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ABSTRACT

We study Hilbert spaces of super-holomorphic functions (including anti-com-
muting Grassmann variables) in the setting of bounded symmetric domains,
more precisely for the matrix ball of arbitrary size. Our main results concern
the classification of irreducible representations of the associated Toeplitz C*-
algebra and an explicit decomposition of the super-Bergman space as a direct
sum of vector-valued (ordinary) Bergman spaces.
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Introduction

Supersymmetry, involving anti-commuting Grassmann variables, plays an important
role in modern mathematical physics (string theory [8], supersymmetric Standard
Model, algebraic geometry (moduli spaces of super-Riemann surfaces) and analysis
(fermionic Berezin integration [1], super Fock space in finite and infinite dimensions).
In operator theory, besides the standard Fock space situation, the only case that has
been studied in detail involves the super-symmetric versions of the so-called Cartan
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domains, e.g. matrix domains generalizing the unit disk and the unit ball [2, 3].
In these papers the main emphasis is on deformation quantization in the sense of
Berezin, establishing the correspondence principle for Toeplitz operators on super-
Cartan domains. The analogous result for the usual Cartan domains has been shown
in [4].

On the other hand, Toeplitz operators on Cartan domains have also deep algebraic
properties encoded in the C*-algebra generated by Toeplitz operators with contin-
uous symbols [11-13]. The present paper studies these problems, in particular the
classification of all irreducible representations, for Toeplitz operators on super-Cartan
domains. The main new aspect compared to the non-super case is the behavior of the
fermionic (i.e., anticommuting) degrees of freedom, when passing to the representa-
tions realized on faces of the boundary. Another, somewhat surprising, result is that
for domains of rank bigger than 1, the analysis of (scalar) super-Toeplitz operators
involves necessarily Bergman spaces of vector-valued holomorphic functions. This
gives another motivation for a deeper study of these Hilbert spaces which comprise
the so-called holomorphic discrete series of the biholomorphic automorphism group.

It should be noted that the investigation of super-Cartan domains (either in the
bounded realization or in the unbounded realization as generalized half-planes) is not
a straightforward modification of the flat Fock space situation, since the symbol classes
considered are quite different: whereas the Fock space over a super-vector space is
associated with almost-periodic functions (using the underlying group structure), the
Toeplitz operators on super-Cartan domains are generated by super-polynomials and
their completion (super-holomorphic functions), and the crucial algebraic tool is the
Jordan theoretic description of Cartan domains.

1. Super-Bergman spaces on the unit disk

Let O(B) denote the algebra of all holomorphic functions 1(z) on the open unit disk
B={zeC:|z] <1}

Let Ay denote the complex Grassmann algebra with generator ¢, satisfying the relation
¢? = 0. Thus
Ay = C(L,¢).

The tensor product algebra
OB'") = O(B) ® As = O(B)(1,()
consists of all “super-holomorphic” functions
U =t + (1
with 19,11 € O(B). We sometimes write

U(z,¢) = tho(z) + C¥1(z)
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for all z € B.

Definition 1.1. For v > 1, the weighted Bergman space
H2(B) = O(B) N L*(B, )

consists of all holomorphic functions on B which are square-integrable for the proba-

bility measure
v—1 v
dp(2) = —— (1= |2[*)" " d=. (1)

Here dz denotes Lebesgue measure on C.

It is well-known [9] that H2(B) has the reproducing kernel
KV(va) = (1 - Zw)iu

for all z,w € B. Let A% denote the complex Grassmann algebra with 2 generators ¢,
¢ satisfying
¢G=¢=0, (=
Thus
AT = C{1,¢,¢,¢¢) = M1, ).

Let C(B) denote the algebra of continuous functions on B. The tensor product
CB") = C(B) © AT = C(B)(1,¢,¢,C0)
consists of all “continuous super-functions”
F = foo+ ¢ fio + ¢ for + ¢C fur, (2)
where foo, f10, fo1, fi1 € C(B). The involution on C(@m) is given by
F = foo + ¢ fio + ¢ for +CC fun,

where f(2) == f(z) (pointwise conjugation).
|

C(@1 1) contains O(B'") as a subalgebra, and for ¥ = g + (¢ € OB we
have

YW = otho + Cho 1 + C 1 o + (C e 1.
Given a super-function F' € C (@m) of the form (2), we define its Berezin integral
/d{ F = fi1 € C(B)

Col1
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/dzd( F(z,0) = /dz/dg F(z,0) = B/dz F11(2).

