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ABSTRACT

A tempered Radon measure is a o-finite Radon measure in R™ which generates
a tempered distribution. We prove the following assertions. A Radon measure
u is tempered if, and only if, there is a real number 3 such that (1 + \x|2)g,u is
finite. A Radon measure is finite if, and only if, it belongs to the positive cone

+
B (R™) of BYoo(R™). Then p(R™) ~ ||p | BYs (R™)|| (equivalent norms).
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Introduction

A substantial part of fractal geometry and fractal analysis deals with Radon measures
in R™ (also called fractal measures) with compact support. One may consult [5]
and the references given there. In the present paper we clarify the relation between
arbitrary o-finite Radon measure in R, tempered distributions and weighted Besov
spaces. It comes out that a o-finite Radon measure p in R™ can be identified with a
tempered distribution p € S’(R™) if and only if there is a real number 3 such that

ua(R™) < 0o, where pug=(1+ |x|2)§u.

Radon measures p with p(R™) < oo are called finite. These finite Radon mea-

+
sures can be identified with the positive cone BY__ (R™) of the distinguished Besov
space BY__(R™) and
e | B (R ~ u(R™)
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(equivalent norms).

This paper is organised as follows. In section 1 we collect the definitions and
preliminaries. We introduce the well-known weighted Besov spaces B, (R", (z)®)
and prove that for fixed p, ¢ with 0 < p,q < c©

SR™) = () By, (R, (2)%)
a,s€ER
and

S'(R") = [ Bp,(R", (2)*).

a,s€R

Although known to specialists we could not find an explicit reference. In section 2 we
prove in the Theorems 2.1 and 2.2 the above indicated main results.

1. Definitions and preliminaries

Let N be the collection of all natural numbers and Ny = NU{0}. Let R" be Euclidean
n-space, where n € N. Put R = R!, whereas C is the complex plane. Let S(R") be
the Schwartz space of all complex-valued, rapidly decreasing, infinitely differentiable
functions on R™. By S’(R™) we denote its topological dual, the space of all tempered
distributions on R™. L,(R™) with 0 < p < oo, is the standard quasi-Banach space
with respect to Lebesgue measure, quasi-normed by

1

If | Ly = (/|f<x>|pdx)p, 0<p<oo
J

with the standard modification if p = co.
If ¢ € S(R™) then

PO = Fo(©) = 2m)7? [pla)e "t da, gemr,
Rn
denotes the Fourier transform of ¢. The inverse Fourier transform is given by

() = Flp(x) = (2n) / PO dE, o e R,

One extends F and F~! in the usual way from S to S’. For f € S'(R"),

Ff(e) = f(F¢), ¢eSR").
Let po € S(R™) with

3
po(z) =1, [z[<1 and  @o(z) =0, |z] =3, (1)
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and let
pr() = po(27%2) —po(27"1w), 2z ER", keEN (2)
Then, since
1= Zcpj(x) for all = e R", (3)
§=0

the ¢; form a dyadic resolution of unity in R™. (@5 f) is an entire analytic function
on R™ for any f € S/(R™). In particular, (¢ f) () makes sense pointwise.

Definition 1.1. Let ¢ = {apj};?’;o be the dyadic resolution of unity according to
(1)-3), seR,0<p<o0,0<q<o00,and

1f 1 BpgR™)l = (Z 279 (e f)" | Lp(R")|q>q
j=0

(with the usual modification if ¢ = 00). Then the Besov space B, (R") consists of all
f € S'(R") such that || f | By, (R")|, < oc.

We denote by L,(R", (z)®), where
(@) = (1+[2*)%,
the weighted L,-space quasi-normed by
1 1 Lp(R™, (@) )| = [|C)* f [ Lp(R™)]].

Definition 1.2. Let ¢ = {cpj}J?‘;O be the dyadic resolution of unity according to
(1)-(3), s € R,0 < p < 00,0 < g <oo. Then the weighted Besov space B, (R", (x)<)
is a collection of all f € S’(R™) such that

Q=

£ [ BpgR" (z)) |l = (Z 279 (r f)" | Lp(R™, <af>°‘)">
j=0

(with the usual modification if ¢ = co) is finite.

