are pairwise commuting: Di ◦ Dj = Dj ◦ Di in

∧
Mn.
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1.5. For each I ∈ nk, the degree of εI ,

∫
n

εI =

∫
n

εi1 ∧ · · · ∧ εik ,

is defined to be 1 (resp. −1) if there is an even (resp. odd) permutation τ ∈ Sk

such that εIτ

= πk,n, and zero otherwise. In particular
∫

n
εi1 ∧ · · · ∧ εik �= 0 implies

wt(I) = k(n − k). By linear extension one gets a function degree
∫

n
:
∧k

Mn → Z,

whose kernel is precisely the submodule of
∧k

Mn of elements of weight smaller
than k(n − k).

1.6. Let Z[T ] := Z[T1, T2, . . . ] be the polynomial ring in infinitely many indetermi-
nates. Then Z[T ] =

⊕
h≥0 Z[T ]h, where one agrees that the degree of a monomial

aT j1
i1

· · ·T jh

ih
(a ∈ Z) is i1j1 + · · · + ihjh. If I ∈ Ik

n , ΔI(T ) := det(Tji−i) ∈ Z[T ] is
the (I, T )-Schur determinant. It is clearly homogeneous of degree wt(I).

1.7. The Chow group A∗(G(k, n)) of the Grassmannian variety parameterizing
k-planes in Cn is a free Z-module of rank

(
n
k

)
generated by {ΩI | I ∈ Ik

n }, the
cycle classes modulo rational equivalence of Schubert varieties ΩI(E

•) associated to
some complete flag E• of Cn. The Chow ring A∗(G(k, n)) is a Z-algebra generated
by σ := (σi)i≥0, where σi = ci(Qk), the ith Chern class of the (rank n − k) universal
quotient bundle on G(k, n) (clearly σm = 0 if m > n − k). Moreover A∗(G(k, n)) is
a free module of rank 1 over A∗(G(k, n)) via cap product (Poincaré duality). The
classical Giambelli’s formula can be phrased by saying that ΩI := ΔI(σ) ∩ [G(k, n)].
In particular one sees that A∗(G(k, n)) is a free Z-module generated by
σI := ΔI(σ) := det(σij−i).

1.8. Define Dt :=
∑

i≥0 Dit
i :

∧
Mn →

∧
Mn[[t]]. The first equation of formula (3)

can be equivalently written as Dt(p ∧ q) = Dtp ∧ Dtq (see [6]). Let
D−1

t =
∑

i≥0(−1)iD̄it
i be the formal inverse of Dt seen as an element of

EndA(
∧

Mn)[[t]]. Then

D−1
t (p ∧ q) = D−1

t p ∧ D−1
t q, (4)

for each p,q ∈
∧

Mn (see [8]). A direct check shows that (4) implies

D̄h(p ∧ q) =
∑

{h1,h2≥0|h1+h2=h}

D̄h1
p ∧ D̄h2

q,

for each h ≥ 0 and each p,q ∈
∧

M . For future purposes we observe that the equality

Dt ◦ D
(−1)
t = 1, holding in EndA(

∧
Mn)[[t]], implies that D̄h = Δ(2,...,h+1)(D). In

particular D̄1 = D1. Recall that h > k implies
∧k

M ⊆ ker D̄h (see [8, Proposi-
tion 4.1].
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1.9. Let E• be any complete flag of Cn. If I ∈ Ik
n and wt(I) = w,

ωI :=

∫
G(k,n)

σ
k(n−k)−w
1 ∩ ΩI =

∫
G(k,n)

σ
k(n−k)−w
1 σI ∩ [G(k, n)]

is the degree of the Schubert variety ΩI(E
•) in the Plücker embedding of G(k, n). If

J = Iτ one defines
ωJ = sgn(τ) · ωI .

It is known since Schubert [20] that

ωI =
(k(n − k) − w)!

∏
j<k(ij − ik)

(n − i1)! · · · (n − ik)!
.

1.10. We denote by A∗(
∧

Mn) the commutative sub-algebra of EndZ(
∧

Mn), image
of the natural evaluation morphism evD := Z[T ] → EndZ(

∧
Mn), sending Ti �→ Di.

There is an obvious restriction morphism ρk : A∗(
∧

Mn) → EndZ(
∧k

Mn) mapping

P (D) ∈ A∗(
∧

Mn) to P (D)|∧k Mn
. Let A∗(

∧k Mn) := Im(ρk). By [8],
∧k Mn has a

natural structure of free module of rank 1 overA∗(
∧k

Mn), generated by gk,n (see 1.3),
as a consequence of Giambelli’s formula:

εi1 ∧ · · · ∧ εik = Δ(i1,...,ik)(D)ε1 ∧ · · · ∧ εk (5)

Let Ω̂k :
∧k Mn → A∗(G(k, n)) be the obvious module isomorphism sending

εI �→ ΩI . In particular Ω̂k(gk,n) = [G(k, n)], the fundamental class of G(k, n), and

Ω̂k(πk,n) = Ωn−k+1,...,n = [pt], the class of a point. The main result of [6] implies

that there is a ring isomorphism ιk : A∗(G(k, n)) → A∗(
∧k

Mn), sending σi �→ Di,
such that the diagram

A∗(G(k, n)) ⊗ A∗(G(k, n))
∩

ιk⊗Ω̂−1

k

A∗(G(k, n))

A∗(
∧k Mn) ⊗

∧k Mn

∧k Mn

Ω̂k (6)

commutes, where the bottom horizontal map is defined by the module structure of∧k Mn over A∗(
∧k Mn). In particular, if P ∈ Z[T ] and

∑
J∈Ik

n
aJ ·εJ is the expansion

of P (D)εI as an integral linear combination of the εIs, then

P (σ) ∩ ΩI = Ω̂k(P (D)εI) = Ω̂k

( ∑
J∈Ik

n

aJεJ
)

=
∑

J∈Ik
n

aJ Ω̂k(εJ) =
∑

J∈Ik
n

aJΩJ ,

where P (σ) ∈ A∗(G(k, n)) is the evaluation of P at σ, via the map Ti �→ σi. Therefore,∫
G(k,n)

P (σ) ∩ ΩI =

∫
n

P (D) · εI ,
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where
∫

G(k,n)
P (σ)∩ΩI denotes the usual degree of the cycle P (σ)∩ΩI ∈ A∗(G(k, n)),

i.e., the coefficient of [pt] ∈ A∗(G(k, n)), the class of the point of G(k, n), in the
expansion of P (σ) ∩ ΩI .