B1l1 B colt

and

Thus the “fermionic integration” is determined by the rules

Jacc=[ac-c= [acai—o [ac-cc-1

Col1 Col1 Col1 Col1

As an example, we have

Z/dz(foo(z) f11(2) + f11(2) foo(2) — fi0(2) fi0(2) + fo1(2) fo1(2)),
B

which shows that the (unweighted) Berezin integral is not positive. For U = g+(1); €
O(B'"), it follows that

[azdc 960060 = [a iGN
Bl Bl
is positive, but not positive definite since the 1)y term is not present.
Definition 1.2. For any parameter v > 1 the (weighted) super-Bergman space
"B c oB'Y)
consists of all super-holomorphic functions ¥(z, () which satisfy the square-integra-

bility condition

(U | D), = % /dz d¢ (1 — 22— CO)V 1 ¥(2,¢) ¥(2,¢) < +oo.

B1l1
Proposition 1.3. For U = v + 1 € O(B') we have
1 - _ 1
» [z (1= 22— 0" B O W 0) = W [ Yol + 5 (| )
BllL

i.e., there is an orthogonal decomposition
H(B'") = H(B) @ [H},,(B) ® A*(C")]

into a sum of weighted Bergman spaces, where AY(CY) is the 1-dimensional vector
space with basis vector (.
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Proof. Consider the binomial expansion

(1-22-¢Q)" "' = (1_22)1/_1(1 C >u1

12z
=(1—-zz) ! (1 —(v—1) : Cig)
=(1—-22)"t—(w-1)(1—22)""2%C
=(1—22)"" + (v - 1)1 — 22)"2C. (3)

Then we have

% /dz d¢ (1 -2z — Q)" 'F(2,Q)

Bl

— % / dz dC[(l = 22)" " (foo(2) + € for(2) + € fio(2) + CC fr1(2))

Bl
(v = (1 = 22" CC fool2)|
= %/dz [(1—22)"" fua(2) + (v = D1 = 22)" % foo (2)]-
B

While this integral is still not positive on C (Em), restricting to ¥ € O(B!!) yields a
positive definite scalar product

» [ dedc (- 22— 0" W)

Bll1
=2 [dedc 22— 0" (Wl 0(a) + Tl a2
BllL
+ 1@ o(2) + (i (E) ()
= % /dz [(1—22)" Yy (2) 1 (2) + (v — 1)(1 — 22)" 2 4o (2) Yo (2)]
B
1 _ v—1 I
=— &(1—22)" Yy (2) 1 (2) + —— [ dz (1 — 22)" "2 o (2) Yo (2).
y 3y
In view of the normalization (1), the assertion follows. O

Proposition 1.4. For U = ¢y + (1 € HE(]B%”I) we have the reproducing kernel
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property
1
U(z,() = — /dw dw (1 —ww — w)” 11 — 200 — (@) V¥ (w,w),
T
B1l1
i.e., H2(B'Y) has the reproducing kernel
KV(Z7 <7w7w) = (1 —2W — C@)_U'

Proof. Analogous to (3) we have

a-so-r=a—so(1-125) = a-n (1)

1—zw 1—zw

=1-zw)"+v(l-— zzI))*”AC(D.

Together with (3) this implies

% /dw/dw (1 —ww —wo)’ (1 — 20 — (0) ™" (Yo(w) + w1 (w))

B col

:%iL/@/ﬁw«1_wwy—h+@_qx1—wwy4aw)
con

B
x (1 =2w)™" +v(l —2w0) """ (@) (Yo(w) + wipr (w))
= % /dw/dw <(1 —w)” (1 - zw) "V Cow ey (w)

B colL
+ (= 1)1 - wd) 2wl - 20) " do(w))
== [ aw (v - w1 ) )
B
(= 1)(1 = wd)* "2 (1= 20) 7 o (w) )
= 1(2) ¢+ Yo(2)
since ¢y € H2,,(B) and ¢ € HZ(B). O

