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ABSTRACT

A tempered Radon measure is a σ-finite Radon measure in R
n which generates

a tempered distribution. We prove the following assertions. A Radon measure

μ is tempered if, and only if, there is a real number β such that (1 + |x|2) β
2 μ is

finite. A Radon measure is finite if, and only if, it belongs to the positive cone
+

B0
1∞(Rn) of B0

1∞(Rn). Then μ(Rn) ∼ ‖μ | B0
1∞(Rn)‖ (equivalent norms).
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Introduction

A substantial part of fractal geometry and fractal analysis deals with Radon measures
in R

n (also called fractal measures) with compact support. One may consult [5]
and the references given there. In the present paper we clarify the relation between
arbitrary σ-finite Radon measure in R

n, tempered distributions and weighted Besov
spaces. It comes out that a σ-finite Radon measure μ in R

n can be identified with a
tempered distribution μ ∈ S′(Rn) if and only if there is a real number β such that

μβ(Rn) < ∞, where μβ = (1 + |x|2) β
2 μ.

Radon measures μ with μ(Rn) < ∞ are called finite. These finite Radon mea-

sures can be identified with the positive cone
+

B0
1∞(Rn) of the distinguished Besov

space B0
1∞(Rn) and

‖μ | B0
1∞(Rn)‖ ∼ μ(Rn)
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(equivalent norms).
This paper is organised as follows. In section 1 we collect the definitions and

preliminaries. We introduce the well-known weighted Besov spaces Bs
pq(R

n, 〈x〉α)
and prove that for fixed p, q with 0 < p, q ≤ ∞

S(Rn) =
⋂

α,s∈R

Bs
pq(R

n, 〈x〉α)

and
S′(Rn) =

⋃
α,s∈R

Bs
pq(R

n, 〈x〉α).

Although known to specialists we could not find an explicit reference. In section 2 we
prove in the Theorems 2.1 and 2.2 the above indicated main results.

1. Definitions and preliminaries

Let N be the collection of all natural numbers and N0 = N∪{0}. Let R
n be Euclidean

n-space, where n ∈ N. Put R = R
1, whereas C is the complex plane. Let S(Rn) be

the Schwartz space of all complex-valued, rapidly decreasing, infinitely differentiable
functions on R

n. By S′(Rn) we denote its topological dual, the space of all tempered
distributions on R

n. Lp(Rn) with 0 < p ≤ ∞, is the standard quasi-Banach space
with respect to Lebesgue measure, quasi-normed by

‖f | Lp(Rn)‖ =
( ∫

Rn

|f(x)|p dx

) 1
p

, 0 < p < ∞

with the standard modification if p = ∞.
If ϕ ∈ S(Rn) then

ϕ̂(ξ) = Fϕ(ξ) = (2π)−
n
2

∫
Rn

ϕ(x)e−ixξ dx, ξ ∈ R
n,

denotes the Fourier transform of ϕ. The inverse Fourier transform is given by

ϕ̌(x) = F−1ϕ(x) = (2π)−
n
2

∫
Rn

ϕ(ξ)eixξ dξ, x ∈ R
n.

One extends F and F−1 in the usual way from S to S′. For f ∈ S′(Rn),

Ff(ϕ) = f(Fϕ), ϕ ∈ S(Rn).

Let ϕ0 ∈ S(Rn) with

ϕ0(x) = 1, |x| ≤ 1 and ϕ0(x) = 0, |x| ≥ 3
2
, (1)
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and let
ϕk(x) = ϕ0(2−kx) − ϕ0(2−k+1x), x ∈ R

n, k ∈ N. (2)

Then, since

1 =
∞∑

j=0

ϕj(x) for all x ∈ R
n, (3)

the ϕj form a dyadic resolution of unity in R
n. (ϕkf̂ )̌ is an entire analytic function

on R
n for any f ∈ S′(Rn). In particular, (ϕkf̂ )̌ (x) makes sense pointwise.

