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ABSTRACT

In this paper, we study the problem

− div a(x, u,∇u) − div φ(u) + g(x, u) = f

in the framework of Orlicz spaces. The main contribution of our work is to
prove the existence of a renormalized solution without any restriction on the
N -function of the Orlicz space.

Key words: Orlicz Sobolev spaces, boundary value problems, truncations, renormalized
solutions.
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Introduction

Let Ω be a bounded open subset of R
N and let Au = −div a(x, u,∇u) be a Leray-

Lions operator defined in W 1,p
0 (Ω), 1 < p < ∞.

We consider the following nonlinear elliptic problem:{
−div a(x, u,∇u) − div φ(u) + g(x, u) = f in Ω

u = 0 on ∂Ω
(1)
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where f ∈ W−1,p′
(Ω), φ ∈ C0(R, RN ), and g is a Carathéodory function satisfying

sup
|t|≤n

|g(·, s)| = hn(·) ∈ L1(Ω) ∀n.

Note that no growth hypothesis is assumed on the function φ which implies that
the term div φ(u) may be meaningless, even as a distribution. The notion of renor-
malized solution (see definition 2.1) gives a meaning to a possible solution of (1).

In the case where φ = 0, existence of a weak solution in the usual sense to (1) is
proved by Rakotoson and Temam [16].

The notion of renormalized solutions in the usual case was introduced by R. J.
DiPerna and P.-L. Lions [10] for the study of the Boltzmann equations. This notion
was then adapted to the study of the problem (1) by L. Boccardo et al. [8] when the
right hand side is in W−1,p′

(Ω), by J. M. Rakotoson [15] when the right hand side is
in L1(Ω), and finally by G. Dal Maso et al. [9] for the case in which the right hand
side is general measure data.

The functional setting in these works is the usual Sobolev space W 1,p(Ω). Ac-
cordingly the function a(·) is supposed to satisfy polynomial growth conditions with
respect to u and its derivatives ∇u.

When trying to perform an analysis for the function a(·) with more general growth
conditions, one is led to replace W 1,p by a Sobolev-space W 1LM built from an Orlicz
space LM instead of Lp. Here the N -function M which defines LM is related to the
actual growth of the function a

Recently Benkirane and Bennouna [5] have generalized the last result of Boccardo
et al. [8] to the Orlicz-Sobolev space with some restrictions on the N -function (i.e.,
the Δ2-condition).

It is our purpose, in this paper, to prove the existence of renormalized solution
for the problem (1) in the setting of the Orlicz Sobolev space W 1

0 LM (Ω) without any
restriction on the N -function M . (i.e., without the Δ2-condition). See theorem 2.3.
This paper is organized as follows: Section 1 contains some preliminaries and some
technical lemmas concerning convergence in Orlicz Sobolev space. In section 2, we
state our main result which will be proved in section 3. The proof uses techniques
different from that given in [5, 8].

For some existence results for strongly non-linear elliptic equation in Orlicz space
see [2–4,6]

1. Preliminaries

1.1. N-function

Let M : R
+ → R

+ be an N -function, i.e., M is continuous, convex, with M(t) > 0
for t > 0, M(t)

t → 0 as t → 0 and M(t)
t → ∞ as t → ∞. Equivalently, M admits

the representation M(t) =
∫ t

0
a(s) ds, where a : R

+ → R
+ is a nondecreasing, right

continuous function, with a(0) = 0, a(t) > 0 for t > 0, and a(t) tends to ∞ as t → ∞.
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The N -function M , conjugate to M , is defined by M(t) =
∫ t

0
ā(s) ds, where

ā : R
+ → R

+ is given by ā(t) = sup{ s : a(s) ≤ t }.
The N -function M is said to satisfy the Δ2-condition if for some k

M(2t) ≤ kM(t) ∀t ≥ 0. (2)

It is readily seen that this will be the case if and only if for every r > 0 there exists
a positive constant k = k(r) such that for all t > 0

M(rt) ≤ kM(t) ∀t ≥ 0. (3)

When (2) and (3) hold only for t ≥ t0, for some t0 > 0, then M is said to satisfy the
Δ2-condition near infinity.

We will extend these N -functions into even functions on all R. Moreover, we have
the following Young’s inequality:

∀s, t ≥ 0, st ≤ M(t) + M(s).

Let P and Q be two N -functions. We say that P grows essentially less rapidly
than Q near infinity, and denote it P 	 Q, if for every ε > 0, P (t)

Q(εt) → 0 as t → ∞.

This is the case if and only if limt→∞
Q−1(t)
P−1(t) = 0 (see [1, chapter 8]).

1.2. Orlicz space LM(Ω)

Let M be an N -function and Ω ⊂ R
N be an open and bounded set. The Orlicz class

KM (Ω) (resp. the Orlicz space LM (Ω)) is defined as the set of (equivalence classes of)
real valued measurable functions u on Ω such that∫

Ω

M(u(x)) dx < +∞ (resp.
∫

Ω

M(
u(x)

λ
) dx < +∞ for some λ > 0).