2. Newton’s formulas in Schubert Calculus

2.1. The binomial coefficient
(
n
h

)
is, by definition, the coefficient of ahbn−h in the

expansion of (a + b)n. Therefore
(
n
j

)
= 0 if j < 0, n < 0, or j > n. If m, h ≥ 0

are integers, let ph(m) = {μ := (μ1, . . . , μh) ∈ Nh |
∑h

i=1 mi = m }. Denote by |A|
the cardinality of a set A (we use boldface for multi-indices denoted by greek letters).
Then (see [1, p. 33]),

|ph(m)| =

(
m + h − 1

h − 1

)
. (7)

Define the multinomial coefficients via the equality

(a1 + · · · + ah)m =
∑

μ∈ph(m)

(
m

μ

)
aμ1

1 · · · aμh

h .

With the usual convention 0! = 1, the multinomial coefficient can be computed as(
m

μ

)
:=

m!

μ1! · · ·μh!
(8)

if μ ∈ ph(m), while is evidently zero otherwise. Equation (3) for h = 1, implies:

Proposition 2.2. For each p,q ∈
∧

Mn and each h ≥ 0, Newton’s binomial formula
holds:

Dm
1 (p ∧ q) =

m∑
j=0

(
m

j

)
Dj

1p ∧ Dm−j
1 q. (9)

Proof. An obvious induction left to the reader.

Corollary 2.3. Let m ≥ 0 and p1, . . . ,ph ∈
∧

Mn. Then,

Dm
1 (p1 ∧ · · · ∧ ph) =

∑
μ∈ph(m)

(
m

μ

)
Dμ1

1 p1 ∧ · · · ∧ Dμh

1 ph.

Proof. By induction on the integer h ≥ 2. The case h = 2 is Proposition 2.2. Suppose
that the formula holds for h − 1. Then, by Proposition 2.2,

Dm
1 (p1 ∧ p2 ∧ · · · ∧ ph) = Dm

1 (p1 ∧ (p2 ∧ · · · ∧ ph))

=

m∑
m1=0

(
m

m1

)
Dm1

1 p1 ∧ Dm−m1

1 (p2 ∧ · · · ∧ ph). (10)
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By induction, (10) can be written as

m∑
m1=0

∑
(m2,...,mh)∈ph−1(m−m1)

(
m

m1

)
(m − m1)!

m2! · · ·mh!
Dm1

1 p1 ∧ Dm2

1 p2 ∧ · · · ∧ Dmh

1 ph

=
∑

μ∈ph(m)

(
m

μ

)
Dμ1

1 p1 ∧ · · · ∧ Dμh

1 ph.

Lemma 2.4. For each i ≥ 1, h ≥ 0, and p ∈
∧

M , the following formula holds:

Dh(εi ∧ p) = εi ∧ Dhp + Dh−1(ε
i+1 ∧ p). (11)

Proof. By a direct check, expanding the two sides of (11), according to Leibniz’s
rule (3).

Theorem 2.5. Let h, m ≥ 0, i ≥ 1 and p ∈
∧

Mn. Then,

Dm
h (εi ∧ p) =

m∑
j=0

(
m

j

)
Dj

h−1(ε
i+j ∧ Dm−j

h p) (12)

Proof. For m = 1, formula (12) is (11). Suppose (12) holds for m − 1. Since
Dm

h (εi ∧ p) = Dh(Dm−1
h (εi ∧ p)), induction on m gives

Dm
h (εi ∧ p) = Dh

(m−1∑
j=0

(
m − 1

j

)
Dj

h−1(ε
i+j ∧ Dm−1−j

h p)

)
.

Using the linearity and the fact that the operators {Dh}h≥0 are pairwise commuting,

Dm
h (εi ∧ p) =

(m−1∑
j=0

(
m − 1

j

)
Dj

h−1Dh(εi+j ∧ Dm−1−j
h p)

)
,

from which, by applying (11) again, one gets

Dm
h (εi ∧ p) =

m−1∑
j=0

(
m − 1

j

)
Dj

h−1(ε
i+j ∧ Dm−j

h p + Dh−1(ε
i+j+1 ∧ Dm−1−j

h p))

=

m−1∑
j=0

(
m − 1

j

)
Dj

h−1(ε
i+j ∧ Dm−j

h p)

+

m−1∑
j=0

(
m − 1

j

)
Dj+1

h−1(ε
i+j+1 ∧ Dm−1−j

h p) =
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=

m∑
j=0

(
m − 1

j

)
Dj

h−1(ε
i+j ∧ Dm−j

h p)

+

m∑
j=0

(
m − 1

j − 1

)
Dj

h−1(ε
i+j ∧ Dm−j

h p)

=

m∑
j=0

[(
m − 1

j

)
+

(
m − 1

j − 1

)]
Dj

h−1(ε
i+j ∧ Dm−j

h p)

=

m∑
j=0

(
m

j

)
Dj

h−1(ε
i+j ∧ Dm−j

h p).