2. Super-Toeplitz operators on the unit disk

For F € C(Em), the super-Toeplitz operator TI(,'/) on H2(B'") is defined as
TV = PV (FU),

where P(*) denotes the orthogonal projection onto H2(B!).
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Theorem 2.1. With respect to the decomposition W = 1y + (1, the super-Toeplitz
operator TI(,V) on H2(B!Y) is given by the block matriz

i - (T U S8 ) 727 O ) “
e Ty, (for) T (foo)

Here T;,’Lj(f), for 0 < i,5 < 1, denotes the Toeplitz type operator from HEH(IB%)
to H?

o+i(B) defined by
T, 5 (5 ¢ = P f0)
for ¢ € H3+j (B), and P,4; is the orthogonal projection from L2 ;(B) onto H2, ;(B).

Proof. Using (1) and (3), we obtain

(TI(,ﬂV)\Il)(Za ()= %/dw dw (1 — ww — w@)”_l
B Colt
X (1= zw — (@)™ (foo(w) + w for(w) + @ fro(w) + &w f11(w))
X (tho(w) + w iy (w))
Z%/dw (1 —ww)" (1 — zw)™
B

X [dw (14 m 1+ L@_
C/ ( 1—ww ) ( 1- zw)
X (foo(w) Yo(w) + w( for (w) to(w) + foo(w) 11 (w))

+ & fro(w) Yo(w) + @ w(fir (w) Yo(w) + fro(w) t1(w)) )
= %/dw (1 —ww)" (1 — zw)™

B

X /dw (@w(fi1(w) Yo(w) + fro(w) 1 (w))
colt
v(w

=20 w(for(w) o(w) + foo(w) 1 (w))
(v-—1Dw

+ . w;w Joo(w) Yo(w) =
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1 —\v—1 — 2w)Y
:W]B/dw(l—ww) (1 )

X <f11(w) Yo(w) + fro(w) 11 (w) + ve

1—zw

(for(w) Yo (w)

v—1

T foolw) a(w)) + Foo(w) ¢0(w)>

1 —ww
v—1

= — /dw (1 — wi)” (1 — 2@) ™" foo(w) Yo (w)

B

+ v /dw (1 —ww)” (1 — zw)™* !
7
B

X (for(w) do(w) + foo(w) ¥1(w))
+ 1 /dw (1 — ww)” (1 — zw) " (1 — ww)

™
B

x (f11(w) Yo(w) + fio(w) ¥1(w))

= P,(foo%0)(2) + ¢ Pt (for Yo + footr)(2)
1

+ = P (1= wi) (f11 9o + Fro 1)) (2): =

Theorem 2.2. The C*-algebra ’Z,(IB%”l), generated by all Toeplitz operators with

symbols F € C(Elll) which are continuous up to the boundary, can be embedded in
the 2 X 2-matrix operator algebra

Z(Bl‘l) - (’Z;C((i)B) Z_ﬁ%ﬂg)) = A, (5)

where T,,4;(B) is the Toeplitz C*-algebra on the Bergman space H}_,(B) (i =0,1)
and K] denotes the space of all compact operators from HZJFJ-(IB) to HZ, ;(B)
(iaj =0, 1)

Proof. Realizing a super-Toeplitz operator Tg’) as a 2 X 2-operator matrix (4), it
is clear that the diagonal entries belong to the Bergman-Toeplitz C*-algebras for v
and v + 1, resp. Moreover, the off-diagonal entries are compact operators as will be
shown in more detail for the more general case of the unit ball (proof of Theorem 4.2
below). Thus the embedding (5) holds on the level of generators. Since the right-hand
side of (5) is a C*-algebra, the assertion follows. O

The following Theorem is our main result for the case of the unit disk.
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Theorem 2.3. For every boundary point s € OB there exists a C*-algebra homomor-
phism (character)
os: T, (B — C

which is uniquely determined by the property

™) _
s (TfooJrCferffloJrfon) - fOO(S) (6)
for any continuous functions foo, fio0, fo1, fi1 € C(B). Moreover, the joint null-space

() Kero, = K(H(B'))
s€0B

of all these characters coincides with the ideal of all compact operators on the super-
Bergman, space H2(B'").

