
On Dilation Operators in Besov Spaces
Cornelia SCHNEIDER

Leipzig University

Department of Mathematics

PF 100920

D-04009 Leipzig — Germany

schneider@math.uni-leipzig.de

Received: April 22, 2008
Accepted: May 6, 2008

ABSTRACT

We consider dilation operators Tk : f → f(2k·) in the framework of Besov
spaces Bs

p,q(R
n) when 0 < p ≤ 1. If s > n

(
1
p
− 1

)
, Tk is a bounded linear

operator from Bs
p,q(R

n) into itself and there are optimal bounds for its norm.
We study the situation on the line s = n

(
1
p
− 1

)
, an open problem mentioned

in [5, 2.3.1, 2.3.2]. It turns out that the results shed new light upon the diver-
sity of different approaches to Besov spaces on this line, associated to definitions
by differences, Fourier-analytical methods, and subatomic decompositions.
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Introduction

In this article we consider dilation operators of the form

Tkf(x) = f(2kx), x ∈ R
n, k ∈ N, (1)

which represent bounded operators from Bs
p,q(R

n) into itself. Their behaviour is well
known when s > σp = n max

(
1
p − 1, 0

)
. In this situation we have, for 0 < p, q ≤ ∞,

‖Tk | L(Bs
p,q(R

n))‖ ∼ 2k(s−n
p ), s > σp,
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see [5]. We study the dependence of the norm of Tk on k on the line s = σp, where
0 < p ≤ 1. In particular, we obtain for 0 < q ≤ ∞ that

‖Tk | L(Bσp
p,q(R

n))‖ ∼ 2k(σp−n
p )k1/q.

The situation when s = 0 was already investigated in [18, sec. 3], where it was proved
that, for 0 < q ≤ ∞,

‖Tk | L(B0
p,q(R

n))‖ ∼ 2−k n
p ·

{
k

1
q − 1

max(p,q,2) , if 1 < p < ∞,

k
1
q , if p = 1 or p = ∞.

We generalize the methods (and adapt the notation) used there.

As a by-product the new results for the dilation operators lead to new insights
concerning the nature of the different approaches to Besov spaces — namely the clas-
sical (Bs

p,q), the Fourier-analytical (Bs
p,q) and the subatomic approach (Bs

p,q) — on
the line s = σp.

So far recent results by Hedberg, Netrusov [7] on atomic decompositions and
by Triebel [17, sec. 9.2] on the reproducing formula prove coincidences

Bs
p,q(R

n) = Bs
p,q(R

n), s > 0, 0 < p, q ≤ ∞, (2)

as subspaces of Lp(Rn) and

Bs
p,q(R

n) = Bs
p,q(R

n) = Bs
p,q(R

n), s > σp, 0 < p, q ≤ ∞,

(in terms of equivalent quasi-norms) in S′(Rn). Furthermore, since for s < n( 1
p−1) the

δ-distribution belongs to Bs
p,q(R

n) — which is a singular distribution and cannot be
interpreted as a function — the spaces

Bs
p,q(R

n) and Bs
p,q(R

n), 0 < s < σp,

cannot be compared. The situation on the line s = σp, 0 < p < 1, so far remained
an open problem. If q > 1 there are singular distributions belonging to B

σp
p,q(Rn).

Hence B
σp
p,q(Rn) and Bσp

p,q(Rn) cannot be compared. If q ≤ 1 then Bσp
p,q(Rn) is

a subspace of Lloc
1 (Rn) and the two spaces B

σp
p,q(Rn) and Bσp

p,q(Rn) can be compared.
But our results yield that they do not coincide, i.e.,

Bσp
p,q(R

n) �= Bσp
p,q(R

n), 0 < p < 1, 0 < q ≤ 1,

as sets of measurable functions, where Bσp
p,q(Rn) can be replaced by B

σp
p,q(Rn) in view

of (2).
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1. Besov spaces Bs
p,q(R

n)

We use standard notation. Let N be the collection of all natural numbers and let
N0 = N ∪ {0}. Let R

n be an Euclidean n-space, n ∈ N, C the complex plane.
The set of multi-indices β = (β1, . . . , βn), βi ∈ N0, i = 1, . . . , n, is denoted by N

n
0 ,

with |β| = β1 + · · · + βn, as usual. Moreover, if x = (x1, . . . , xn) ∈ R
n and

β = (β1, . . . , βn) ∈ N
n
0 we put xβ = xβ1

1 · · ·xβn
n .

We use the equivalence ‘∼’ in

ak ∼ bk or ϕ(x) ∼ ψ(x)

always to mean that there are two positive numbers c1 and c2 such that

c1 ak ≤ bk ≤ c2 ak or c1 ϕ(x) ≤ ψ(x) ≤ c2 ϕ(x)

for all admitted values of the discrete variable k or the continuous variable x, where
{ak}k, {bk}k are non-negative sequences and ϕ, ψ are non-negative functions. If a ∈ R,
then a+ := max(a, 0) and [a] denotes the integer part of a.