Theorem 2.6. Let p ∈
∧

Mn. Then for each i ≥ 1 and each h ≥ 0 one has (notation
as in 1.8):

D̄
m

h (εi ∧ p) =

m∑
j=0

(
m

j

)
εi+j ∧ D̄

j

h−1D̄
m−j

h p (13)

Proof. By induction on m. Recall that, by [8, Proposition 4.1], D̄jε
i = 0 unless

0 ≤ j ≤ 1, in which case one has D̄0ε
i = εi and D̄1ε

i = D1ε
i = εi+1. Then,

D̄h(εi ∧ p) =

h∑
j=0

D̄jε
i ∧ D̄h−jp = εi ∧ D̄hp + εi+1 ∧ D̄h−1p,

i.e., (13) holds for m = 1. Suppose it holds for m − 1. Then

D̄
m

h (εi ∧ p) = D̄h(D̄
m−1
h (εi ∧ p)) = D̄h

m−1∑
j=0

(
m − 1

j

)
εi+j ∧ D̄

j

h−1D̄
m−1−j

h p,

which is equal, by linearity and the definition of D̄h, to
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m−1∑
j=0

(
m − 1

j

)
εi+j ∧ D̄

j

h−1D̄
m−j

h p +

m−1∑
j=0

(
m − 1

j

)
εi+j+1 ∧ D̄

j+1
h−1D̄

m−1−j

h p

=

m∑
j=0

(
m − 1

j

)
εi+j ∧ D̄

j

h−1D̄
m−j

h p

+

m∑
j=0

(
m − 1

j − 1

)
εi+j ∧ D̄

j

h−1D̄
m−1
h p

=

m∑
j=0

[(
m − 1

j

)
−

(
m − 1

j − 1

)]
εi+j ∧ D̄

j

h−1D̄
m−j

h p

=

m∑
j=0

(
m

j

)
εi+j ∧ D̄

j

h−1D̄
m−j

h p,

as claimed.

2.7. Formula (12) supports an explicit efficient algorithm to express any product
of special Schubert cycles as an integral linear combination of products of the form
σm

1 ∩ σI . Such an algorithm is extremely useful to perform computations, but it has
also a theoretical relevance: it shows that the algebra structure of A∗(G(k, n)) is
completely determined once one knows the product σ1σI for each I ∈ Ik

n. To this
purpose we exploit diagram (6) together with our main formula (12), as follows. For
each I := (i1, . . . , ik) ∈ Ik

n, h ≥ 1, and d, m ≥ 0, let

J (d, k, I) := { (j, J) ∈ N × Ik
n | j + wt(J) = wt(I) + d }.

Proposition 2.8. There is an explicit algorithm to express, in at least one way,
any Dm

h (εI) as a Z-linear combination of the elements of the set

{Dj
1(ε

J) | (j, J) ∈ J (mh, k, I)}, (14)

i.e., Dm
h (εI) =

∑
(j,J)∈J (mh,k,I) aJDj

1(ε
J ).

Proof. Induction on h ≥ 1 and on k ≥ 2. For h = 1 the proposition is trivial for all
k ≥ 2. Let us assume that it holds for all 1 ≤ h′ ≤ h − 1, and all εi1 ∧ εi2 ∈

∧2 Mn

(k = 2). By (12),

Dm
h (εi1 ∧ εi2) =

m∑
j=0

(
m

j

)
Dj

h−1(ε
i1+j ∧ εi2+h(m−j)).

By the inductive hypothesis Dj
h−1(ε

i1+j ∧ εi2+h(m−j)) is equal to a suitable linear

combination of elements of the form Dj′

1 (εj1 ∧ εj2). Hence the proposition holds
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for k = 2 and for all h ≥ 1. Suppose now that the proposition holds (i) for all
1 ≤ h′ ≤ h − 1 and all I ∈ Ik

n (k ≥ 2) and (ii) for all h ≥ 1, and all
I ′ := (i2, . . . , ik) ∈ Ik−1

n . We apply (12) to εi1 ∧ p, with p := εI′

= εi2 ∧ · · · ∧ εik :

Dm
h (εi1 ∧ · · · ∧ εik) =

m∑
j=0

(
m

j

)
Dj

h−1

(
εi1+j ∧ Dm−j

h (εi2 ∧ · · · ∧ εik)
)
. (15)

By induction, Dm−j
h (εi2 ∧ · · · ∧ εik) can be written as

m∑
j=0

∑
(j′,J′)∈J (h(m−j),k−1,I′)

aJ′Dj′

1 (εJ′

),

for a suitable choice of aJ′ ∈ Z, and (15) takes the form

Dm
h (εi1 ∧ · · · ∧ εik) =

m∑
j=0

(
m

j

)
Dj

h−1

(
εi1+j ∧

∑
(j′,J′)∈J (h(m−j),k−1,I′)

aJ′Dj′

1 (εJ′

)
)
.

By Corollary 2.3 one has

Dj′

1 (εJ′

) =
∑

(l2,...,lk)∈pk−1(j′)

j′!

l2! · · · lk!
εj′2+l2 ∧ · · · ∧ εj′k+lk .

In conclusion,

Dm
h (εi1 ∧ · · · ∧ εik)

=

m∑
j=0

(
m

j

)
Dj

h−1

( ∑
(l2,...,lk)∈pk−1(j′)

j′!

l2! · · · lk!
εi1 ∧ εj′2+l2 ∧ · · · ∧ εj′k+lk

)

=
∑

0≤j≤m

(l2,...,lk)∈pk−1(j
′)

(
m

j

)
j′!

l2! · · · lk!
Dj

h−1(ε
i1 ∧ εj′2+l2 ∧ · · · ∧ εj′k+lk).

By the inductive hypothesis, one then sees that Dm
h (εi1 ∧ · · · ∧ εik) is itself an integral

linear combination of the elements of the set (14).

Corollary 2.9. Let P ∈ Z[T ]h (see section 1.6). There is an explicit effective al-
gorithm to express P (D)εi1 ∧ · · · ∧ εik , in at least one way, as an integral linear
combination of {Dj

1(ε
J)}(j,J)∈J (h,k,I).