LM (Ω) is a Banach space under the norm,

‖u‖M,Ω = inf
{

λ > 0 :
∫

Ω

M
(u(x)

λ

)
dx ≤ 1

}

and KM (Ω) is a convex subset of LM (Ω) but not necessarily a linear space.
The closure in LM (Ω) of the set of bounded measurable functions with compact

support in Ω is denoted by EM (Ω).
The dual space of EM (Ω) can be identified with LM (Ω) by means of the pairing∫

Ω
uv dx, and the dual norm of LM (Ω) is equivalent to ‖·‖M,Ω.

Let X and Y be arbitrary Banach spaces with bilinear bicontinuous pairing 〈, 〉X,Y .
We say that a sequence {un} ⊂ X converges to u ∈ X with respect to the topology

σ(X, Y ), denoted by un → u (σ(X,Y )), in X, if 〈un, v〉 → 〈u, v〉 for all v ∈ Y . For
example, if X = LM (Ω) and Y = LM (Ω), then the pairing is defined by

〈u, v〉 =
∫

Ω

u(x)v(x) dx ∀u ∈ X, v ∈ Y.
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1.3. Orlicz-Sobolev space

We now turn to the Orlicz-Sobolev space, W 1LM (Ω) (resp. W 1EM (Ω)) is the space
of all functions u such that u and its distributional derivatives up to order 1 lies in
LM (Ω) (resp. EM (Ω)). It is a Banach space under the norm

‖u‖1,M =
∑
|α|≤1

‖Dαu‖M .

Thus, W 1LM (Ω) and W 1EM (Ω) can be identified with subspaces of product of N +1
copies of LM (Ω). Denoting this product by

∏
LM , we will use the weak topologies

σ(
∏

LM ,
∏

EM ) and σ(
∏

LM ,
∏

LM ).
The space W 1

0 EM (Ω) is defined as the (norm) closure of the Schwartz space D(Ω)
in W 1EM (Ω) and the space W 1

0 LM (Ω) as the σ(
∏

LM ,
∏

EM ) closure of D(Ω) in
W 1LM (Ω).
We say that a sequence {un} ⊂ LM (Ω) converges to u ∈ LM (Ω) in the modular sense,
denoted un → u (mod) in LM (Ω) if for some λ > 0∫

Ω

M

( |un(x) − u(x)|
λ

)
dx −→ 0 when n → +∞.

We say that a sequence {un} ⊂ W 1LM (Ω) converges to u ∈ W 1LM (Ω) in the modular
sense, denoted un → u (mod) in W 1LM (Ω) if there exists λ > 0 such that∫

Ω

M

( |Dαun(x) − Dαu(x)|
λ

)
dx −→ 0 when n → +∞ for all |α| ≤ 1.

If M satisfies the Δ2-condition (near infinity only when Ω has finite measure), then
modular convergence coincides with norm convergence.

1.4. Some lemmas

Let W−1LM (Ω) (resp. W−1EM (Ω)) denotes the space of distributions on Ω which can
be written as sums of derivatives of order ≤ 1 of functions in LM (Ω) (resp. EM (Ω)).
It is a Banach space under the usual quotient norm.

We recall some lemmas introduced in [7] which will be used later.

Lemma 1.1. Let F : R → R be uniformly Lipschitzian, with F (0) = 0. Let M be an
N -function and let u ∈ W 1LM (Ω) (resp. W 1EM (Ω)). Then F (u) ∈ W 1LM (Ω)(resp.
W 1EM (Ω)). Moreover, we have

∂

∂xi
F (u) =

{
F ′(u) ∂

∂xi
u a.e. in {x ∈ Ω : u(x) /∈ D },

0 a.e. in {x ∈ Ω : u(x) ∈ D },

where D is the set of discontinuity points of F ′.
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Lemma 1.2. Let F : R → R be uniformly Lipschitzian, with F (0) = 0. Let M be an
N -function, then the mapping TF : W 1LM (Ω) → W 1LM (Ω) defined by TF (u) = F (u)
is sequentially continuous with respect to the weak* topology σ(

∏
LM ,

∏
EM ).

We give now the following lemma which concerns operators of the Nemytskii type
in Orlicz spaces (see [7]).

Lemma 1.3. Let Ω be an open subset of R
N with finite measure. Let M , P , and Q

be N -functions such that Q 	 P , and let f : Ω × R → R be a Carathéodory function
such that, for a.e. x ∈ Ω and all s ∈ R,

|f(x, s)| ≤ c(x) + k1P
−1M(k2|s|),

where k1, k2 are real constants and c(x) ∈ EQ(Ω). Then the Nemytskii operator
Nf defined by Nf (u)(x) = f(x, u(x)) is strongly continuous from P(EM (Ω), 1

k2
) =

{u ∈ LM (Ω) : d(u, EM (Ω)) < 1
k2
} into EQ(Ω).

Below, we will use the following technical Lemmas.