Remark 1.3. If a = 0 then we have the space B, (R") as introduced in Definition 1.1.
It is also known from [1, ch. 4.2.2] that the operator f — (x)®f is an isomorphic
mapping from By (R", (z)®) onto By (R™). In particular,

1Y Bpg R ~ (1 | Bpg(R™, {z))][-

Next we review some special properties of weighted Besov spaces.
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Proposition 1.4. For fired 0 < p,q < oo

[ Bpg(®" (2)*) (4)

a,s€R

U B R, (@)%).

a,seR

and

Proof. Step 1. The inclusion

() Bpg(R", (2)%)

. a,sER
is clear.

To prove that any f € (), e Bpg(R", (2)*) belongs to S(R"), it is sufficient to
show that for any fixed N € N there are a(N) € R and s(N) € R such that

sup sup (z)*V D f(x)| < c|| f | By, (R, (x)*)].
|B|<N z€Rn

For any multiindex § there are polynomials P$ , deg PWB < 2N such that
(@) DO f(x) =Y DV((PIf)(@)].
v<B

Hence

sup sup ()*V[DP f(z)| = sup sup
|BI<N zeR™ |BI<N zeR™

Z DY[(PPf)(x)]

< sup Y sup |DY[(P]f) ()]

< sup Z IPf | CY (R ()

<N
IBISN | <N

Due to the embedding theorems [3, ch. 2.7.1],

N4+ +5

IPZF 1Y@ < e|[P2S | By 7 (RY)
Py N+ +e
= i @21 | BT ()
‘ ()2
Py o . N+3+e
for any e > 0. sy is a pointwise multiplier for By, (R™) [3, ch. 2.8.2]. Therefore
P’Yﬁ 2Nf N+ +E Rn)
()2
Py o N+2Z+e
b N+2te(mn )2N n
§c<x>2N'C o)) @ | B e @
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According to Remark 1.3

(@225 | Boa T ®|| ~ |7 | Boa TR, ()2 (8)
Combining (5)-(8), one gets
sup sup (a0 (2)] < cgNH@VNf | Bo R
<d|f | B TR @) 9)

and it follows (4).
Step 2. Let 1 <p<oo,1<q<ooandletp and ¢’ be defined in the standard
way by

1 1
- + */ - 17 - + */ — 1
p P q 9
The inclusion
U B ®" (2)*) c S'(R")
a,seER
is evident.
As far as the opposite inclusion is concerned, we recall that f € S'(R™) if and only
if there are [ € N and m € N such that

1f(p)] < ¢ sup sup (z)!|D%p(z)],
|a|<m x€R™

for all ¢ € S(R™). By (9),

. m+L4e oy
sup sup (@)D (@)] < e | Byt ® @)
a|<m zeR"™

According to our choice of p and g, it follows that 1 < p’ < co and 1 < ¢’ < oo. Thus,
by [3, ch. 2.11.2],

m+24e oo ! —(m+3+e) on —
e (B T ®L @) = By (R, (z)7").

This means
S R™) C | By (R, (x)®).
a,seR
Step 8. Let 0 < p < 1,1 < g < oo. By the arguments above, for f € S'(R")
there are « € R and s € R such that

[ € By(R™, (2)%).
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‘We want to show that

S n o— n
fEqu(R ,<.T> PY)) v > ;
Indeed,

17 | B (B", (2)o=)| = (Zgnq” i)
(Z2qu sup [(2)[(0; f) ( )|]q(/<x>’yp dx)p)‘ll

IGR"
RTI,

I

< dlf | B3y (R™, (@)
Step 4. When 0 < ¢ < 1, first we may find @ € R and s € R such that
f € B;q* (an <:E>04>7
q* > 1, and then use the fact that

By (R™, (2)*) C By *(R™, (x)?), €>0. O

pg*

Next we recall some notation. A measure p is called o-finite in R™ if for any
R >0,
p{x:|z] < R}) < oc.

A measure p is a Radon measure if all Borel sets are p measurable and
(i) w(K) < oo for compact sets K C R™,
(ii) u(V) =sup{ u(K): K C V is compact} for open sets V C R",
(iii) p(A) =inf{w(V): ACV, Vis open} for A C R™.