Proof. Any such P is, by definition, a (finite) integral linear combination of monomials
of the form T m1

h1
T m2

h2
· · ·T ml

hl
, and then it suffices to check the property for any such
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a term. One argues by induction on the integer l: For l = 1 the property holds. If it
holds for l − 1, one has that

Dm1

h1
Dm2

h2
· · ·Dml

hl
(εi1 ∧ · · · ∧ εik) = Dm1

h1

(
Dm2

h2
· · ·Dml

hl
(εi1 ∧ · · · ∧ εik)

)

By induction, there are integers aJ such that

Dm2

h2
· · ·Dml

hl
(εi1 ∧ · · · ∧ εik) =

∑
(j,J)

aJDj
1ε

J ,

the sum over all (j, J) such that j + wt(J) = wt(I) + h2m2 + · · · + hlml. Hence,

Dm1

h1
Dm2

h2
· · ·Dml

hl
(εi1 ∧ · · · ∧ εik) = Dm1

h1

(∑
(j,J)

aJDj
1ε

J
)

=
∑
(j,J)

aJDj
1(D

m1

h1
εJ)

and one finally concludes by applying Proposition 2.8 again.

Corollary 2.10. Suppose deg(P ) = k(n − k). There is an explicit algorithm to
compute ∫

G(k,n)

P (σ) ∩ [G(k, n)] =

∫
n

P (D)(ε1 ∧ · · · ∧ εk)

as a Z-linear combination of degrees of Schubert varieties.

Proof. In fact, by Corollary (2.9) one can determine integers aJ to write

P (D)ε1 ∧ · · · ∧ εk =
∑
(j,J)

aJDj
1ε

J ,

where in each summand j + wt(J) = k(n − k). Taking integrals,

∫
n

P (D)ε1 ∧ · · · ∧ εk =
∑
(j,J)

aJ

∫
n

Dj
1ε

J .

Since j + wt(J) = k(n − k),
∫

n
Dj

1ε
J is precisely the degree of the Schubert variety

ΩJ(E•), E• being an arbitrary complete flag of C
n (see sections 1.7, 1.9).

3. Computations in
∧k

Mn, 2 ≤ k ≤ 4

By [4], Schubert calculus on G(k, n + k) can be interpreted in terms of enumerative
geometry of linear series on the projective line with prescribed ramification divisor.
This fact motivates the computation below which shall be applied to enumerative
problems regarding rational curves in next section.
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3.1. Notation as in section 1.8. Recall that, for each h ≥ 0 (see [8, sec. 2.10]),

D̄h(εi1 ∧ · · · ∧ εih) = εi1+1 ∧ · · · ∧ εih+1,

and hence, by induction,

D̄
m

h (εi1 ∧ · · · ∧ εih) = εi1+m ∧ · · · ∧ εih+m. (16)

Proposition 3.2. For each h ≥ 1,

D̄
m

h−1(ε
i1 ∧ · · · ∧ εih) =

∑
μ∈ph(m)

(
m

μ

)
εi1+

∑
j �=1

μj ∧ · · · ∧ εih+
∑

j �=h
μj (17)

Proof. If h = 1, D0ε
i1 = εi1 and the proposition is trivial. For h = 2, is just Newton

formula (9), since D̄1 = D1 and

Dm
1 (εi1 ∧ εi2) =

m∑
m1=0

(
m

m1

)
εi1+m1 ∧ εi2+m−m1 =

∑
μ∈p2(m)

(
m

μ

)
εi1+μ1 ∧ εi2+μ2 .

Suppose the formula true for h − 1. Then

D̄
m

h−1(ε
i1 ∧ · · · ∧ εih) = D̄

m

h−1(ε
i1 ∧ (εi2 ∧ · · · ∧ εih)),

which by (13) is equal to

m∑
m1=0

(
m

m1

)
εi1+m1 ∧ D̄

m1

h−2(ε
i2+m−m1 ∧ · · · ∧ εih+m−m1)

=
∑(

m

m1

)
m1!

m2! · · ·mh−1!

× εi1+m1 ∧ εi2+m−m1+
∑

j �=2
mj ∧ · · · ∧ εih+m−m1+

∑
j �=h

mj

=
∑ m!

(m − m1)! · m2! · · ·mh!

× εi1+m1 ∧ εi2+m−m1+
∑

j �=2
mj ∧ · · · ∧ εih+m−m1+

∑
j �=h

mj ,

where the last two sums are over all (m1, m2, . . . , mh) such that 0 ≤ m1 ≤ m and∑h
j=2 mj = m1. Taking μ ∈ ph(m) such that μ1 = m − m1 and μj = mj , for

2 ≤ j ≤ h, so that μ1 = m2 + · · · + mh, one gets exactly formula (17).

Recall the notation of section 1.1.

Proposition 3.3. Let n ≥ 0 and Mn as in 1.1 and D := (D1, D2, . . . ) as in for-
mula (3). Then the following equalities holds in

∧
Mn:
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(i) Dm
2 (εi1 ∧ εi2 ∧ εi3) =

∑
μ∈p4(m)

(
m

μ

)
Dμ1

1 (εi1+μ1 ∧ εi2+μ2+2μ4 ∧ εi3+2μ3+μ2);

(ii) Dm
2 (εi1 ∧ εi2 ∧ εi3 ∧ εi4) =

∑
μ∈p5(m)

0≤l≤μ2+μ3

(
m

μ

)(
μ2 + μ3

l

)
Dμ1

1 (εI(μ,l)),

where

I(μ, l) = (i1 + μ1, i2 + μ2 + 2μ5, i3 + μ3 + l, i4 + μ2 + 2μ4 + μ3 − l);

(iii) D̄
m

2 (εi1 ∧ εi2 ∧ εi3 ∧ εi4) =
∑

μ∈p4(m)
0≤l≤μ1+μ2

(
m

μ

)(
μ1 + μ2

l

)
εJ(μ,l),

where

J(μ, l) := (i1 + μ1 + μ4, i2 + μ2 + μ4, i3 + μ3 + l, i4 + μ1 + μ2 + μ3 − l).

Proof. It consists in a repeated application of (12). We limit ourselves to the veri-
fication of (ii) and (iii), leaving the easier (i) to the reader’s care, as a more or less
amusing exercise.