Lemma 1.4 ([7]). Let (fn), f, γ ∈ L1(Ω) such that

(i) fn ≥ γ a.e. in Ω,

(ii) fn → f a.e. in Ω,

(iii)
∫
Ω

fn(x) dx → ∫
Ω

f(x) dx.

Then fn → f strongly in L1(Ω).

We now turn to the approximation by functions which are smooth up to the
boundary, assuming some regularity on Ω. Recall that Ω is said to have the (interior)
segment property if there exist an open covering {Ui} of Ω and corresponding vectors
{yi ∈ R

N} such that, for x ∈ Ω ∩ Ui and 0 < t < 1, it is x + tyi ∈ Ω.

Lemma 1.5 ([12]). Let Ω have the segment property. Then for each ν ∈ W 1
0 LM (Ω),

there exists a sequence νn ∈ D(Ω) such that νn converges to ν for the modular con-
vergence in W 1

0 LM (Ω). Furthermore, if ν ∈ W 1
0 LM (Ω) ∩ L∞(Ω) then

‖νn‖ ≤ (N + 1)‖ν‖L∞(Ω).

2. Main result

Let Ω be a bounded open subset of R
N satisfying the segment property. Let A : D(A) ⊂

W 1
0 LM (Ω) → W−1LM (Ω) be a mapping given by A(u) = −div a(x, u,∇u), where a

is a function satisfying the following conditions:

(A1) a(x, s, ξ) : Ω × R × R
N → R

N is a Carathéodory function.
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(A2) There exist two N -functions M and P with P 	 M , a function c(x) in EM (Ω),
and positive constants k1, k2, k3, k4 such that

|a(x, s, ζ)| ≤ c(x) + k1P
−1

M(k2|s|) + k3M
−1

M(k4|ζ|),
for a.e. x in Ω and for all s ∈ R, ζ ∈ R

N .

(A3) For a.e. x in Ω, s ∈ R and ζ, ζ ′ in R
N , with ζ ′ �= ζ

[a(x, s, ζ) − a(x, s, ζ ′)](ζ − ζ ′) > 0.

(A4) For a.e. x in Ω, s ∈ R and all ζ ∈ R
N ,

a(x, s, ζ)ζ ≥ αM
( |ζ|

λ

)
where α ∈ R

∗
+.

Consider the nonlinear elliptic problem{
−div a(x, u,∇u) − div φ(u) + g(x, u) = f in Ω,

u = 0 on ∂Ω,
(4)

where
f ∈ W−1EM (Ω), (5)

and φ = (φ1, . . . , φN ) satisfy
φ ∈ (C0(R))N . (6)

Let g(x, t) be a Carathéodory function such that for a.e. x ∈ Ω and all s ∈ R

g(x, s) s ≥ 0, (7)

sup
|t|≤n

|g(·, s)| = hn(·) ∈ L1(Ω) ∀n. (8)

Note that no growth hypothesis is assumed on the function φ, which implies that for a
solution u ∈ W 1

0 LM (Ω) the term div φ(u) may be meaningless, even as a distribution.
As in [8] we define the following notion of renormalized solution, which gives a meaning
to a possible solution of (4).

Definition 2.1. Assume that (A1)–(A4), (5)–(8) hold true. A function u is a renor-
malized solution of the problem (4) if⎧⎪⎨

⎪⎩
u ∈ W 1

0 LM (Ω), g(x, u) ∈ L1(Ω), u g(x, u) ∈ L1(Ω)
−div a(x, u,∇u) h(u) − div(φ(u)h(u)) + φ(u)h′(u)∇u

+g(x, u)h(u) = fh(u) in D′(Ω), ∀h ∈ C1
c (RN ).

(9)
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The weaker problem (9) is obtained by using the test function h(u) where
h ∈ C1

c (R) in (4).

Remark 2.2. Let us note that in (9) every term is meaningful in the distributional
sense.

It’s easy to see that for ϕ ∈ D(Ω) and u ∈ W 1
0 LM (Ω) we have ϕh(u) ∈ W 1

0 LM (Ω)
(one can apply Lemma 1.2) and

〈fh(u), ϕ〉D′(Ω),D(Ω) = 〈f, ϕh(u)〉W−1EM (Ω),W 1
0 LM (Ω).

We have also [−div a(x, u,∇u)] ∈ W−1LM (Ω) and

〈−div a(x, u,∇u)h(u), ϕ〉D′(Ω),D(Ω)

= 〈−div a(x, u,∇u), ϕh(u)〉W−1LM (Ω),W 1
0 LM (Ω).

Finally since φh and φh′ ∈ (C0
c (R))N we have φ(u)h(u) and φ(u)h′(u) ∈ (L∞(Ω))N ,

for any measurable function u and then

div(φ(u)h(u)) ∈ W−1,∞(Ω), φ(u)h′(u)∇u ∈ LM (Ω).

Theorem 2.3. Under assumptions (A1)–(A4), (5)–(8), there exists a renormalized
solution u (in the sense of definition 2.1) of problem (4).