Definition 1.1. Let ϕ = {ϕj}∞j=0 be the dyadic resolution of unity according to
(1)–(3), s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞, and

‖f | Bs
pq(R

n)‖ϕ =
( ∞∑

j=0

2jsq‖(ϕkf̂ )̌ | Lp(Rn)‖q

) 1
q

(with the usual modification if q = ∞). Then the Besov space Bs
pq(R

n) consists of all
f ∈ S′(Rn) such that ‖f | Bs

pq(R
n)‖ϕ < ∞.

We denote by Lp(Rn, 〈x〉α), where

〈x〉α = (1 + |x|2)α
2 ,

the weighted Lp-space quasi-normed by

‖f | Lp(Rn, 〈x〉α)‖ = ‖〈·〉αf | Lp(Rn)‖.

Definition 1.2. Let ϕ = {ϕj}∞j=0 be the dyadic resolution of unity according to
(1)–(3), s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞. Then the weighted Besov space Bs

pq(R
n, 〈x〉α)

is a collection of all f ∈ S′(Rn) such that

‖f | Bs
pq(R

n, 〈x〉α)‖ϕ =
( ∞∑

j=0

2jsq‖(ϕkf̂ )̌ | Lp(Rn, 〈x〉α)‖q

) 1
q

(with the usual modification if q = ∞) is finite.

Remark 1.3. If α = 0 then we have the space Bs
pq(R

n) as introduced in Definition 1.1.
It is also known from [1, ch. 4.2.2] that the operator f �→ 〈x〉αf is an isomorphic
mapping from Bs

pq(R
n, 〈x〉α) onto Bs

pq(R
n). In particular,

‖〈·〉αf | Bs
pq(R

n)‖ ∼ ‖f | Bs
pq(R

n, 〈x〉α)‖.

Next we review some special properties of weighted Besov spaces.
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Proposition 1.4. For fixed 0 < p, q ≤ ∞
S(Rn) =

⋂
α,s∈R

Bs
pq(R

n, 〈x〉α) (4)

and
S′(Rn) =

⋃
α,s∈R

Bs
pq(R

n, 〈x〉α).

Proof. Step 1. The inclusion

S(Rn) ⊂
⋂

α,s∈R

Bs
pq(R

n, 〈x〉α)

is clear.
To prove that any f ∈ ⋂

α,s∈R
Bs

pq(R
n, 〈x〉α) belongs to S(Rn), it is sufficient to

show that for any fixed N ∈ N there are α(N) ∈ R and s(N) ∈ R such that

sup
|β|≤N

sup
x∈Rn

〈x〉2N |Dβf(x)| ≤ c‖f | Bs
pq(R

n, 〈x〉α)‖.

For any multiindex β there are polynomials P β
γ , deg P β

γ ≤ 2N such that

〈x〉2NDβf(x) =
∑
γ≤β

Dγ [(P β
γ f)(x)].

Hence

sup
|β|≤N

sup
x∈Rn

〈x〉2N |Dβf(x)| = sup
|β|≤N

sup
x∈Rn

∣∣∣∑
γ≤β

Dγ [(P β
γ f)(x)]

∣∣∣
≤ sup

|β|≤N

∑
|γ|≤N

sup
x∈Rn

|Dγ [(P β
γ f)(x)]|

≤ sup
|β|≤N

∑
|γ|≤N

‖P β
γ f | CN (Rn)‖. (5)

Due to the embedding theorems [3, ch. 2.7.1],

‖P β
γ f | CN (Rn)‖ ≤ c

∥∥∥P β
γ f

∣∣∣ B
N+ n

p +ε
pq (Rn)

∥∥∥
= c

∥∥∥∥ P β
γ

〈x〉2N
〈x〉2Nf

∣∣∣∣ B
N+ n

p +ε
pq (Rn)