Regarding formula (ii) we first observe that

Dm
2 (εi1 ∧ εi2 ∧ εi3 ∧ εi4)

=
m∑

α1=0

(
m

α1

)
Dα1

1 (εi1+α1 ∧ Dm−α1

2 (εi2 ∧ εi3 ∧ εi4))

=
m∑

0≤a1≤m
0≤a2≤m−α1

(
m

α1

)(
m − α1

a2

)
Dα1

1

(
εi1+α1 ∧ Dα2

1

(
εi2+α2 ∧ Dm−α1−α2

2 (εi3 ∧ εi4)
))

=
∑

α∈p4(m)

(
m

α

)
Dα1

1

(
εi1+α1 ∧ Dα2

1

(
εi2+α2 ∧ Dα3

1 (εi3+α3 ∧ εi4+2α4)
))

(18)

where (18) has been gotten by repeatedly applying (12) and having set α =
(α1, α2, α3, α4). Now, by (9),

Dα2

1 (εi2+α2 ∧ Dα3

1 (εi3+α3 ∧ εi4+2α4))

=
∑

0≤b≤α2

(
α2

b

)
εi2+α2+b ∧ Dα3+α2−b

1 (εi3+α3 ∧ εi4+2α4).

By definition of D1 and by applying (9), once more,

∑
0≤b≤α2

0≤l≤α3+α2−b

(
α2

b

)(
α3 + α2 − b

l

)
· εJ1(α,b,l)
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with J1(α, b, l) := (i2 + α2 + b, i3 + α3 + l, i4 + 2α4 + α2 + α3 − b − l).

Last expression plugged into (18) gives

∑
α∈p4(m)
0≤b≤α2

0≤l≤α3+α2−b

(
m

α

)(
α2

b

)(
α3 + α2 − b

l

)
· Dα1

1 εJ2(α,b,l), (19)

where J2(α, b, l) := (i1 + α1, i2 + α2 + b, i3 + α3 + l, i4 + 2α4 + α2 + α3 − b − l), i.e.,
using the definition of the multinomial coefficient,

∑ m!

α1!(α2 − b)!α3!α4!b!

(
α3 + α2 − b

l

)
· Dα1

1 (εJ2(α,b,l)).

We may rename the variables defining μ ∈ p5(m) as (the way to do that is not
unique) μ1 := α1, μ2 = α2 − b, μ3 = α3, μ4 = α4, μ5 = b. Finally, expressing α, b as
functions of such a μ ∈ p5(m), and substituting in (19), one gets

∑
μ∈p5(m)

0≤l≤μ2+μ3

(
m

μ

)(
μ2 + μ3

l

)
Dμ1

1 (εI(μ,l)),

having set I(μ, l) = (i1 + μ1, i2 + μ2 + 2μ5, i3 + μ3 + l, i4 + μ2 + 2μ4 + μ3 − l), which
is precisely (ii).

We come now to the proof of (iii). By applying formula (13) once, one gets

D̄
m

2 (εi1 ∧ εi2 ∧ εi3 ∧ εi4) =

m∑
α1=0

(
m

α1

)
εi1+α1 ∧ D̄

α1

1 D̄
m−α1

2 (εi2 ∧ εi3 ∧ εi4),

which is, again,

∑
0≤α1≤m

0≤α2≤m−α1

(
m

α1

)(
m − α1

α2

)
εi1+α1 ∧ D̄1

α1
(
εi2+α2 ∧ D̄

α2

1 D̄
m−α1−α2

2 (εi3 ∧ εi4)
)

=
∑
αi≥0

α1+α2+α3=m

m!

α1!α2!α3!
εi1+α1 ∧ D̄1

α1
(
εi2+α2 ∧ D̄

α2

1 (εi3+α3 ∧ εi4+α3)
)

(20)

where in the last equality we used (8) (having put α3 := m − α1 − α2) and (16). By
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applying twice formula (9) to expression (20) one gets

∑
α1+α2+α3=m

0≤b≤α1

m!

α1!α2!α3!

(
α1

b

)
εi1+α1 ∧ εi2+α2+b ∧ D̄

α2+α1−b

1 (εi3+α3 ∧ εi4+α3)

=
∑

α1+α2+α3=m
0≤b≤α1

0≤l≤α2+α1−b

m!

α1!α2!α3!

(
α1

b

)(
α2 + α1 − b

l

)

× εi1+α1 ∧ εi2+α2+b ∧ εi3+α3+l ∧ εi4+α3+α1+α2−b−l

=
∑

α1+α2+α3=m
0≤b≤α1

0≤l≤α2+α1−b

m!

(α1 − b)!α2!α3!b!

(
α2 + α1 − b

l

)

× εi1+α1 ∧ εi2+α2+b ∧ εi3+α3+l ∧ εi4+α3+α1+α2−b−l.

Putting μ ∈ p4(m) such that μ1 = α1 − b, μ2 = α2, μ3 = α3, and μ4 = b, one finally
obtains (iii), as desired.

4. Counting gr
n+r on P1 with prescribed ramification at distinct

points.

The main references for next subsection are [4] and [12, section 1].