Proof. Since the Toeplitz C*-algebra 7,,(B) acts irreducibly on H2(B) and has a non-
trivial intersection with the compact operators K(HZ2(B)), it follows that K(HZ2(B))
is contained in 7, (B). Applying [10, Theorem 4.12.32] to the special case of the unit
disk and the Bergman-Toeplitz C*-algebras for parameter v > 1 and v + 1, resp., we
obtain C*-algebra homomorphisms

ol :T,B) —C,

S

oVt T, (B) — C,
whose kernel is the ideal of compact operators and satisfy
ol (T) = o TH(T{T) = f(s)

whenever f € C(B). Now consider the C*-algebra embedding (5) and define, for
s € 0B, a linear map
ps: A—CoC

by putting
o (& B) = ot o) ™)

This is in fact a C*-algebra homomorphism since, for example, in an operator matrix
product

(®)

Ci D) \Cy Dy C1Ay+ D.1Cy Ci1By+ DDy

the operators B1Cs and C By are compact, and therefore

0s(A1Az + B1C) = (A1 A2) = 0{(A1) 0{(A2)
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and, similarly,
UZ+1 (ClBQ + D1D2) = 0’;’+1(D1D2) = O'SV—H(Dl) G'SV—H(DQ).

Now consider a generator (4) of 7, (B!/'). Then we have

ou1f) = (02 |Tulfuo 25 )] ot o] ) = (o), fol9)

since 1 —ww vanishes on dB. Tt follows that (7), when restricted to 7, (B'!), has two
identical entries. Identifying the two entries, we obtain the character (6).
Since the characters o (i = 0, 1) vanish on the ideal K, ; = K(H?>

J1:(B)) of all
compact operators on H?> +i(B), it is clear that oy vanishes on

K 4
KEZBMY) = (76 0 ).
( V( )) ,C(l) ICV+1
Conversely, suppose an operator matrix

A B 1‘1
<C D) e, B cA

belongs to the joint null-space of oy for all s € 9B. According to (7) this means that
o’(A) =0= 0" (D)

S S

for all s € OB, since both entries in (7) are identical. Hence A and D are compact
operators, and the assertion follows. ]

3. Super-Bergman spaces on the unit ball

For p > 1, let O(BP) denote the algebra of all holomorphic functions ¢ (21, ..., z,) on
the open unit ball

p
B? := {z =(21,-.,2) €CP ¢ 2> =) ||z < 1}
i=1

in CP. Let A, denote the complex Grassmann algebra with ¢ generators (i, ..., (4,
satisfying the relations

GG+ GG =0
for 1 <14,j < gq. Putting Q :={1,...,q}, we have

Ay=C{(:1CQ)
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where
Cr = Giy -+ Gy,
if I ={i; <--- <ig}. For disjoint subsets I, J we have

¢y =¢€r1,5Cug

where €7, ;7 = +1. The tensor product algebra
O(BPl9) == OBP) @ A, = OBP) (¢ : I C Q)
consists of all “super-holomorphic” functions
U= U

IcQ

where U; € O(BP) for all I C Q. We sometimes write
U(z,0) = > Ui(2)¢

I1CQ

for all z € BP. For p = q = 1, we recover the situation of the unit disk.

Definition 3.1. For v > p, the weighted Bergman space
H2(B?) == O(B?) N L*(B, d )

consists of all holomorphic functions on BP which are square-integrable for the prob-

ability measure
I'()

m(l —(z|2)" P dz.

dpw (2) =
Here dz is the Lebesgue measure for the scalar product (z | w) =, zjw; on CP.
It is well-known [14] that H2(BP) has the reproducing kernel
Ky(z,w) = (1= (2 |w)™

for all z,w € BP. Let A(g denote the complex Grassmann algebra with 2¢ generators

Clyovvy Cgy Cuy - - -y Gy satisfying
GG+ GG =0,
GG+ GG =0,
GG+ GG =0
for all 1 <14,j <gq. Thus, putting @ ={1,...,q},

AS=C(G¢ 1T CQy=Ag(¢ - T CQ),
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where

CJ ::le"'ng? C?:é_.?ké.ll
for I ={iy <---<ir}, J={j1 <---<Jje}. The tensor product
C(BY!) = C(B") @ Ay = C(B)((j¢r: 1, T C Q)

consists of all “continuous” super-functions

F=> fru¢ié 9)
1.7

where f; ; € C(BP) for all I, J C Q. The involution will be denoted by F — F*. The
Berezin integral on BP9 is defined by

[dzdc Pe0) = [ dz foal2)

Brla Br

for F € C(BPl9) as in (9), where the normalization is given by

oo [ac 66 =1

Cola colg  J=1

As in the case of the unit disk (p = 1) this unweighted integral is not suitable for
quantization. Put

(@=(¢|w) =) G € A,
and

P
2w = (z |w) = szwj.