All unimportant positive constants will be denoted by c, occasionally with sub-
scripts. For convenience, let both dx and |·| stand for the (n-dimensional) Lebesgue
measure in the sequel. As we shall always deal with function spaces on R

n, we may
usually omit the ‘Rn’ from their notation for convenience.

Let Qν,m with ν ∈ N0 and m ∈ Z
n denote a cube in R

n with sides parallel
to the axes of coordinates, centred at 2−νm, and with side length 2−ν+1. For a cube Q
in R

n and r > 0, we denote by rQ the cube in R
n concentric with Q and with

side length r times the side length of Q.
Furthermore, when 0 < p ≤ ∞, the number σp is given by

σp = n

(
1
p
− 1

)
+

.

The Fourier-analytical approach

The Schwartz space S(Rn) and its dual S ′(Rn) of all complex-valued tempered dis-
tributions have their usual meaning here. Let ϕ0 = ϕ ∈ S(Rn) be such that

suppϕ ⊂ { y ∈ R
n : |y| < 2 } and ϕ(x) = 1 if |x| ≤ 1,

and for each j ∈ N let ϕj(x) = ϕ(2−jx) − ϕ(2−j+1x). Then {ϕj}∞j=0 forms a
smooth dyadic resolution of unity. Given any f ∈ S ′(Rn), we denote by f̂ and fˇ
its Fourier transform and its inverse Fourier transform, respectively. If f ∈ S ′(Rn),
then the compact support of ϕj f̂ implies by the Paley-Wiener-Schwartz theorem that
(ϕj f̂ )̌ is an entire analytic function on R

n.
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Definition 1.1. Let s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞, and {ϕj}j a smooth dyadic
resolution of unity. The Besov space Bs

p,q(R
n) is the set of all distributions f ∈ S ′(Rn)

such that

‖f | Bs
p,q(R

n)‖ =
( ∞∑

j=0

2jsq‖(ϕj f̂ )̌ | Lp(Rn)‖q

)1/q

is finite (with the usual modification if q = ∞).

Remark 1.2. The spaces Bs
p,q(R

n) are independent of the particular choice of the
smooth dyadic resolution of unity {ϕj}j appearing in their definition. They are
quasi-Banach spaces (Banach spaces for p, q ≥ 1), and S(Rn) ↪→ Bs

p,q(R
n) ↪→ S ′(Rn),

where the first embedding is dense if p < ∞ and q < ∞. The theory of the spaces
Bs

p,q(R
n) has been developed in detail in [13, 14] (and continued and extended

in the more recent monographs [16, 17]), but has a longer history already including
many contributors; we do not further want to discuss this here.

Note that the spaces Bs
p,q(R

n) contain tempered distributions which can only be
interpreted as regular distributions (functions) for sufficiently high smoothness. More
precisely, we have

Bs
p,q(R

n) ⊂ Lloc
1 (Rn) if, and only if,⎧⎪⎨

⎪⎩
s > σp, for 0 < p ≤ ∞, 0 < q ≤ ∞,

s = σp, for 0 < p ≤ 1, 0 < q ≤ 1,

s = σp, for 1 < p ≤ ∞, 0 < q ≤ min(p, 2),
(3)

see [10, Thm. 3.3.2]. In particular, for s < σp one cannot interpret f ∈ Bs
p,q(R

n)
as a regular distribution in general.

Local means and atomic decompositions

There are equivalent characterizations for the Besov spaces Bs
p,q(R

n) in terms of local
means and atomic decompositions. We first sketch the approach via local means. For
further details we refer to [2, 3, 17] with forerunners in [14, sec. 2.5.3].

Let B = { y ∈ R
n : |y| < 1 } be the unit ball in R

n and let κ be a C∞ function
in R

n with suppκ ⊂ B. Then

k(t, f)(x) =
∫

Rn

κ(y)f(x + ty)dy = t−n

∫
Rn

κ
(y − x

t

)
f(y) dy (4)

with x ∈ R
n, and t > 0 are local means (appropriately interpreted for f ∈ S′(Rn)).

For given s ∈ R it is assumed that the kernel κ satisfies in addition for some ε > 0,

κ̌ (ξ) �= 0 if 0 < |ξ| < ε and (Dακ̌ )(0) = 0 if |α| ≤ s. (5)
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The second condition is empty if s < 0. Furthermore, let κ0 be a second C∞ function
in R

n with suppκ0 ⊂ B and κ∨
0 (0) �= 0. The meaning of k0(f, t) is defined in

the same way as (4) with κ0 instead of κ.
We have the following characterization in terms of local means, see [17, Thm. 1.10]

and [9].