4.1. If a is a non-negative integer and W a subspace of F := H0(P1, OP1(d)), denote
by W (−aP ) the subspace of all the sections of W vanishing at P with multiplicity
at least a. A gr

d on P
1 is the choice of a (r + 1)-dimensional subspace V of F . Since

F (−aP ) has codimension a, for each 0 ≤ a ≤ d + 1, the chain of inclusions

F •(P ) : F ⊃ F (−P ) ⊃ · · · ⊃ F (−dP ) ⊃ F (−(d + 1)P ) = 0,

defines the (complete) osculating flag of F at P . If there exists a non zero v ∈ V
vanishing at P with multiplicity exactly i− 1 (i ≥ 1), one says that i− 1 is a V -order
at P . There are exactly r + 1 orders at each point P , forming its V -order sequence
0 ≤ i1 − 1 < · · · < ir+1 − 1 ≤ d. Following [12, section 1.2], we shall say that
1 ≤ i1 < · · · < ir+1 ≤ d + 1 is the V -ramification sequence at P . The V -weight of P
is wtV (P ) =

∑r+1
j=1(ij(P )− j). A point P ∈ P1 is a V -ramification point if one of the

following equivalent conditions occur: (i) dimV (−(r + 1)P ) > 1, (ii) wtV (P ) > 0,
(iii) the V -ramification sequence at P is different from (1, 2, 3, . . . , r + 1). All but
finitely many points have weight 0 and the total weight of the ramification points is
prescribed by the Brill-Segre-Plücker formula:

wtV =
∑
P∈C

wtV (P ) = (r + 1)(d − r).
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4.2. If (i1(P ), . . . , ir+1(P )) is the V -ramification sequence at P , then V belongs,
by [4], to the Schubert variety Ωi1,...,ir+1

(F •(P )) of the Grassmannian G(r+1, d+1).

Moreover, if P1, . . . , Pm are m distinct points and I1, . . . , Im ∈ Ir+1
d , the Schubert va-

rieties ΩIj
(F •(Pj)) are dimensionally transverse, i.e., every irreducible component of⋂m

j=1 ΩIj
(F •(Pj)) has codimension

∑
codim ΩIj

(F •(Pj)) =
∑m

j=1 wt(Ij). In particu-
lar, if the intersection is zero dimensional, the degree of the intersection cycle is given
by the integral of the product of the corresponding Schubert cycles, in the intersection
ring of G(r + 1, d + 1), capped with the fundamental class of G(r + 1, d + 1). The
formulas gotten in section 3 via (12) can be easily applied to get expressions for the
number (with multiplicity) of gr

n+r on P1 with prescribed ramifications at prescribed
points for r = 1, 2, 3, i.e., for pencils, nets, and webs.

4.3 Counting pencils on P
1. The enumerative geometry of pencils on P

1 with
prescribed ramifications is ruled by the intersection theory on G(2, n + 2). By [8],
A∗(G(2, n + 2)) is generated by D1, D2.

Proposition 4.4. Let a, b ≥ 0 and i1, i2 ≥ 1 such that a + 2b = 2n − i1 − i2 − 3.
Then, ∫

n+2

Da
1Db

2(ε
i1 ∧ εi2) =

b∑
β=0

(
b

β

)
ωi1+β,i2+2b−2β . (21)

Proof. In fact,

Da
1Db

2(ε
i1 ∧ εi2) = Da

1

b∑
β=0

(
b

β

)
Dβ

1 (εi1+β ∧ Db−β
2 εi2)

=
b∑

β=0

(
b

β

)
Da+β

1 (εi1+β ∧ εi2+2b−2β).

Taking integrals one obtains precisely formula (21).

If i1 = 1, i2 = 2 and b = 0 (i.e., a = 2n),∫
n+2

D2n
1 (ε1 ∧ ε2) = ω1,2 =

(
2n

n

)
−

(
2n

n + 1

)
=

1

n + 1

(
2n

n

)
,

the degree of the Grassmannian G(2, n + 2), called Goldberg’s formula in [16]. Let
now q1, . . . , qh be non negative integers not bigger than n, such that

∑
qj = 2n.

Theorem 4.5 (Scherbak [18]). The following formula holds:

∫
G(2,n+2)

σq1
· · ·σqh

∩ [G(2, n + 2)]

=
∑

I⊆{1,...,h}

(−1)h+1−|I|

(∑
i∈I qi + |I| − n − 1

h − 2

)
. (22)
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Revista Matemática Complutense

2009: vol. 22, num. 1, pags. 129–152



Cordovez et al. Newton binomial formulas in Schubert Calculus

Proof. Notation as in section 2.1. Diagram (6) guarantees the following equality:

∫
G(2,n+2)

σq1
· · ·σqh

∩ [G(2, n + 2)] =

∫
n+2

Dq1
· · ·Dqh

(ε1 ∧ ε2),

where the last hand side is the coefficient of εn+1 ∧ εn+2 in the expansion of
Dq1

· · ·Dqh
(ε1 ∧ ε2). Iterating formula (3), one easily gets

Dq1
· · ·Dqh

(ε1 ∧ ε2) =
∑

1≤j≤h
0≤mj≤qj

ε1+m1+···+mh ∧ ε2+q1+···+qh−m1−···−mh

=
∑

1≤j≤h
0≤mj≤qj

ε1+m1+···+mh ∧ ε2+2n−m1−···−mh . (23)

Since
∑

1≤j≤h qj = 2n, the only surviving terms in the sum (23) are those for which
either m1 + · · · + mh = n or m1 + · · · + mh = n + 1. For each m ≥ 0, h ≥ 1, and
1 ≤ j ≤ h, let ph;j(m) := { (m1, . . . , mh) ∈ ph(m) | mj ≤ qj }. Then,

∫
n+2

Dq1
· · ·Dqh

(ε1 ∧ ε2) =
∣∣∣ ⋂
1≤j≤h

ph;j(n)
∣∣∣ −

∣∣∣ ⋂
1≤j≤h

ph;j(n + 1)
∣∣∣,

and our task consists now in evaluating the right hand side. As done in [19], in
the context of representation theory, we apply the inclusion-exclusion formula (see,
e.g., [1, p. 76]) to our situation. First, one notices that for each 1 ≤ j ≤ h, the set
ph;j(m) is the complement in ph(m) of

p′h;j(m) := { (m1, . . . , mh) ∈ ph(m) | mj ≥ qj + 1 }.