Let i be a positive Radon measure in R™. Let T},
1), @H/ p(dz), ¢ € SR"),

be the linear functional generated by .
Definition 1.5. A positive Radon measure p is said to be tempered if T, € S"(R™).
Proposition 1.6. Let u' and p? be two tempered Radon measures. Then

Ty =T,z in S'(R™) if, and only if, p' = p.

Proof. The Proposition is valid by the arguments in [5, p. 80]. O
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This justifies the identification of ;1 and correspondent tempered distribution T,
and we may write p € S'(R™).
Definition 1.7. f € S’(R") is called a positive distribution if
fle) >0 for any ¢ € S(R") with ¢ > 0.

If f € LP°°(R™) then f > 0 means f(z) > 0 almost everywhere.

Remark 1.8. If f is a positive distribution, then f € Cy(R™)" and it follows from the
Radon-Riesz theorem that there is a tempered Radon measure p such that

flp) = /w(m) p(dz)
[2, pp. 61, 62, 71, 75].

2. Main assertions

Our next result refers to tempered measures.
Theorem 2.1.

(i) A Radon measure p in R™ is tempered if, and only if, there is a real number [
such that (x)%p is finite.

(ii) Let p be a tempered Radon measure in R™. Let j € N,
Aj={x: 21— < || < 2J+1 b, o Ag={x:|z] <2}
Then for some ¢ >0, a > 0,

w(Ay) < 2% for all k € Ny.

Proof. Step 1. First we prove part (ii). Suppose that the assertion does not hold.
Then for ¢ =1 and [ € N there is k; € Ny such that

p(Ag,) > 281, (10)

As soon as it is found one k; with (10), it follows that there are infinitely many k],
m € N, that satisfy (10).
With 7 € N,

A= {@: Y2 <|u| <22}, Ay ={a:|e] <4}

For | = 1 take any of k{", let it be k;. For [ = 2 choose ks > k; in such a way
that A} and A} have an empty intersection. For arbitrary [ € N take

kp> ki1 and A, NAp =0.

Revista Matemdtica Complutense
559 2008: vol. 20, num. 2, pags. 553-564



Maryia Kabanava Tempered Radon measures

Let g be a C* function on R" with
po@ =1 lo|<2 and (@) =0, |a >4

Let &k € N and
er(x) = po(27Fz) — po(27F32), 2 € R™
Then we have
supp ¢ C Aj;

and
(pk(l‘) =1, x¢€ A

Let

o0

p(z) =Y 27" (x).

1=1
For any fixed N € Ny

sup sup (1 + [o[*)V]D%¢(x)]
la <N aeR .
= sup sup (1+ |m|2)N‘D" (Z 2=k, (x)) ‘
la|<N z€R" Pt

<sup sup sup 272~ Il (1 4 o) (Do) (2R H ).
IEN |a|<N zeR™

The last inequality holds, since the functions ¢y, have disjoint supports. With the
change of variables
=2 kitly

one gets

sup sup (1 + |z|*)¥[ D ()|
|a|<N z€R™

<sup sup 27 lelkiglel2 DN sup (14 |21%)V| D%y (2)|

ZEN |Q‘SN CEGR"
< csup sup 27 F(HaIm2N) < o gyp i (72N)
lEN Ja|<N IEN

Since N is fixed and [ is tending to infinity, 2-%(=2N) is bounded. Thus ¢ € S(R").
According to the definition of tempered Radon measures

/ (x) p(dz) < +oo
RTL
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for any ¢ € S(R™), but

ZZIAkl =1

Rn

This means that our assertion (10) is false.
Step 2. We prove part (i). Since (z)Ppu is finite, it is tempered. Then pu is also
tempered. To prove the other direction we take 8 = —(« + 1). Then we get

(PR = [ (@)=Y p(de) < > (@)~ *Y u(d)
p / z kZ:O A/ z

R~

< CZZ_’“(“H) /,u(dx) < cZ2‘k(“+1)2k°‘ < 0. O
k=0 A k=0

+
In order to characterize finite Radon measures we define the positive cone B, (R")
as the collection of all positive f € B, (R").