Theorem 1.3. Let s ∈ R and 0 < q ≤ ∞. Let κ0 and κ be the above kernels of local
means. Then, for f ∈ S′(Rn),

‖k0(1, f) | Lp(Rn)‖ +
( ∞∑

j=1

2jsq‖k(2−j , f) | Lp(Rn)‖q

)1/q

(6)

is an equivalent quasi-norm in Bs
p,q(R

n).

Remark 1.4. We shall only need one part of Theorem 1.3, namely that ‖f | Bs
p,q(R

n)‖
can be estimated from below by (6). In that case some of the assumptions in (5)
may be omitted. The inspection of the proof, see [9, Rem. 3], shows that if κ is
a C∞ function in R

n with

suppκ ⊂ B and Dακ̌ = 0, |α| ≤ N,

where N > s − 1, then

‖f | Bs
p,q(R

n)‖ ≥ c

( ∞∑
j=1

2jsq‖k(2−j , f) | Lp(Rn)‖q

)1/q

for some c > 0.
The following atomic characterization closely follows the presentation in

[15, sec. 13]. We introduce the relevant sequence spaces.

Definition 1.5. Let 0 < p ≤ ∞, 0 < q ≤ ∞, and λ = {λν,m ∈ C : ν ∈ N0, m ∈ Z
n }.

Then

bp,q =
{

λ : ‖λ | bp,q‖ =
( ∞∑

ν=0

( ∑
m∈Zn

|λν,m|p
)q/p

)1/q

< ∞
}

(with the usual modification if p = ∞ and/or q = ∞).

The atoms we need are defined below.

Definition 1.6.

(i) Let K ∈ N0 and d > 1. A K-times differentiable complex-valued function a
on R

n (continuous if K = 0) is called a 1K-atom if

supp a ⊂ dQ0,m for some m ∈ Z
n, (7)

and
|Dαa(x)| ≤ 1 for |α| ≤ K.
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(ii) Let s ∈ R, 0 < p ≤ ∞, K ∈ N0, L + 1 ∈ N0, and d > 1. A K-times
differentiable complex-valued function a on R

n (continuous if K = 0) is called
an (s, p)K,L-atom if for some ν ∈ N0

supp a ⊂ dQν,m for some m ∈ Z
n, (8)

|Dαa(x)| ≤ 2−ν(s−n
p )+|α|ν for |α| ≤ K, (9)

and ∫
Rn

xβa(x) dx = 0 if |β| ≤ L. (10)

It is convenient to write aν,m(x) instead of a(x) if this atom is located at Qν,m

according to (7) and (8). Assumption (10) is called a moment condition, where L = −1
means that there are no moment conditions. Furthermore, K denotes the smoothness
of the atom, see (9). The atomic characterization of function spaces of type Bs

p,q(R
n)

is given by the following result, see [15, Thm. 13.8].

Theorem 1.7. Let 0 < p ≤ ∞, 0 < q ≤ ∞, and s ∈ R. Let d > 1, K ∈ N0, and
L + 1 ∈ N0 with

K ≥ (1 + [s])+ and L ≥ max(−1, [σp − s])

be fixed. Then f ∈ S′(Rn) belongs to Bs
p,q(R

n) if, and only if, it can be represented
as

f =
∞∑

ν=0

∑
m∈Zn

λν,maν,m(x), convergence being in S′(Rn), (11)

where the aν,m are 1K-atoms ( ν = 0) or (s, p)K,L-atoms (ν ∈ N) with

supp aν,m ⊂ dQν,m, ν ∈ N0, m ∈ Z
n,

and λ ∈ bp,q. Furthermore,
inf‖λ | bp,q‖,

where the infimum is taken over all admissible representations (11), is an equivalent
quasi-norm in Bs

p,q(R
n).

2. Dilation operators

We now state the main result.

Theorem 2.1. Let 0 < p ≤ 1, 0 < q ≤ ∞, k ∈ N, and Tk be defined by (1). Then

‖Tk | L(Bσp
p,q(R

n))‖ ∼ 2k(σp−n
p )k1/q = 2−knk1/q,

where the constants of equivalence do not depend on k.
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Proof. For convenience we assume q < ∞ in the sequel, but the counterpart for q = ∞
is obvious.
• Step 1. We give an estimate for the upper bounds of the dilation operators Tk

similar to [18, Prop. 3.2]. Since the techniques used there even fail for p = 1, we need
to find suitable substitutes when 0 < p ≤ 1.

Recall Definition 1.1, where in particular the dyadic resolution of unity was con-
structed such that

ϕj(x) = ϕ(2−jx) − ϕ(2−j+1x), j ∈ N.

Elementary calculation yields

(ϕj(ξ)
�f(2k·)(ξ))̌ (x) = 2−kn(ϕj(ξ)f̂(2−kξ))̌ (x) = (ϕj(2kξ)f̂(ξ))̌ (2kx).