Therefore,

∣∣∣ ⋂
1≤j≤h

ph;j(m)
∣∣∣ =

∣∣∣ph(m) −
⋃

1≤j≤h

p′h;j(m)
∣∣∣ =

∑
J⊆{1,...,h}

(−1)|J|
∣∣∣⋂
j∈J

p′h;j(m)
∣∣∣,

where we used De Morgan’s laws and, for the second equality, the inclusion exclusion
formula, with the convention that

∣∣⋂
j∈J p′h;j(m)

∣∣ = |ph(m)|, if |J | = ∅. Now, for
each (m1, . . . , mh) ∈

⋂
j∈J p′h;j(m) and each j ∈ J , replace the element mj with

m′
j = mj − qj − 1 to see that

⋂
j∈J p′h;j(m) = ph

(
m −

∑
j∈J qj − |I|

)
. Then,

∣∣∣⋂
j∈J

p′h;j(m)
∣∣∣ =

∣∣∣ph

(
m −

∑
j∈J

qj − |J |
)∣∣∣ =

(
m −

∑
j∈J qj − |J | + h − 1

h − 1

)
, (24)

where to get last equality in (24) we applied formula (7).
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Finally,∫
n+2

Dq1
· · ·Dqh

(ε1 ∧ ε2) =
∣∣∣ ⋂
1≤j≤h

ph;j(n)
∣∣∣ − ∣∣∣ ⋂

1≤j≤h

ph;j(n + 1)
∣∣∣

=
∑

J⊆{1,...,h}

(−1)|J|

[(
n −

∑
j∈J qj − |J | + h − 1

h − 1

)

−

(
n + 1 −

∑
j∈J qj − |J | + h − 1

h − 1

)]

= −
∑

J⊆{1,...,h}

(−1)|J|

(
n −

∑
j∈J qj − |J | + h − 1

h − 2

)

= −
∑

I⊆{1,...,h}

(−1)h−|I|

(∑
i∈I qi + |I| − n − 1

h − 2

)
,

where, for I = {1, . . . , h} \J , we have used the equality
∑

i∈I qi = 2n−
∑

j∈J qj . The
last term of the equalities above obviously coincides with the r.h.s. of (22).

Remark 4.6. Expression (22) is Scherbak’s formula in [18], written in a slightly
modified version to (formally) include the cases h = 1 — the degree (equal to 0) of
a special Schubert cycle — and h = 2 — the degree of the product of two special
Schubert cycles.

4.7 Counting nets on P1. When r = 2, let C be the image of P1 through the
rational map φ : P1 → P(V ) induced the given g2

d. Assume that φ is a morphism,
i.e., the g2

d has no base point. The geometrical interpretation of the V -ramification
sequence at a point P in terms of the nature of the point Q := φ(P ) on C is as follows.
At a general point of P1, the V -ramification sequence is (1, 2, 3) (weight 0) and Q is
an ordinary point of C. Instead, Q is a flex, a hyperflex, a cusp, or a tacnode if the
V -ramification sequence at P is respectively (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5). The
V -weights are respectively 1, 2, 2, and 3. Suppose that a, b, c, d are four integers
such that a + 2b + 2c + 3d = 3n. Then, by 4.2, (5), and (6), with the same notation
as in section 1.7,

Na,b,c,d =

∫
G(3,n+3)

σa
1 · σb

2 · σ
c
(134) · σ

d
(135) ∩ [G(3, n + 3)]

=

∫
n+3

Da
1 · Db

2 · (Δ(134)(D))c · (Δ(135)(D))d(ε1 ∧ ε2 ∧ ε3)

is the number of projectively non equivalent rational plane curves of degree n + 2
having a flexes, b hyperflexes, c cusps, and d tacnodes at a + b + c + d distinct points.
By definition of Δ (section 1.6) and of D−1

t (section 1.8),

Δ(134)(D) = D2
1 − D2 = D̄2 and Δ(135)(D) = D1D2 − D3 = D1D̄2 − D̄3 (25)
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In fact, Dt ◦D−1
t = 1 implies that D3 = D2D̄1 −D1D̄2 + D̄3 and since D̄1 = D1 one

gets the last member of the second equality of (25). Thus,

Na,b,c,d =

∫
n+3

Da
1 · Db

2 · D̄
c

2 · (D1D̄2 − D̄3)
d(ε1 ∧ ε2 ∧ ε3)

=

d∑
d′=0

(−1)d′

∫
n+3

(
d

d′

)
Da+d′

1 Db
2 D̄

c+d′

2 D̄
d−d′

3 (ε1 ∧ ε2 ∧ ε3)

Theorem 4.8. The number Na,b,c,d is given by

Na,b,c,d =
∑

0≤d′≤d
β∈p4(b)

γ∈p3(c+d′)

(−1)d′

(
d

d′

)(
b

β

)(
c + d′

γ

)
ω(i1(d,β,γ),i2(d,β,γ),i3(d,β,γ))

where ⎧⎪⎨
⎪⎩

i1(d, β, γ) = 1 + d − d′ + γ2 + γ3 + β1

i2(d, β, γ) = 2 + d − d′ + γ1 + γ3 + β2 + 2β4

i3(d, β, γ) = 3 + d − d′ + γ1 + γ2 + 2β3 + β2

(26)

Proof. By applying the formulas proven in section 3. First one computes

D̄
c+d′

2 D̄
d−d′

3 (ε1 ∧ ε2 ∧ ε3)

= D̄
c+d′

2 (ε1+d−d′

∧ ε2+d−d′

∧ ε3+d−d′

)

=
∑

γ∈p3(c+d′)

(
c + d′

γ

)
ε1+d−d′+γ2+γ3 ∧ ε2+d−d′+γ1+γ3 ∧ ε3+d−d′+γ1+γ2 ,

where the first equality is by (16) and the second one is by Proposition 3.2. Moreover

Da+d
1 Db

2(ε
1+d−d′+γ2+γ3 ∧ ε2+d−d′+γ1+γ3 ∧ ε3+d−d′+γ1+γ2)

=
∑(

b

β

)
Da+d+β1

1 (εi1(d,β,γ) ∧ εi2(d,β,γ) ∧ εi3(d,β,γ))