∥∥∥∥ (6)

for any ε > 0. P β
γ

〈x〉2N is a pointwise multiplier for B
N+ n

p +ε
pq (Rn) [3, ch. 2.8.2]. Therefore

∥∥∥∥ P β
γ

〈x〉2N
〈x〉2Nf

∣∣∣∣ B
N+ n

p +ε
pq (Rn)

∥∥∥∥
≤ c

∥∥∥∥ P β
γ

〈x〉2N

∣∣∣∣ CN+ n
p +ε(Rn)

∥∥∥∥ ·
∥∥∥〈x〉2Nf

∣∣∣ B
N+ n

p +ε
pq (Rn)

∥∥∥. (7)
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According to Remark 1.3
∥∥∥〈x〉2Nf

∣∣∣ B
N+ n

p +ε
pq (Rn)

∥∥∥ ∼
∥∥∥f

∣∣∣ B
N+ n

p +ε
pq (Rn, 〈x〉2N )

∥∥∥. (8)

Combining (5)–(8), one gets

sup
|β|≤N

sup
x∈Rn

〈x〉2N |Dβf(x)| ≤ c
∑

|γ|≤N

∥∥∥〈x〉2Nf
∣∣∣ B

N+ n
p +ε

pq (Rn)
∥∥

≤ c
∥∥∥f

∣∣ B
N+ n

p +ε
pq (Rn, 〈x〉2N )

∥∥∥ (9)

and it follows (4).
Step 2. Let 1 < p ≤ ∞, 1 < q ≤ ∞ and let p′ and q′ be defined in the standard

way by
1
p

+
1
p′

= 1,
1
q

+
1
q′

= 1.

The inclusion ⋃
α,s∈R

Bs
pq(R

n, 〈x〉α) ⊂ S′(Rn)

is evident.
As far as the opposite inclusion is concerned, we recall that f ∈ S′(Rn) if and only

if there are l ∈ N and m ∈ N such that

|f(ϕ)| ≤ c sup
|α|≤m

sup
x∈Rn

〈x〉l|Dαϕ(x)|,

for all ϕ ∈ S(Rn). By (9),

sup
|α|≤m

sup
x∈Rn

〈x〉l|Dαϕ(x)| ≤ c
∥∥∥ϕ

∣∣∣ B
m+ n

p +ε

p′q′ (Rn, 〈x〉l)
∥∥∥.

According to our choice of p and q, it follows that 1 ≤ p′ < ∞ and 1 ≤ q′ < ∞. Thus,
by [3, ch. 2.11.2],

f ∈
(
B

m+ n
p +ε

p′q′ (Rn, 〈x〉l)
)′

= B
−(m+ n

p +ε)
pq (Rn, 〈x〉−l).

This means
S′(Rn) ⊂

⋃
α,s∈R

Bs
pq(R

n, 〈x〉α).

Step 3. Let 0 < p ≤ 1, 1 < q ≤ ∞. By the arguments above, for f ∈ S′(Rn)
there are α ∈ R and s ∈ R such that

f ∈ Bs
∞q(R

n, 〈x〉α).
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We want to show that
f ∈ Bs

pq(R
n, 〈x〉α−γ), γ >

n

p
.

Indeed,

‖f | Bs
pq(R

n, 〈x〉α−γ)‖ =
( ∞∑

j=0

2jsq‖〈x〉α−γ(ϕj f̂ )̌ | Lp(Rn)‖q

) 1
q

≤
( ∞∑

j=0

2jsq sup
x∈Rn

[〈x〉α|(ϕj f̂ )̌ (x)|]q
( ∫

Rn

〈x〉−γp dx

) q
p
) 1

q

≤ c‖f | Bs
∞q(R

n, 〈x〉α)‖.

Step 4. When 0 < q ≤ 1, first we may find α ∈ R and s ∈ R such that

f ∈ Bs
pq∗(Rn, 〈x〉α),

q∗ > 1, and then use the fact that

Bs
pq∗(R

n, 〈x〉α) ⊂ Bs−ε
pq (Rn, 〈x〉α), ε > 0.