From the definition of Besov spaces with f(2kx) in place of f(x) we obtain

‖f(2k·) | Bσp
p,q‖ =

( ∞∑
j=0

2jσpq‖(ϕj(2k·)f̂ )̌ (2k·) | Lp‖q

)1/q

= 2−k n
p

( ∞∑
j=0

2jσpq‖(ϕj(2k·)f̂ )̌ | Lp‖q

)1/q

. (12)

If j ≥ k + 1, then ϕj(2kx) = ϕj−k(x). This gives

2−k n
p

( ∞∑
j=k+1

2jσpq‖(ϕj(2k·)f̂ )̌ | Lp‖q

)1/q

= 2−k n
p

( ∞∑
j=k+1

2(j−k)σpq2kσpq‖(ϕj−kf̂ )̌ | Lp‖q

)1/q

= 2−k n
p +kσp

( ∞∑
l=1

2lσpq‖(ϕlf̂ )̌ | Lp‖q

)1/q

≤ c2−kn‖f | Bσp
p,q‖. (13)

For the further calculations we make use of a Fourier multiplier theorem from
[13, Prop. 1.5.1]. We have

‖(Mĥ)̌ | Lp‖ ≤ c‖Mˇ | Lp‖ · ‖h | Lp‖ if 0 < p ≤ 1, (14)

with Mˇ ∈ S′∩Lp, and supp ĥ ⊂ Ω, suppM ⊂ Γ, where Ω and Γ are compact subsets
of R

n. (c does not depend on M and h, but may depend on Ω and Γ.)
Of course, for p = 1, this is just the Hausdorff-Young inequality (which was also

used in [18]).
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We put h = (ϕ0f̂ )̌ , where supp ĥ ⊂ suppϕ0 = Ω. If j = 0, we take M0 = ϕ0(2k·),
where supp M0 ⊂ suppϕ0 = Γ, and calculate

2−k n
p ‖(ϕ0(2k·)f̂ )̌ | Lp‖ ≤ c 2−k n

p ‖ϕ0(2k·)̌ | Lp‖ · ‖(ϕ0f̂ )̌ | Lp‖
= c 2−k n

p 2kσp‖ϕ0̌ | Lp‖ · ‖(ϕ0f̂ )̌ | Lp‖
= c′2k(σp−n

p )‖(ϕ0f̂ )̌ | Lp‖
≤ c′2k(σp−n

p )‖f | Bσp
p,q‖

= c′2−kn‖f | Bσp
p,q‖. (15)

Finally it remains to consider 1 ≤ j ≤ k. This is the crucial step leading to k1/q.
In this case ϕj(x) = ϕ̄(2−jx), where ϕ̄ = ϕ(x) − ϕ(2x). Hence

2−k n
p

( k∑
j=1

2jσpq‖(ϕj(2k·)f̂ )̌ | Lp‖q

)1/q

= 2−k n
p

( k∑
j=1

2jσpq‖(ϕ̄(2k−j ·)f̂ )̌ | Lp‖q

)1/q

= 2−k n
p

(k−1∑
j=1

2jσpq‖(ϕ̄(2k−j ·)ϕ0f̂ )̌ | Lp‖q + 2kσpq‖(ϕ̄f̂ )̌ | Lp‖q

)1/q

. (16)

The term in (16) originating from j = k needs some extra care. Using (14) where we
set M = ϕ0(2·), suppM ⊂ suppϕ0 = Γ, we obtain

2kσpq‖(ϕ̄f̂ )̌ | Lp‖q = 2kσpq‖(ϕ0f̂ )̌ − (ϕ0(2·)f̂ )̌ | Lp‖q

≤ c2kσpq
(‖(ϕ0f̂ )̌ | Lp‖ + ‖(ϕ0(2·)ϕ0f̂ )̌ | Lp‖

)q

≤ c′2kσpq‖(ϕ0f̂ )̌ | Lp‖q
(
1 + ‖ϕ0̌ (2·) | Lp‖

)q

= c12kσpq‖(ϕ0f̂ )̌ | Lp‖q.