3. Proof of the main result

We state and prove the following lemmas that will be used later

3.1. Some lemmas

Lemma 3.1. Assume that (A1)–(A4) are satisfied, and let (zn) be a sequence in
W 1

0 LM (Ω) such that

(i) zn ⇀ z in W 1
0 LM (Ω) for σ(ΠLM (Ω), ΠEM (Ω));

(ii) (a(x, zn,∇zn))n is bounded in (LM (Ω))N ;

(iii)
∫
Ω
[a(x, zn,∇zn) − a(x, zn,∇zχs)][∇zn − ∇zχs] dx → 0 as n, s → +∞ (where

χs is the characteristic function of Ωs = {x ∈ Ω, |∇z| ≤ s }).
Then

M
( |∇zn|

λ

)
−→ M

( |∇z|
λ

)
in L1(Ω).

Remark 3.2. The condition (ii) is not necessary if the N -function M satisfies the
Δ2-condition.
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Proof of Remark 3.2. The condition (i) implies that the sequence (zn)n is bounded
in W 1

0 LM (Ω), hence there exists two positive constants λ, C such that∫
Ω

M(λ|∇zn|) dx ≤ C. (10)

On the other hand, let Q be an N -function such that M 	 Q and the continuous
embedding W 1

0 LM (Ω) ⊂ EQ(Ω) hold (see [11]). Let ε > 0. Then there exists Cε > 0,
as in [7], such that

|a(x, s, ζ)| ≤ c(x) + Cε + k1M
−1

Q(ε|s|) + k3M
−1

M(ε|ζ|) (11)

for a.e. x ∈ Ω and for all (s, ζ) ∈ R × R
N . From (10) and (11) we deduce that

(a(x, zn,∇zn))n is bounded in (LM (Ω))N .

Proof of Lemma 3.1. Let s > 0. Let Ωs = {x ∈ Ω, |∇u(x)| ≤ s } and denote by χs

the characteristic function of Ωs. Fix r > 0 and let s > r. We have

0 ≤
∫

Ωr

[a(x, zn,∇zn) − a(x, zn,∇z)][∇zn −∇z] dx

≤
∫

Ωs

[a(x, zn,∇zn) − a(x, zn,∇z)][∇zn −∇z] dx

=
∫

Ωs

[a(x, zn,∇zn) − a(x, zn,∇zχs)][∇zn −∇zχs] dx

≤
∫

Ω

[a(x, zn,∇zn) − a(x, zn,∇zχs)][∇zn −∇zχs] dx,

which with (iii) implies

lim
n→∞

∫
Ωr

[a(x, zn,∇zn) − a(x, zn,∇z)][∇zn −∇z] dx = 0.

So, as in [11]
∇zn −→ ∇z a.e. in Ω. (12)

On the other hand, we have∫
Ω

a(x, zn,∇zn)∇zn dx =
∫

Ω

[a(x, zn,∇zn) − a(x, zn,∇zχs)]

× [∇zn −∇zχs] dx

+
∫

Ω

a(x, zn,∇zχs)(∇zn −∇zχs) dx

+
∫

Ω

a(x, zn,∇zn)∇zχs dx. (13)
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Since (a(x, zn,∇zn))n is bounded in (LM (Ω))N , and using (12), we obtain

a(x, zn,∇zn) −⇀ a(x, z,∇z) weakly in (LM (Ω))N for σ(ΠLM , ΠEM ),

which implies that∫
Ω

a(x, zn,∇zn)∇zχs dx −→
∫

Ω

a(x, z,∇z)∇zχs dx (14)

as n → ∞. Letting also s → ∞, we obtain∫
Ω

a(x, z,∇z)∇zχs dx −→
∫

Ω

a(x, z,∇z)∇z dx. (15)

On the other hand, it is easy to see that the second term of the right hand side of (13)
tends to 0 as n → ∞. Consequently, from (iii), (14), and (15) we have

lim
n→∞

∫
Ω

a(x, zn,∇zn)∇zn dx =
∫

Ω

a(x, z,∇z)∇z dx.

Using (A4), we obtain, by lemma 1.4 and Vitali’s Theorem,

M
( |∇zn|

λ

)
→ M

( |∇z|
λ

)
in L1(Ω).

The following lemma will be used in the proof of the propositions 3.4 and 3.5.

Lemma 3.3. Let Ω be an open bounded subset of R
N satisfying the segment property.

If u ∈ W 1
0 LM (Ω), then ∫

Ω

div u dx = 0.

For the proof we refer to [4].

3.2. The approximate problem

Let us define, for each k > 0, the truncation

Tk(s) =

{
s if |s| ≤ k,

k s
|s| if |s| > k,

and, for each n ∈ N
∗, the approximations

φn(s) = φ(Tn(s)), gn(x, t) = Tn(g(x, t)).