Next we recall some notation. A measure μ is called σ-finite in R
n if for any

R > 0,
μ({x : |x| < R}) < ∞.

A measure μ is a Radon measure if all Borel sets are μ measurable and

(i) μ(K) < ∞ for compact sets K ⊂ R
n,

(ii) μ(V ) = sup{μ(K) : K ⊂ V is compact} for open sets V ⊂ R
n,

(iii) μ(A) = inf{μ(V ) : A ⊂ V, V is open} for A ⊂ R
n.

Let μ be a positive Radon measure in R
n. Let Tμ,

Tμ : ϕ �−→
∫

Rn

ϕ(x) μ(dx), ϕ ∈ S(Rn),

be the linear functional generated by μ.

Definition 1.5. A positive Radon measure μ is said to be tempered if Tμ ∈ S′(Rn).

Proposition 1.6. Let μ1 and μ2 be two tempered Radon measures. Then

Tμ1 = Tμ2 in S′(Rn) if, and only if, μ1 = μ2.

Proof. The Proposition is valid by the arguments in [5, p. 80].
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This justifies the identification of μ and correspondent tempered distribution Tμ

and we may write μ ∈ S′(Rn).

Definition 1.7. f ∈ S′(Rn) is called a positive distribution if

f(ϕ) ≥ 0 for any ϕ ∈ S(Rn) with ϕ ≥ 0.

If f ∈ Lloc
1 (Rn) then f ≥ 0 means f(x) ≥ 0 almost everywhere.

Remark 1.8. If f is a positive distribution, then f ∈ C0(Rn)′ and it follows from the
Radon-Riesz theorem that there is a tempered Radon measure μ such that

f(ϕ) =
∫

Rn

ϕ(x) μ(dx)

[2, pp. 61, 62, 71, 75].

2. Main assertions

Our next result refers to tempered measures.

Theorem 2.1.

(i) A Radon measure μ in R
n is tempered if, and only if, there is a real number β

such that 〈x〉βμ is finite.

(ii) Let μ be a tempered Radon measure in R
n. Let j ∈ N,

Aj = {x : 2j−1 ≤ |x| ≤ 2j+1 }, A0 = {x : |x| ≤ 2 }.
Then for some c > 0, α ≥ 0,

μ(Ak) ≤ c2kα for all k ∈ N0.

Proof. Step 1. First we prove part (ii). Suppose that the assertion does not hold.
Then for c = 1 and l ∈ N there is kl ∈ N0 such that

μ(Akl
) > 2kll. (10)

As soon as it is found one kl with (10), it follows that there are infinitely many km
l ,

m ∈ N, that satisfy (10).
With j ∈ N,

A∗
j = {x : 2j−2 ≤ |x| ≤ 2j+2 }, A∗

0 = {x : |x| ≤ 4 }.
For l = 1 take any of km

1 , let it be k1. For l = 2 choose k2 � k1 in such a way
that A∗

k1
and A∗

k2
have an empty intersection. For arbitrary l ∈ N take

kl � kl−1 and A∗
kl−1

∩ A∗
kl

= ∅.
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Let ϕ0 be a C∞ function on R
n with

ϕ0(x) = 1, |x| ≤ 2 and ϕ0(x) = 0, |x| ≥ 4.

Let k ∈ N and
ϕk(x) = ϕ0(2−kx) − ϕ0(2−k+3x), x ∈ R

n.

Then we have
suppϕk ⊂ A∗

k

and
ϕk(x) = 1, x ∈ Ak.

Let

ϕ(x) =
∞∑

l=1

2−lklϕkl
(x).

For any fixed N ∈ N0

sup
|α|≤N

sup
x∈Rn

(1 + |x|2)N |Dαϕ(x)|

= sup
|α|≤N

sup
x∈Rn

(1 + |x|2)N

∣∣∣∣Dα

( ∞∑
l=1

2−lklϕkl
(x)

)∣∣∣∣
≤ sup

l∈N

sup
|α|≤N

sup
x∈Rn

2−lkl2−|α|kl2|α|(1 + |x|2)N |(Dαϕ1)(2−kl+1x)|.