This estimate can be incorporated into our further calculations. For 1 ≤ j ≤ k − 1
we use the multiplier theorem with Mj = ϕ̄(2k−j ·), and observe that

suppMj ⊂ {x : |2k−jx| ≤ 2 } ⊂ {x : |x| ≤ 2} = Γ.
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Now (16) yields

2−k n
p

( k∑
j=1

2jσpq‖(ϕj(2k·)f̂ )̌ | Lp‖q

)1/q

≤ c2−k n
p

(k−1∑
j=1

2jσpq‖(ϕ̄(2k−j ·))̌ | Lp‖q · ‖(ϕ0f̂ )̌ | Lp‖q

+ 2kσpq‖(ϕ0f̂ )̌ | Lp‖q

)1/q

= c22−k n
p · ‖(ϕ0f̂ )̌ | Lp‖

(k−1∑
j=1

2jσpq‖(ϕ̄(2k−j ·))̌ | Lp‖q + 2kσpq

)1/q

≤ c22−k n
p · ‖f | Bσp

pq ‖
(k−1∑

j=1

2jσpq‖(ϕ̄(2k−j ·))̌ | Lp‖q + 2kσpq

)1/q

≤ c22−k n
p · ‖f | Bσp

pq ‖
(k−1∑

j=1

2j( n
p −n)q‖2(j−k)nϕ̄̌ (2j−k·) | Lp‖q + 2kσpq

)1/q

≤ c22−k n
p · ‖f | Bσp

pq ‖

×
(k−1∑

j=1

2j( n
p −n)q2(j−k)nq2−(j−k)n· 1p ·q‖ϕ̄̌ | Lp‖q + 2kσpq

)1/q

≤ c32−k n
p · ‖f | Bσp

pq ‖
( k∑

j=1

2kσpq

)1/q

= c3k
1/q2−kn · ‖f | Bσp

pq ‖. (17)

Finally (12) together with (13), (15), and (17) give the upper estimate.

• Step 2. It remains to prove that the estimate is sharp. Let ψ ∈ S(Rn) be a
non-negative function with support in {x ∈ R

n : |x| ≤ 1/8 } and
∫

Rn ψ(x) dx = 1.
We show that, for 0 < q ≤ ∞,

‖ψ(2k·) | Bσp
p,q‖ ≥ c2−knk1/q, k ∈ N.

Let us take a function κ ∈ S(Rn) with

(Dακ̌ )(0) = 0, |α| ≤ r, (18)

where r > σp − 1. According to remark 1.4 these conditions on κ are sufficient for
our purposes. Furthermore, we require

κ(x) = 1, if x ∈ M = { z ∈ R
n : |z − (1/2, 0, . . . , 0)| < 1/4 }. (19)
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We construct a function κ that satisfies (18) and (19). Let us first consider the
one-dimensional case n = 1. Put

f(x) =
dr

dxr
f0(x), where f0 ∈ S(R).

Then we have that
fˇ(ξ) = −ir

(
xrf0̌

)
(ξ) = −irξrf0̌ (ξ).

In particular, for l < r we calculate(
dl

dxl
fˇ

)
(0) = −ir

l∑
j=0

(
l

j

)
r!

(r − j)!
ξr−j dl−j

dxl−j
f0̌ (ξ)

∣∣∣∣
ξ=0

= 0,

from which we see that f satisfies the moment conditions. Needing

f(x) = 1, for
1
4

< x <
3
4
,

we put f0(x) := xr · β(x), where β ∈ S(R) is chosen such that

β(x) =
1
r!

, x ∈ B1

(1
2

)
.

The previous considerations can easily be extended to higher dimensions by setting

g(x1, . . . , xn) = f0(x1)f0

(
x2 − 1

2

)
· · · f0

(
xn − 1

2

)
,

and finally
κ(x) = D(r,...,r)g(x), x ∈ R

n,

gives the desired function, if we choose r > σp − 1.
When j = 1, 2, . . . , k, we set y0 = (1/2, 0, . . . , 0), x0 = −2−jy0, and

ω = 2kx + 2k−jy = 2k(x0 + x̃) + 2k−j(y0 + ỹ) = 2kx̃ + 2k−j ỹ.

If ω ∈ suppψ and |x̃| ≤ 1
82−j we see that

|ỹ| = |2−k+jω − 2j x̃| ≤ 2−k+j 1
8

+
1
8
≤ 1

4
.

This yields for |x − (− 1
2 · 1

2j , 0, . . . , 0)| < 1
2j

1
8 that

suppy ψ(2kx + 2k−jy) ⊂ M.

For these x we get

K(2−j , ψ(2k·))(x) =
∫

Rn

κ(y)ψ(2kx + 2k−jy) dy

=
∫

Rn

ψ(2kx + 2k−jy) dy = 2(j−k)n.
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Hence,

‖K(2−j , ψ(2k·)) | Lp‖ ≥ c2−
jn
p 2(j−k)n = c2−jn( 1

p−1)2−kn = c2−jσp2−kn.

This yields

‖ψ(2k·) | Bσp
p,q‖ ≥ c̄

( k∑
j=1

2jσpq‖K(2−j , ψ(2k·)) | Lp‖q

)1/q

≥ c′2−kn

( k∑
j=1

1
)1/q

= c′2−knk1/q,

which is the desired result.

3. Applications

3.1. Besov spaces with positive smoothness on R
n

With the help of the previous results on dilation operators, we want to discuss in
this section the connection and diversity of three different approaches to Besov spaces
with positive smoothness.