Consider the nonlinear elliptic problem{
un ∈ W 1

0 LM (Ω)
−div a(x, un,∇un) − div φn(un) + gn(x, un) = f in D′(Ω),

(16)
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which is equivalent to{
un ∈ W 1

0 LM (Ω)
−div ã(x, un,∇un) + gn(x, un) = f in D′(Ω),

(17)

where ã(x, t, ξ) = a(x, t, ξ) + φn(t).
Since |Tn(t)| ≤ n and φ is continuous, we have |φn(t)| = |φ(Tn(t))| ≤ cn. From

Gossez and Mustonen [13, Proposition 1 and Remark 2], the problem (16), and its
equivalent (17), have at least one solution un.

3.3. Some intermediate results

Proposition 3.4. Assume that (A1)–(A4), (5)–(8) hold true, and let un be a solution
of the approximate problem (16). Then we have the following properties:

(i) (un)n is bounded in W 1
0 LM (Ω), and there exists a function u in W 1

0 LM (Ω) such
that

un −⇀ u weakly in W 1
0 LM (Ω) for σ(ΠLM , ΠEM ),

un −→ u strongly in EM (Ω) and a.e. in Ω.

(ii) (a(x, un,∇un))n is bounded in LM (Ω).

(iii) gn(x, un) → g(x, u) strongly in L1(Ω).

Proof. We divide the proof in several steps.
Step 1: Boundedness of (un)n in W 1

0 LM (Ω). Taking un as test function in (16),
we obtain∫

Ω

a(x, un,∇un)∇un dx +
∫

Ω

φ(Tn(un))∇un dx +
∫

Ω

gn(x, un)un dx ≤ 〈f, un〉.

Define φ̃n(t) =
∫ t

0
φn(τ) dτ . We have φ̃n(un) ∈ (W 1

0 LM (Ω))N . (We can apply
Lemma 1.1 since each component of φ̃n is uniformly Lipschitzian and φ̃n(0) = 0.)
We obtain ∫

Ω

φn(un)∇un dx =
∫

Ω

div(φ̃n(un)) dx = 0.

(See Lemma 3.3.) By (7), we get∫
Ω

a(x, un,∇un)∇un dx ≤ 〈f, un〉. (18)∫
Ω

gn(x, un)un dx ≤ 〈f, un〉. (19)
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On the other hand, f can be written as f = f0 − div F where f0 ∈ EM (Ω),
F ∈ (EM (Ω))N . Using [11, Lemma 5.7] and Young’s inequality we deduce∫

Ω

f0un dx ≤ C1 +
α

4

∫
Ω

M(|∇un|) dx,∫
Ω

F∇un dx ≤ C2 +
α

4

∫
Ω

M(|∇un|) dx.

(20)

Combining (18) and (20), we get∫
Ω

a(x, un,∇un)∇un dx ≤ α

2

∫
Ω

M(|∇un|) dx + C3. (21)

This implies, by using (A4), that∫
Ω

M(|∇un|) dx ≤ C4, (22)

which gives

un −⇀ u weakly in W 1
0 LM (Ω) for σ(ΠLM , ΠEM ).

Using the compact embedding W 1
0 LM (Ω) ↪→ EM (Ω), we get

un −→ u strongly in EM (Ω) and a.e. in Ω.

Step 2: Boundedness of (a(x, un,∇un))n in (LM (Ω))N . Let w ∈ (EM (Ω))N be
arbitrary. By (A3), we have

(a(x, un,∇un) − a(x, un, w))(∇un − w) > 0,

which implies that∫
Ω

a(x, un,∇un)w dx

≤
∫

Ω

a(x, un,∇un)∇un dx +
∫

Ω

a(x, un, w)(w −∇un) dx. (23)

Combining (21) and (22), we get∫
Ω

a(x, un,∇un)∇un dx ≤ C5,

with C5 a positive constant.
On the other hand, for λ large and using (A2), we have∫

Ω

M
(a(x, un, w)

λ

)
dx ≤

∫
Ω

M
(c(x)

λ

)
+

∫
Ω

k3

λ
M(k4|w|) + C7 ≤ C8.
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Thus, |a(x, un, w)| is bounded in LM (Ω). This condition, additionally to (22), implies
that the second term of the right hand side of (23) is bounded. Consequently, we
obtain ∫

Ω

a(x, un,∇un)w dx ≤ C9,

with C9 a positive constant. Hence, thanks to the Banach-Steinhaus theorem, the
sequence (a(x, un,∇un))n is bounded in (LM (Ω))N .

Step 3: Strongly convergence of the nonlinearity. Since gn(x, un) → g(x, u) a.e.
in Ω, by the sign condition (7) and Fatou’s Lemma we obtain from (19) and (22) that

g(x, u) u ∈ L1(Ω),

and by Vitali’s theorem we have

gn(x, un) −→ g(x, u) strongly in L1(Ω),

which completes the proof.

Proposition 3.5. Assume that (A1)–(A4), (5)–(8) hold true, and let un be a solution
of the approximate problem (16). Then, we have (for a subsequence noted again un)

∇un −→ ∇u a.e. in Ω.

Proof. Again we divide the proof in several steps.

Step 1. lim sup
n→+∞

∫
{|un|>h}

a(x, un,∇un)∇un dx ≤ 〈f, u − Th(u)〉 where h > 0.