The last inequality holds, since the functions ϕkl
have disjoint supports. With the

change of variables
x′ = 2−kl+1x

one gets

sup
|α|≤N

sup
x∈Rn

(1 + |x|2)N |Dαϕ(x)|

≤ sup
l∈N

sup
|α|≤N

2−lkl2−|α|kl2|α|22(kl−1)N sup
x∈Rn

(1 + |x|2)N |Dαϕ1(x)|

≤ c sup
l∈N

sup
|α|≤N

2−kl(l+|α|−2N) ≤ c sup
l∈N

2−kl(l−2N).

Since N is fixed and l is tending to infinity, 2−kl(l−2N) is bounded. Thus ϕ ∈ S(Rn).
According to the definition of tempered Radon measures

∫
Rn

ψ(x) μ(dx) < +∞
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for any ψ ∈ S(Rn), but

∫
Rn

ϕ(x) μ(dx) ≥
∞∑

l=1

∫
Akl

ϕ(x) μ(dx) ≥
∞∑

l=1

2−lkl2lkl = +∞.

This means that our assertion (10) is false.
Step 2. We prove part (i). Since 〈x〉βμ is finite, it is tempered. Then μ is also

tempered. To prove the other direction we take β = −(α + 1). Then we get

〈·〉βμ(Rn) =
∫

Rn

〈x〉−(α+1) μ(dx) ≤
∞∑

k=0

∫
Ak

〈x〉−(α+1) μ(dx)

≤ c

∞∑
k=0

2−k(α+1)

∫
Ak

μ(dx) ≤ c

∞∑
k=0

2−k(α+1)2kα < ∞.

In order to characterize finite Radon measures we define the positive cone
+

Bs
pq(R

n)
as the collection of all positive f ∈ Bs

pq(R
n).

Theorem 2.2. Let M(Rn) be the collection of all finite Radon measures. Then

M(Rn) =
+

B0
1∞(Rn)

and
μ(Rn) ∼ ‖μ | B0

1∞(Rn)‖, μ ∈ M(Rn). (11)

Proof. By the proof in [5, pp. 82, 83, Proposition 1.127],

‖μ | B0
1∞(Rn)‖ ≤ μ(Rn) if μ ∈ M(Rn).

In order to prove the converse inequality, one use the characterisation of Besov
spaces via local means. Let k0 be a C∞ non-negative function with

supp k0 ⊂ {x : |x| ≤ 1 } and

�

k0(0) �= 0.

If f ∈
+

B0
1∞(Rn), then f = μ is a tempered measure. By [5, p. 10, Theorem 1.10],

‖μ | B0
1∞(Rn)‖ ≥ c‖k0(1, μ)|L1(Rn)‖ = c

∫
Rn

∫
Rn

k0(x − y) dμ(y) dx.

Applying Fubini’s theorem, one gets

‖μ | B0
1∞(Rn)‖ ≥ cμ(Rn).
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Corollary 2.3. Let f ∈ L1(Rn) and f(x) ≥ 0 almost everywhere. Then

‖f | L1(Rn)‖ ∼ ‖f | B0
1∞(Rn)‖.

Proof. Let μ = fμL, where μL is the Lebesgue measure. Then

μ(Rn) =
∫

Rn

f(x) μL(dx) = ‖f | L1(Rn)‖

and
‖μ|B0

1∞(Rn)‖ = ‖f | B0
1∞(Rn)‖.

From (11) follows the statement in the Corollary.

The question arises whether Corollary 2.3 can be extended to all f ∈ L1(Rn). We
have

L1(Rn) ↪−→ B0
1∞(Rn), hence ‖f | B0

1∞(Rn)‖ ≤ c‖f | L1(Rn)‖
for all f ∈ L1(Rn). But the converse is not true even for functions f ∈ L1(Rn) with
compact support in the unit ball.