In addition to the Fourier-analytical approach, see Definition 1.1, we now present
two further characterizations — associated to definitions by differences and subatomic
decompositions — before we come to some comparison.

The classical approach: Besov spaces Bs
p,q(R

n)

If f is an arbitrary function on R
n, h ∈ R

n, and k ∈ N, then

(Δ1
hf)(x) = f(x + h) − f(x) and (Δk+1

h f)(x) = Δ1
h(Δk

hf)(x), k ∈ N.

For convenience we may write Δh instead of Δ1
h. Furthermore, the kth modulus

of smoothness of a function f ∈ Lp(Rn), 0 < p ≤ ∞, k ∈ N, is defined by

ωk(f, t)p = sup
|h|≤t

‖Δk
hf | Lp(Rn)‖, t > 0.

We shall simply write ω(f, t)p instead of ω1(f, t)p and ω(f, t) instead of ω(f, t)∞.

Definition 3.1. Let 0 < p, q ≤ ∞, s > 0, and r ∈ N such that r > s. Then the
Besov space Bs

p,q(R
n) contains all f ∈ Lp(Rn) such that

‖f | Bs
p,q(R

n)‖r = ‖f | Lp(Rn)‖ +
(∫ 1

0

t−sqωr(f, t)q
p

dt

t

)1/q

(20)

(with the usual modification if q = ∞) is finite.
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Remark 3.2. These are the classical Besov spaces, in particular, when 1 ≤ p, q ≤ ∞,
s > 0. The study for all admitted s, p, and q goes back to [11], we also refer
to [1, ch. 5, Def. 4.3] and [4, ch. 2, §10]. There are as well many older references
in the literature devoted to the cases p, q ≥ 1. A recent approach including atomic
characterizations is given in [7] based on [8].

The spaces in Definition 3.1 are independent of r, meaning that different values
of r > s result in quasi-norms which are equivalent. Furthermore the spaces are
quasi-Banach spaces (Banach spaces if p, q ≥ 1). Note that we deal with subspaces
of Lp(Rn), in particular we have the embedding

Bs
p,q(R

n) ↪−→ Lp(Rn), s > 0, 0 < q ≤ ∞, 0 < p ≤ ∞.

The classical scale of Besov spaces contains many well-known function spaces. For ex-
ample, if p = q = ∞, one recovers the Hölder-Zygmund spaces Cs(Rn),

Bs
∞,∞(Rn) = Cs(Rn), s > 0.

We add the following homogeneity estimate, which will serve us later on. Let R > 0,
s > 0, and 0 < p, q ≤ ∞. Then

‖f(R·) | Bs
p,q(R

n)‖ ≤ c max
(
R−n

p , Rs−n
p
)‖f | Bs

p,q(R
n)‖. (21)

To prove this we simply observe that

‖f(R·) | Bs
p,q(R

n)‖ = ‖f(R·) | Lp(Rn)‖ +
(∫ 1

0

t−sqωr(f(R·), t)q
p

dt

t

)1/q

= R−n
p ‖f | Lp(Rn)‖ + R−n

p

(∫ 1

0

t−sqωr(f, Rt)q
p

dt

t

)1/q

= R−n
p ‖f | Lp(Rn)‖ + Rs−n

p

(∫ R

0

τ−sqωr(f, τ)q
p

dτ

τ

)1/q

≤ c max
(
R−n

p , Rs−n
p
)‖f | Bs

p,q(R
n)‖.

Here we used that the integration over t ∈ (0, 1) in (20) can be replaced by an inte-
gration over t ∈ (0,∞).

The subatomic approach: Besov spaces Bs
p,q(R

n)

The subatomic approach provides a constructive definition for Besov spaces, expand-
ing functions f via building blocks and suitable coefficients, where the latter belong
to certain sequence spaces. For further details on the subject we refer to [6, 17]. Let

R
n
++ := { y ∈ R

n : y = (y1, . . . , yn), yj > 0 }.
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Definition 3.3. Let k be a non-negative C∞ function in R
n with

supp k ⊂ { y ∈ R
n : |y| < 2J−ε } ∩ R

n
++

for some fixed ε > 0 and some fixed J ∈ N, satisfying∑
m∈Zn

k(x − m) = 1, x ∈ R
n.

Let β ∈ N
n
0 , j ∈ N0, m ∈ Z

n, and let kβ(x) = (2−Jx)βk(x). Then

kβ
j,m(x) = kβ(2jx − m)

denote the building blocks related to Qj,m.

We consider the following sequence spaces.

Definition 3.4. Let � ≥ 0, s ∈ R, 0 < p, q ≤ ∞, and

λ =
{

λβ
j,m ∈ C : β ∈ N

n
0 , m ∈ Z

n, j ∈ N0

}
.