Theorem 2.2. Let M(R™) be the collection of all finite Radon measures. Then
+
M(R") = B} (R")

and
p(R™) ~ [l | Bl RM),  p € M(R™). (11)

Proof. By the proof in [5, pp. 82, 83, Proposition 1.127],
i | BYoo R™)|] < p(R™) if  p€ M(R™).

In order to prove the converse inequality, one use the characterisation of Besov
spaces via local means. Let kg be a C'* non-negative function with

———

suppko C {z:]z| <1} and ko(0) #O0.

.
If f € B, (R"), then f = p is a tempered measure. By [5, p. 10, Theorem 1.10],
I B (R 2 ellbo( | Ly (&) = [ [ kole = ) du(y)
]R'n. R‘!L
Applying Fubini’s theorem, one gets

1| Bioo R™)]| > cp(R™). B
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Corollary 2.3. Let f € L1(R™) and f(x) > 0 almost everywhere. Then
1F T Ly @R™)]| ~ [If | Bioo (R™)]-

Proof. Let = fur, where py, is the Lebesgue measure. Then

H(R™) = / f(@) po(dz) = || | Ly (R™)]
J

and
11 BY oo R™)| = [1f | Bls (R™)]]-
From (11) follows the statement in the Corollary. O

The question arises whether Corollary 2.3 can be extended to all f € Ly (R™). We
have
Li(R") = Bi(R"), hence |f | Bl R")| < cllf | Li(R™)]|

for all f € Ly1(R™). But the converse is not true even for functions f € L;(R™) with
compact support in the unit ball.

Proposition 2.4. There are functions f; € Li(R"™) with
supp f; C{y: [yl <1}, jeN,
such that {f;} is a bounded set in BY)__(R™), but
15 | Ly(R™) || =00 4f j — oo

Proof. We may assume n = 1.
Let a € C*(R) be an odd function with

suppa C{z:|x] <2}, a(x)>0, >0

and
max |a(z)| = |a(-1)] = a(1l) = 1.

—2<w<2
If ¢ = max_s<,<2|d’(z)], then ¢ > 1. Define ay € C1(R) by
ao(z) = ¢ ta(x).

Then one has for any = € R,

lag(z)| < ¢t <1, |ap(z)| <1, and /ao(x) dr = 0.
R

Revista Matemdtica Complutense
2008: vol. 20, num. 2, pags. 553-564 562



Maryia Kabanava Tempered Radon measures

Define a function a,, v € N, by
a,(x) = 2"ap(2"x).

Then
suppa, C [-27V T 27T
and
la, (z)] < c oY, lal,(z)] < 22V /ay(x) dr = 0.
R

According to [5, p. 12, Definition 1.15], a¢ is an 1;-atom and a,, are (0,1); ;-atoms. It
follows from [4, Theorem 13.8] that > -, a,(z) converges in S’(R™) and represents

an element of BY__(R"). Let f g Yoo au.
Let

Then supp f; C [-1,1],

+oo +oo j
151 @)= [ f@d= [ e

0 0
+oo

:j/ao(x)dac—>oo, j— o0.
0

On the other hand one has by the above atomic argument
Ij | Bl ®)[ <1 for j €N, O

Corollary 2.5. Not any characteristic function of a measurable subset of R™ is a
pointwise multiplier in BY__(R™).

Proof. Let f € L1(R™) real. Let My be a set of points = such that f(z) > 0 and
M_={z:f(z) <0}. Then

1f 1 La®R™)I = lIxary f [ Ly@®R™)[ + Ixar_ f | La(R™)]],

where xas,, xa_ are characteristic functions of sets M, and M_ respectively. One
may apply Corollary 2.3 to the functions x s, f and xas_ f and get

1F 1 Ly < ellxar, f | Bioo R+ cllxar f | Bl (R
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If any characteristic function of a set in R™ would be a pointwise multiplier in BY__(R"),
then

Xz, f | Bloo R < ellf | BRI lIxar_f | Bl R < el f | B (R™)]],

hence
1F 1 Ly(R™)] < el f | Biso(R™)]-
Since for any function f € Li(R™) holds

I | BYoe R < cllf | L1(R™)]),

one gets
1F T LR~ |Lf | BYoo(R)|l,  for real f € Ly(R").

This can be also extended to complex functions f € L;(R™). But acoording to the
Proposition 2.4 this is not true. O]
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