The idea is to use in (16) the test function un − Th(un) (which is in W 1
0 LM (Ω)).

Consider

θ(t) = φn(t) χ{s∈R,|s|≥h}(t),

θ̃(t) =
∫ t

0

θ(τ) dτ,

hence θ̃(un) ∈ (W 1
0 LM (Ω))N (by Lemma 1.1). We obtain, by Lemma 3.3,∫

Ω

φn(un)∇(un − Th(un)) dx =
∫

Ω

φn(un)χ{s∈R,|s|≥h}(un)∇un dx

=
∫

Ω

θ(un)∇un dx =
∫

Ω

div(θ̃(un)) dx = 0.

Using the sign condition (7) we have gn(x, un)(un − Th(un)) ≥ 0 a.e. in Ω. Then, for
any fixed h > 0, we have∫

{|un|>h}
a(x, un,∇un)∇un dx ≤ 〈f, un − Th(un)〉.
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Since un − Th(un) ⇀ u − Th(u) weakly in W 1
0 LM (Ω) and f ∈ W−1EM (Ω), we have

lim sup
n→+∞

∫
{|un|>h}

a(x, un,∇un)∇un dx ≤ 〈f, u − Th(u)〉. (24)

Step 2. We shall prove that ∇un → ∇u a.e. in Ω.
By Lemma 1.5 there exists a sequence vj ∈ D(Ω) which converges to u for the

modular convergence in W 1
0 LM (Ω). Let s, j > 0. Let Ωj

s = {x ∈ Ω, |∇vj(x)| ≤ s} and
denote by χj

s the characteristic function of Ωj
s. We will note by ε(n, j, h) any quantity

such that
lim

h→+∞
lim

j→+∞
lim

n→+∞ ε(n, j, h) = 0.

If the quantity we consider does not depend on one parameter among n, j, and h, we
will omit the dependence on the corresponding parameter: as an example, ε(n, h) is
any quantity such that

lim
h→+∞

lim
n→+∞ ε(n, h) = 0.

Finally, we will note (for example) by εh(n, j) a quantity that depends on n, j, h, and
is such that

lim
j→+∞

lim
n→+∞ εh(n, j) = 0

for any fixed value of h.
We have∫
Ω

[a(x, un,∇un) − a(x, un,∇uχs)][∇un −∇uχs] dx

=
∫

Ω

[a(x, un,∇un) − a(x, un,∇vjχ
j
s)][∇un −∇vjχ

j
s] dx

+
∫

Ω

a(x, un,∇vjχ
j
s)(∇un −∇vjχ

j
s) dx

−
∫

Ω

a(x, un,∇uχs)(∇un −∇uχs) dx

+
∫

Ω

a(x, un,∇un)(∇vjχ
j
s −∇uχs) dx.

We pass to the limit in n and j in the last three terms of the right hand side of the
last equality, we get∫

Ω

a(x, un,∇vjχ
j
s)[∇un −∇vjχ

j
s] dx −

∫
Ω

a(x, un,∇uχs)[∇un −∇uχs] dx

= ε(n, j),

and ∫
Ω

a(x, un,∇un)[∇vjχ
j
s −∇uχs] dx = ε(n, j).
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This implies

∫
Ω

[a(x, un,∇un) − a(x, un,∇uχs)][∇un −∇uχs] dx

=
∫

Ω

[a(x, un,∇un) − a(x, un,∇vjχ
j
s)][∇un −∇vjχ

j
s] dx + ε(n, j). (25)

The term in the right hand side of the last equality can be estimated as follows:

∫
Ω

[a(x, un,∇un) − a(x, un,∇vjχ
j
s)][∇un −∇vjχ

j
s] dx

≤
∫
{|un−Th(vj)|≤2h}

[a(x, un,∇un) − a(x, un,∇vjχ
j
s)][∇un −∇vjχ

j
s] dx

+
∫
{|un|>h}

[a(x, un,∇un) − a(x, un,∇vjχ
j
s)][∇un −∇vjχ

j
s] dx. (26)

The first term of the right hand side of (26) can be written as

∫
{|un−Th(vj)|≤2h}

[a(x, un,∇un) − a(x, un,∇vjχ
j
s)][∇un −∇vjχ

j
s] dx

=
∫
{|un−Th(vj)|≤2h}

a(x, un,∇un)∇(un − Th(vj)) dx

+
∫
{|un−Th(vj)|≤2h}

a(x, un,∇un)(∇Th(vj) −∇vjχ
j
s) dx

−
∫
{|un−Th(vj)|≤2h}

a(x, un,∇vjχ
j
s)[∇un −∇vjχ

j
s] dx (27)

If we take T2h(un − Th(vj)) as test function in (16), we have for n large enough

∫
Ω

a(x, un,∇un)∇T2h(un − Th(vj)) dx +
∫

Ω

φ(un)∇T2h(un − Th(vj)) dx

+
∫

Ω

gn(x, un)T2h(un − Th(vj)) dx = 〈f, T2h(un − Th(vj))〉. (28)