Then the sequence space bs,�
p,q is defined as

bs,�
p,q := {λ : ‖λ | bs,�

p,q‖ < ∞}
where

‖λ | bs,�
p,q‖ = sup

β∈Nn
0

2�|β|
( ∞∑

j=0

2j(s−n/p)q
( ∑

m∈Zn

|λβ
j,m|p

)q/p
)1/q

(with the usual modification if p = ∞ and/or q = ∞).

Remark 3.5. It might not be obvious immediately, but the building blocks kβ
j,m in our

subatomic approach differ from the atoms a — used to characterize the spaces Bs
p,q(R

n)
in Theorem 1.7 — mainly by the imposed moment conditions on the latter and some
unimportant technicalities. In particular, the normalizing factors 2ν(s−n

p ) are incor-
porated in the sequence spaces bs,�

p,q in the subatomic approach; recall Definition 1.5.

Definition 3.6. Let s > 0, 0 < p ≤ ∞, 0 < q ≤ ∞, � ≥ 0. Then Bs
p,q(R

n) contains
all f ∈ Lp(Rn) which can be represented as

f(x) =
∑

β∈Nn
0

∞∑
j=0

∑
m∈Zn

λβ
j,mkβ

j,m(x), x ∈ R
n, (22)

with coefficients λ =
{
λβ

j,m

}
β∈Nn

0 ,j∈N0,m∈Zn ∈ bs,�
p,q, and equipped with the quasi-norm

‖f | Bs
p,q(R

n)‖ = inf‖λ | bs,�
p,q‖

where the infimum is taken over all possible representations (22).
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Remark 3.7. The definitions given above follow closely [17, sec. 9.2]. The spaces
Bs

p,q(R
n) are quasi-Banach spaces (Banach spaces for p, q ≥ 1) and independent of k

and � (in terms of equivalent quasi-norms). Furthermore, we have the embedding

Bs
p,q(R

n) ↪−→ Lp(Rn), 0 < p ≤ ∞,

see [17, Thm. 9.8]. Concerning the convergence of (22) one obtains as a consequence
of λ ∈ bs,�

p,q that the series on the right-hand side converges absolutely in Lp(Rn)
if p < ∞, and in L∞(Rn, wσ) if p = ∞, where wσ(x) = (1+ |x|2)σ/2 with σ < 0. Since
this implies unconditional convergence we may simplify (22) and write in the sequel

f =
∑

β,j,m

λβ
j,mkβ

j,m.

Connections and diversity

We now discuss the coincidence and diversity of the above presented concepts of
Besov spaces and may restrict ourselves to positive smoothness s > 0. In view
of our Remarks 1.2, 3.2, and 3.7 concerning the different nature of these spaces,
it is obvious that there cannot be established a complete coincidence of all approaches
when s < σp, since Bs

p,q(R
n) and Bs

p,q(R
n) are always subspaces of Lp(Rn) and thus

contain functions, whereas the elements of Bs
p,q(R

n) are distributions which can be
interpreted as regular distributions (‘functions’) if, and only if, (3) is satisfied. How-
ever, when s > σp, the outcome is optimal in the sense that all approaches result
in the same Besov space.

Theorem 3.8. Let s > 0, 0 < p ≤ ∞, 0 < q ≤ ∞.

(i) Then

Bs
p,q(R

n) = Bs
p,q(R

n) (23)

(in the sense of equivalent quasi-norms) as subsets of Lp(Rn).

(ii) Let s > σp, then

Bs
p,q(R

n) = Bs
p,q(R

n) = Bs
p,q(R

n) (24)

(in the sense of equivalent quasi-norms) in S′(Rn).
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�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������s

1

Bs
p,q = Bs

p,q

Bs
p,q = Bs

p,q = Bs
p,q

s = σp

1
p

Remark 3.9. The first equality in (24) is longer known, see [13, Thm. 2.5.12; 14,
Thm. 2.6.1] with forerunners in case of p, q ≥ 1, see [12, 2.5.1, 2.7.2], whereas the
second equality in (24) is a consequence of the recently proved coincidence (23),
see [17, Prop. 9.14] (with forerunners in [15, sec. 14.15; 16, Thm. 2.9]). It essentially
relies on the atomic decomposition, see [7, Thm. 1.1.14; 8]. In the figure we have
indicated the situation in the usual ( 1

p , s)-diagram.

Our results on the norms of the dilation operators Tk established in Theorem 2.1
now lead to new insights when dealing with the limiting case s = σp. By (3)
the spaces B

σp
p,q(Rn) and Bσp

p,q(Rn) with 0 < p < 1 and q > 1 are incomparable.
If q ≤ 1 the spaces can be compared. We obtain the following assertion.