=
∑(

b

β

)
ω(i1(d,β,γ),i2(d,β,γ),i3(d,β,γ))

with i1(d, β, γ), i2(d, β, γ), i3(d, β, γ) given by (26). Putting all together, one gets
precisely the claimed formula for Na,b,c,d

4.9 Counting webs on P1. Let V be a base point free web on P1 and let
φ : P1 → P(V ) be the induced morphism. Let P ∈ P1. We shall say that Q := φ(P ) is
a stall, a hyperstall, a flex, a cusp, if the V -ramification sequence at P is, respectively,
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(1, 2, 3, 5), (1, 2, 3, 6), (1, 2, 4, 5), (1, 3, 4, 5). At a stall (resp. at a hyperstall) Q ∈ C the
osculating plane meets the curve at Q with multiplicity 4 (resp. with multiplicity 5).
If Q is a flex, all the planes of the pencil containing the tangent line to Q meets the
curve with multiplicity at least 3. If Q is a cusp, the local analytic equation of C at Q
is precisely y2 − x3 = 0. Imitating what we did for rational plane curves, we may
write a formula counting the number (with multiplicity) of all the (projectively non
equivalent) rational space curves having a stalls, b hyperstalls, c flexes, and d cusps,
at a + b + c + d distinct points such that a + 2b + 2c + 3d = 4n. Such a number is
counted by the integral (see 4.2, 1.7, 1.8)

fa,b,c,d :=

∫
G(4,n+4)

σa
1σb

2σ
c
1245σ

d
1345 ∩ [G(4, n + 4)]

=

∫
n+4

Da
1Db

2D̄
c

2D̄
d

3(ε
1 ∧ ε2 ∧ ε3 ∧ ε4),

i.e., the coefficient of π4,n+4 (see section 1.2), in the expansion of

Da
1Db

2D̄
c

2D̄
d

3(ε
1 ∧ ε2 ∧ ε3 ∧ ε4)

Theorem 4.10. The number fa,b,c,d is given by

fa,b,c,d =
∑

β∈p5(b)
γ∈p4(c)
δ∈p4(d)

0≤l≤β2+β3

0≤m≤γ1+γ2

(
b

β

)(
c

γ

)(
d

δ

)(
β2 + β3

l

)(
γ1 + γ2

m

)
ωI(β,γ,δ;l,m), (27)

having set

I(β, γ, δ; l, m)

= (i1(β, γ, δ; l, m), i2(β, γ, δ; l, m), i3(β, γ, δ; l, m), i4(β, γ, δ; l, m)) (28)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i1(β, γ, δ; l, m) = 1 +
∑
j �=1

δj + γ1 + γ4 + β1,

i2(β, γ, δ; l, m) = 2 +
∑
j �=2

δj + γ2 + γ4 + β2 + 2β5,

i3(β, γ, δ; l, m) = 3 +
∑
j �=3

δj + γ3 + β3 + l + m,

i4(β, γ, δ; l, m) = 4 +
∑
j �=4

δj + γ1 + γ2 + γ3 + β2 + 2β4 + β3 − l − m

(where ω(β,γ,δ;l,m) = 0 if ip(β, γ, δ; l, m) > n + 4 for some p ∈ {1, 2, 3, 4}).

149
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Proof. The proof is straightforward. By formula (17), one first has

Da
1Db

2D̄
c

2D̄
d

3(ε
1 ∧ ε2 ∧ ε3 ∧ ε4)

= Da
1Db

2D̄
c

2

∑
δ∈p4(d)

d!

δ!
ε1+

∑
j �=1

δj ∧ ε2+
∑

j �=2
δj ∧ ε3+

∑
j �=3

δj ∧ ε4+
∑

j �=4
δj .

One now applies (iii) of 3.3, getting

Da
1Db

2

∑
δ∈p4(d)
γ∈p4(c)

0≤m≤γ1+γ2

(
c

γ

)(
d

δ

)(
γ1 + γ2

m

)
εi1(γ,δ;m) ∧ εi2(γ,δ;m) ∧ εi3(γ,δ;m) ∧ εi4(γ,δ;m),

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i1(γ, δ; m) = 1 +
∑
j �=1

δj + γ1 + γ4,

i2(γ, δ; m) = 2 +
∑
j �=2

δj + γ2 + γ4,

i3(γ, δ; m) = 3 +
∑
j �=3

δj + γ3 + m,

i4(γ, δ; m) = 4 +
∑
j �=4

δj + γ1 + γ2 + γ3 − m.

Finally, applying formula (ii) of 3.3, this is equal to

∑
β∈p5(b)
γ∈p4(c)
δ∈p4(d)

0≤l≤β2+β3

0≤m≤γ1+γ2

(
b

β

)(
c

γ

)(
d

δ

)(
β2 + β3

l

)(
γ1 + γ2

m

)
Da+β1

1 εI(β,γ,δ;l,m),

where I(β, γ, δ; l, m) is given precisely by (28). Taking integrals, one gets precisely
formula (27).

4.11. Let a = c = d = 0. Then b = 2n. For each β ∈ p5(2n), let

I(β, l) = (1 + β1, 2 + β2 + 2β5, 3 + β3 + l, 4 + β2 + β3 + 2β4 − l).

Then

HSn := f0,2n,0,0 =
∑

β∈p5(2n)
0≤l≤β2+β3

(
2n

β

)(
β2 + β3

l

)
ωI(β;l),

is the number (with multiplicities) of rational space curves having 2n hyperstalls at
2n prescribed distinct points.
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Similarly, if a, b, d = 0, then c = 2n. For each γ ∈ p4(2n), let

I(γ; m) = (1 + γ1 + γ4, 2 + γ2 + γ4, 3 + γ3 + m, 4 + γ1 + γ2 + γ3 − m).

Thus,

f0,0,2n,0 =
∑

γ∈p4(2n)
0≤m≤γ1+γ2

(
2n

γ

)(
γ1 + γ2

m

)
ωI(γ;m),

which is our way to answer to Ranestad’s original question.
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