Definition 3.2. For any parameter v > p — ¢ + 1, the (weighted) super-Bergman
space
HE(BP“’) c O(]ng\q)

consists of all super-holomorphic functions ¥(z, () which satisfy the square-integra-
bility condition

(U | V), = 1_‘(1/1_;_(:)_]?) % /dde (1— 22— O TP 10 (z, )" ¥(z,¢) < +o0.

Brla
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Lemma 3.3. Endow AY with a scalar product (u | v), conjugate-linear in u, such
that

a=]J¢ Ice

i€l

form an orthonormal basis. Then we have for u,v € A?

/d( e Cyty = (u]w).

COla

Proof. We have

(COF = (GG 4+ )T = kYT ¢ede (10)
L (el

where L C @ has k elements. Write u = ZlcQU’ICI’ v o= ZJCQUJQJ with
ur,vy € C. Then (10) implies

D IEICHNIIED WD DY | LI BY | (1D 1

E>0 k=0 LCQ (el LCQ el LcQ
|L|=k

Using the fermionic integration rules it follows that

/dg eyt = Zam/dg e ey

COla 1,J Colg
=Y urv /dc G CLGie
5J L COla
=D tgvo\r = (u]v). O
Proposition 3.4.
(2@t o (gt
Pwtq-p)  f= Tw+lJl-p) OV
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Proof. Tt follows from (10) that
(1 - 22— Qprovt
e v+qg—p—1
- (1—zz)"+q_p_1(1— < ) o

1—2z2Zz

=(1—zz)vter-l Z (V Ta-p- 1) (—=1)77k(1 = zz)F9(¢C)a "

q—k
I (v+qg-p-1 _
Il (e [ L R D DU | (1
k=0 4 LCcQ ter
|Ll=q—k
q
I'(v+ Lwv+q-p) D)
Z ll+k p—1 Z HC@ CZ
k=0 L(v+k—p) |L|=q—k ¢€L
Putting J = @ \ L, the assertion follows. O

Proposition 3.5. For V=3, o ¢n(u € O(BP19) we have

T 7 [ a0 M)

_ - L(v) T'(v+m) o

"2 T 2, T p wp/dz (U =22)" P a2 v (2),
|M|=m

i.e., there is an orthogonal decomposition
Bp\q Z 2 n(BP)®A™(CY)

into a sum of weighted Bergman spaces for 0 < m < q, with multiplicity (gl)

Proof. For ¥ = ZMCQ Y Car we have, according to Proposition 3.4,

o I'(v) 1 T Can e 5 5
R e B/d 2dC (1 %) T (2,0) W(z, )

_ZZZFV—HIQ wp/dZ1_ZZ)VHK|p1

KcQ ICcQ JCQ

X $1(2) (2) / 4 Co e Conie S

COlg
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The fermionic integration rules imply that only the choice I = K = J contributes,
and hence

5= Z ry+F|(J\V4)|) : /dZ(lfzz)”'M‘ P s (2) Yar (2). O

BP

Proposition 3.6.

F(l/) V+|I|
m:z( — zw)vtHI HC’“}Z

i€l

=0 ICQ kel
[7]=i
q .
I N )
=D (1-zw) T(v) Z [1 o H
i=0 \T]=i kel

Proposition 3.7. For v > p and ¥ = >, Yy Cu € H2(BPl9) we have the repro-
ducing kernel property

¥(z,()
_ I'(v) 1 = S\Ha—P=1(1 _ m _ o)V
mq—m%/dwdwuwwww (1 - 20— @) W),

i.e., H>(BPl9) has the reproducing kernel
Ku(z7 Cawvw) = (1 —ZW — C(‘D)_V
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Proof. Applying Proposition 3.4 and Proposition 3.6, we obtain for v > p