Corollary 3.10. Let 0 < p < 1, and 0 < q ≤ 1. Then

Bσp
p,q(R

n) �= Bσp
p,q(R

n)

(in terms of equivalent quasi-norms) as sets of measurable functions.

Proof. We use the homogeneity estimate (21), which for R = 2k, s > 0, and
0 < p, q ≤ ∞ reads

‖f(2k·) | Bs
p,q‖ ≤ c 2k(s−n

p )‖f | Bs
p,q‖. (25)

We proceed indirectly, assuming that B
σp
p,q(Rn) = Bσp

p,q(Rn) for 0 < q ≤ 1.
But then using Theorem 2.1 and (25) above, we could find a function ψ ∈ B

σp
p,q

with

2k(σp−n
p )k1/q‖ψ | Bσp

p,q‖ ≤ c‖ψ(2k·) | Bσp
p,q‖ ∼ ‖ψ(2k·) | Bσp

p,q‖
≤ c 2k(σp−n

p )‖ψ | Bσp
p,q‖

∼ c 2k(σp−n
p )‖ψ | Bσp

p,q‖,
leading to

k1/q ≤ c, k ∈ N.

This gives the desired contradiction.
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Revista Matemática Complutense

2009: vol. 22, num. 1, pags. 111–128



Cornelia Schneider On dilation operators in Besov spaces

3.2. A comment on atomic expansion

Following [18, Rem. 3.7] one can show that first moment conditions on the line s = σp

are indeed necessary. This immediately leads to

Bσp
p,q(R

n) �= Bσp
p,q(R

n), 0 < p < 1, 0 < q < ∞,

in view of Remark 3.5. We sketch the proof.
Every f ∈ B

σp
p,q(Rn) may be represented by optimal atomic decompositions

f(x) =
∑
ν,m

λν,maν,m(x), x ∈ R
n,

with
‖λ | bp,q‖ ≤ c‖f | Bσp

p,q‖, f ∈ Bσp
p,q(R

n),

see [17, ch. 1.5] for details. If no moment conditions were required here, then

gk(x) = f(2kx) =
∑
ν,m

λν,maν,m(2kx), x ∈ R
n,

would represent an atomic decomposition of f(2kx). This can be seen by setting

gk(x) =
∑
ν,m

λν,m2k(σp−n
p )2−k(σp−n

p )aν,m(2kx) =
∑
ν,m

λk
ν,mak

ν,m(x),

where ak
ν,m(x) = 2−k(σp−n

p )aν,m(2kx) ∼ ãν+k,m(x), since

supp ak
ν,m ⊂ Qν+k,m,

|Dαak
ν,m(x)| = 2−k(σp−n

p )+k|α||Dαaν,m(x)| ≤ 2−(ν+k)(σp−n
p )+(ν+k)|α|.

Therefore we obtain

‖gk | Bσp
p,q‖ ≤ ‖λk | bp,q‖ = 2k(σp−n

p )‖λ | bp,q‖ = 2−nk‖λ | bp,q‖,

yielding
‖f(2k·) | Bσp

p,q‖ ≤ c2−nk‖f | Bσp
p,q‖.

But we know by Theorem 2.1 that this is not true in general if q < ∞.

Remark 3.11. Using a different argument it is possible to show that for q = ∞ the first
moment conditions are indispensable as well.

Let a ∈ S(Rn) with supp a ⊂ { y : |y| < 1 } and
∫

Rn a(y) dy = 1. Then

aj(x) = 2jna(2jx), j ∈ N0, x ∈ R
n,
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satisfy the support and growth assumptions for normalized atoms in

Bs
p,q(R

n) with 0 < p ≤ ∞, 0 < q ≤ ∞, s = n
(1

p
− 1

)
. (26)

But

fJ(x) =
J∑

j=0

aj(x), J ∈ N, (27)

does not converge in S′(Rn). This follows from

(fJ , ψ) =
J∑

j=0

∫
Rn

aj(x)ψ(x) dx = J + 1,

for any ψ ∈ S(Rn) with ψ(x) = 1 if |x| ≤ 1. Hence (27) cannot be an atomic repre-
sentation for the spaces in (26) with q = ∞ even though

‖λ | bp,∞‖ = sup
j=0,...,J

λj = 1.

Of interest for our considerations is only the case 0 < p < 1. Then (27) converges
in Lp(Rn), since, for J ′ > J ,

‖fJ′ − fJ | Lp(Rn)‖p ≤
J′∑

j=J+1

∫
Rn

|aj(x)|p dx

= ‖a | Lp(Rn)‖p
J′∑

j=J+1

2jnp−jn ∼ 2−Jn(1−p).

Furthermore,
lim

J→∞
fJ(x) ∼ |x|−n near the origin.
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Basel, 2001.

[17] , Theory of function spaces, III, Monographs in Mathematics, vol. 100, Birkhäuser Verlag,
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