Proposition 2.4. There are functions fj ∈ L1(Rn) with

supp fj ⊂ { y : |y| ≤ 1 }, j ∈ N,

such that {fj} is a bounded set in B0
1∞(Rn), but

‖fj | L1(Rn)‖ → ∞ if j → ∞.

Proof. We may assume n = 1.
Let a ∈ C1(R) be an odd function with

supp a ⊂ {x : |x| ≤ 2 }, a(x) ≥ 0, x ≥ 0

and
max

−2≤x≤2
|a(x)| = |a(−1)| = a(1) = 1.

If c = max−2≤x≤2|a′(x)|, then c ≥ 1. Define a0 ∈ C1(R) by

a0(x) = c−1a(x).

Then one has for any x ∈ R,

|a0(x)| ≤ c−1 ≤ 1, |a′
0(x)| ≤ 1, and

∫
R

a0(x) dx = 0.
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Define a function aν , ν ∈ N, by

aν(x) = 2νa0(2νx).

Then
supp aν ⊂ [−2−ν+1, 2−ν+1]

and

|aν(x)| ≤ c−12ν , |a′
ν(x)| ≤ 22ν ,

∫
R

aν(x) dx = 0.

According to [5, p. 12, Definition 1.15], a0 is an 11-atom and aν are (0, 1)1,1-atoms. It
follows from [4, Theorem 13.8] that

∑∞
ν=1 aν(x) converges in S′(Rn) and represents

an element of B0
1∞(Rn). Let f

S′
=

∑∞
ν=1 aν .

Let

fj(x) =
j∑

ν=1

aν(x).

Then supp fj ⊂ [−1, 1],

‖fj | L1(Rn)‖ ≥
+∞∫
0

fj(x) dx =

+∞∫
0

j∑
ν=1

aν(x) dx

= j

+∞∫
0

a0(x) dx → ∞, j → ∞.

On the other hand one has by the above atomic argument

‖fj | B0
1∞(R)‖ ≤ 1 for j ∈ N.

Corollary 2.5. Not any characteristic function of a measurable subset of R
n is a

pointwise multiplier in B0
1∞(Rn).

Proof. Let f ∈ L1(Rn) real. Let M+ be a set of points x such that f(x) ≥ 0 and
M− = {x : f(x) < 0 }. Then

‖f | L1(Rn)‖ = ‖χM+f | L1(Rn)‖ + ‖χM−f | L1(Rn)‖,

where χM+ , χM− are characteristic functions of sets M+ and M− respectively. One
may apply Corollary 2.3 to the functions χM+f and χM−f and get

‖f | L1(Rn)‖ ≤ c‖χM+f | B0
1∞(Rn)‖ + c‖χM−f | B0

1∞(Rn)‖.
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If any characteristic function of a set in R
n would be a pointwise multiplier in B0

1∞(Rn),
then

‖χM+f | B0
1∞(Rn)‖ ≤ c‖f | B0

1∞(Rn)‖, ‖χM−f | B0
1∞(Rn)‖ ≤ c‖f | B0

1∞(Rn)‖,

hence
‖f | L1(Rn)‖ ≤ c‖f | B0

1∞(Rn)‖.
Since for any function f ∈ L1(Rn) holds

‖f | B0
1∞(Rn)‖ ≤ c‖f | L1(Rn)‖,

one gets
‖f | L1(Rn)‖ ∼ ‖f | B0

1∞(Rn)‖, for real f ∈ L1(Rn).

This can be also extended to complex functions f ∈ L1(Rn). But acoording to the
Proposition 2.4 this is not true.

References

[1] D. E. Edmunds and H. Triebel, Function spaces, entropy numbers, differential operators, Cam-
bridge Tracts in Mathematics, vol. 120, Cambridge University Press, Cambridge, 1996.

[2] P. Malliavin, Integration and probability, Graduate Texts in Mathematics, vol. 157, Springer-
Verlag, New York, 1995.

[3] H. Triebel, Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhäuser Verlag,
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