Using (i) of proposition 3.4 and the modular convergence of vj , we have∫
Ω

φ(un)∇T2h(un − Th(vj)) dx =
∫

Ω

φ(u)∇T2h(u − Th(u)) dx + εh(n, j) = ε(n, j, h),∫
Ω

gn(x, un)T2h(un − Th(vj)) dx = ε(n, j, h),

〈f, T2h(un − Th(vj))〉 = ε(n, j, h),
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which, with (28), implies that∫
Ω

a(x, un,∇un)∇T2h(un − Th(vj)) dx = ε(n, j, h). (29)

Now, since (a(x, un,∇un))n is bounded in (LM (Ω))N , we have, for a subsequence

a(x, un,∇un) ⇀ ρ (30)

weakly in (LM (Ω))N for (σ(LM (Ω), EM (Ω)))N as n tends to infinity, that

∫
{|un−Th(vj)|≤2h}

a(x, un,∇un)(∇Th(vj) −∇vjχ
j
s) dx

−→
∫
{|u−Th(vj)|≤2h}

ρ(∇Th(vj) −∇vjχ
j
s) dx

as n tends to infinity.
Using now the modular convergence of vj , we get

∫
{|u−Th(vj)|≤2h}

ρ(∇Th(vj) −∇vjχ
j
s) dx

−→
∫
{|u−Th(u)|≤2h}

ρ(∇Th(u) −∇uχs) dx

as j tends to infinity. Letting also h to infinity, we can easy deduce∫
{|u−Th(u)|≤2h}

ρ(∇Th(u) −∇uχs) dx −→
∫

Ω\Ωs

ρ∇u dx.

Finally∫
{|un−Th(vj)|≤2h}

a(x, un,∇un)(∇Th(vj) −∇vjχ
j
s) dx

=
∫

Ω\Ωs

ρ∇u dx + ε(n, j, h). (31)

For the third term of the right hand side of (27), we have for a subsequence (use
Lemma 1.3)

a(x, un,∇vjχ
j
s)χ{|un−Th(vj)|≤2h} −→ a(x, u,∇vjχ

j
s)χ{|u−Th(vj)|≤2h}

strongly in (LM (Ω))N for σ(LM (Ω), EM (Ω))

as n tends to infinity, and

un −⇀ u weakly in W 1
0 LM (Ω) for σ(ΠLM (Ω), ΠEM (Ω))
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as n tends to infinity. Hence
∫
{|un−Th(vj)|≤2h}

a(x, un,∇vjχ
j
s)[∇un −∇vjχ

j
s] dx

−→
∫
{|u−Th(vj)|≤2h}

a(x, u,∇vjχ
j
s)[∇u −∇vjχ

j
s] dx.

Using now the modular convergence of (vj), we get

∫
{|u−Th(vj)|≤2h}

a(x, u,∇vjχ
j
s)[∇u −∇vjχ

j
s] dx

−→
∫
{|u−Th(u)|≤2h}

a(x, u,∇uχs)[∇u −∇uχs] dx = 0

as j tends to infinity.
Finally,∫

{|un−Th(vj)|≤2h}
a(x, un,∇vjχ

j
s)[∇un −∇vjχ

j
s] dx = ε(n, j, h). (32)

Combining (27), (29), (31), and (32), we deduce

∫
{|un−Th(vj)|≤2h}

[a(x, un,∇un) − a(x, un,∇vjχ
j
s)][∇un −∇vjχ

j
s] dx

=
∫

Ω\Ωs

ρ∇u dx + ε(n, j, h). (33)

The second term of the right hand side of the (26) can be written as

∫
{|un|>h}

[a(x, un,∇un) − a(x, un,∇vjχ
j
s)][∇un −∇vjχ

j
s] dx

=
∫
{|un|>h}

a(x, un,∇un)∇un dx

−
∫
{|un|>h}

a(x, un,∇un)∇vjχ
j
s dx

−
∫
{|un|>h}

a(x, un,∇vjχ
j
s)][∇un −∇vjχ

j
s] dx.

Letting h to infinity in (24), we get∫
{|un|>h}

a(x, un,∇un)∇un dx ≤ ε(n, h),
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and, reasoning as above, it is easy to see that∫
{|un|>h}

a(x, un,∇un)∇vjχ
j
s dx = ε(n, j, h),∫

{|un|>h}
a(x, un,∇vjχ

j
s)][∇un −∇vjχ

j
s] dx = ε(n, j, h).

Finally∫
{|un|>h}

[a(x, un,∇un) − a(x, un,∇vjχ
j
s)][∇un −∇vjχ

j
s] dx = ε(n, j, h). (34)

Combining (33) and (34), we deduce from (26) that∫
Ω

[a(x, un,∇un) − a(x, un,∇vjχ
j
s)][∇un −∇vjχ

j
s] dx

≤
∫

Ω\Ωs

ρ∇u dx + ε(n, j, h). (35)

Letting s to infinity, we get by using (25) and (35)∫
Ω

[a(x, un,∇un) − a(x, un,∇uχs)][∇un −∇uχs] dx −→ 0 (36)

as n, s → ∞. Using Lemma 3.1 we can conclude the result of Proposition 3.5.

Proof of Theorem 2.3. Step 1. We shall prove that

a(x, un,∇un)∇un −→ a(x, u,∇u)∇u strongly in L1(Ω). (37)

We have∫
Ω

a(x, un,∇un)∇un dx =
∫

Ω

[a(x, un,∇un) − a(x, un,∇uχs)][∇un −∇uχs] dx

+
∫

Ω

a(x, un,∇un)∇uχs dx

+
∫

Ω

a(x, un,∇uχs)[∇un −∇uχs] dx.

By (36) the first term of the last equality tends to 0. By the Proposition 3.5 and (30),
we have ∫

Ω

a(x, un,∇un)∇uχs dx −→
∫

Ω

a(x, u,∇u)∇uχs dx

as n tends to infinity. Letting also s to infinity, we get∫
Ω

a(x, un,∇un)∇uχs dx −→
∫

Ω

a(x, u,∇u)∇u dx.
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The third term of the last equality tends to 0 as n and s → ∞. We deduce∫
Ω

a(x, un,∇un)∇un dx −→
∫

Ω

a(x, u,∇u)∇u dx. (38)

Using Lemma 1.4 we get the result.
Step 2. Passing to the limit. Using in (16) the test function h(un)ϕ with

h ∈ C1
c (R) and ϕ ∈ D(Ω), we obtain∫

Ω

a(x, un,∇un)∇unh′(un)ϕ dx +
∫

Ω

a(x, un,∇un)∇ϕh(un) dx

+
∫

Ω

φn(un)∇(h(un)ϕ) dx +
∫

Ω

gn(x, un)h(un)ϕ dx = 〈f, h(un)ϕ〉. (39)

We shall pass to the limit in each term of last equality.
Since h and h′ have compact support on R, there exist η > 0 such that supph and

supph′ ∈ [−η, η]. We have for n large enough

φn(t)h(t) = φ(Tn(t))h(t) = φ(Tη(t))h(t),
φn(t)h′(t) = φ(Tn(t))h′(t) = φ(Tη(t))h′(t)

and the functions φh and φh′ belong to (C0(R) ∩ L∞(R))N .
First we have that h(un)ϕ is bounded in W 1

0 LM (Ω). Indeed, since un is bounded in
W 1

0 LM (Ω) there exists two constants positive c, λ > 0 such that
∫
Ω

M
( |∇un|

λ

)
dx ≤ c.

Let c1 be a constant positive such that ‖h(un)|∇ϕ|‖∞ ≤ c1 and ‖h′(un)ϕ‖∞ ≤ c1.
For μ large enough, we have∫

Ω

M
(h(un)∇ϕ + h′(un)ϕ|∇un|

μ

)
dx

≤
∫

Ω

M
(c1 + c2|∇un|/λ

μ

)
dx with c2 = c1λ

≤ c3 +
c2

μ

∫
Ω

M
( |∇un|

λ

)
dx ≤ c4.

This implies that

h(un)ϕ −⇀ h(u)ϕ weakly in W 1
0 LM (Ω) for σ(

∏
LM ,

∏
EM ). (40)

By the convergence of (40), and since

φ(Tη(un)) −→ φ(Tη(u)) strongly in (EM )N ,

the third term of (39) tends to
∫
Ω

φ(Tη(u))∇(h(u)ϕ) dx, and the right hand side
of (39) tends to 〈f, h(u)ϕ〉. For the first term of (39), we remark that

|a(x, un,∇un)∇unh′(un)ϕ| ≤ c1a(x, un,∇un)∇un;
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consequently, Vitali’s theorem and (37) give that∫
Ω

a(x, un,∇un)∇unh′(un)ϕ dx −→
∫

Ω

a(x, u,∇u)∇uh′(u)ϕ dx.

For the second term of (39), we have

h(un)∇ϕ −→ h(u)∇ϕ strongly in (EM (Ω))N ,

and

a(x, un,∇un) ⇀ a(x, u,∇u) weakly in (LM (Ω))N for σ(
∏

LM ,
∏

EM ),

then ∫
Ω

a(x, un,∇un)∇ϕh(un) dx −→
∫

Ω

a(x, u,∇u)∇ϕh(u) dx.

The fourth term of (39) tends to
∫
Ω

g(x, u)h(u)ϕ dx.
Using the limite proved above we can easily pass to the limit in each term of (39)

and obtain∫
Ω

a(x, u,∇u)[h′(u)ϕ∇u + h(u)∇ϕ] dx

+
∫

Ω

φ(u)h′(u)ϕ∇u dx +
∫

Ω

φ(u)h(u)∇ϕ dx +
∫

Ω

g(x, u)h(u)ϕ dx

= 〈f, h(u)ϕ〉 ∀h ∈ C1
c (R), ∀ϕ ∈ D(Ω),

which proves Theorem 2.3.
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