T'(v) 1

(v +q—p)n?
X /dw/dw (1 —ww — w@)" TP 1 — 20 — (@)™ Z Y (w

BP COlq MCQ
1)) 1
= T L (- w0 s )
ico fco o T+l =p) = i
x/dwwa\JwQ\JHQ(Din.
oola iel

The fermionic integration rules imply that only the choices J = M = I contribute. It
follows that

S = Zg, y+|+1||1|) ) Wlp /dw(l — ww) =P~ (1 — zw) ™~ My (w)

BP

since

HCiu_fiwI = wjwr(r.

icl
Now apply the reproducing property for each weighted Bergman space HV + Il(IEBp)
with v+ [I| > v > p.

4. Super-Toeplitz operators on the unit ball
For F € C(B p‘q) the super-Toeplitz operator T on H2(BPI7) is defined as
TV = PY(FU),
where P(*) denotes the orthogonal projection onto H2(BPl9).
Proposition 4.1. With respect to the decomposition ¥ = ), ¥ (s, the super-

Toeplitz operator TI(,V) on H2(BPl9) is given by the 29 x 29-matriz

(TI(?V)){ = Z ERN\I,I €EK\J,J
IUJCKCQ

XWT::i] (FK\I,K\J( ) - (1*ww)|K| lI\) (11)
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Here, for 0 <i,j <gq, TVVLJ denotes the Bergman-type Toeplitz operator
Tll/}j:zj (f) = V+’L f u+g l/—‘rj (Bp) — H3+1(Bp)

from HVJrj (BP) to HZ,, (BP).

Proof. Using Proposition 3.4 and Proposition 3.6 we obtain

S = (Tr¥)(z,¢)

I'(v) 1 ) R . -
eI L CU A
X Z fun(w) wiy wy Z Yy(w)w
JcQ

(v+11]) i
"L X Y tutin-gw

X /dw (1 — w)V FIEI=P=1 (1 — ) v

X Z fM,N(w)wJ(w)/dw wZQ\KwQ\KHQ&)iw}kwwNwJ.

M,N cole icl

The fermionic integration rules imply that non-zero terms occur only when K = MUI
= N U J as disjoint unions. Therefore

S = Z Z Z F :—;(||I|) )1/d’w (1*1U1D)V+|K\fp71(l7211_)),,,7‘”

IcQ JCcQ IUuJCK Br

X frv1, x\g(w) g (w) / dw WO KWQ\ K H Gi @i Wi\ [ W\ J W
Cole il

CTw+lI) e
d u+|K| p—1l(q _ v—|I|
Z P Wp/ w ( (1 - za)

X frvr, k\g (W) y(w /dw WO\ KWQ\K HQ Wi Wi\ | WK ER\J, J-
COla el

In view of (9) we have

- * — * * —
| | G Wi Wi\ [ WK = ER\I,I | I Gi Wi Wi\ f WK\T W = ER\I,T Wi\ [ WK\T I | Giwgwy
icl icl icl

* * *
= ER\I,I Wi\ WK\T W] W1 (T = ER\1,1 Wk WK CI-
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It follows that
CPw+I)) | K|—p—1 I
S=)» ¢ £ dw ( ) HIEI=P=L(1 — ) mv M
Z E\LIERNTT 1 TR — 1) ( 7rp ( )

ek v+ K| -

X frvi g (w) ¢J(w)/dw WO\KWQ\K Wi WK Cr

COla
o) L L
— ER\ILIER\J,J 7/ -1 .~ dw (1 ww)”*' |—p— (1—zw) v—|1|
IL%;K ' ' L(v+[K|-p) WPBP
X frevr, m\g(w) 1/).J(w)/dw whHwq G
COla
I(v+ 1)) v o
:ZﬁK\I,IEK\J,J (V+|K| ﬂ—p/dw +|K|—p— 1(1—211)) 11|
IUJCK

X fr\r, k\g (W) ¥y (w)

:ZEKIIEKJJ Lw+|ll-p) T+I) 1
IUJCK M ks D(v+[K|—p) D(v+ [I| — p) 7P

X /dw (1 — ww)? T H=P=1(1 — ) ~v~ 1
Br
X frevr, k\g(w) (1 — ww) KWy (w) ;.
Since, for ¢ € H, l,ﬂ (BP),

(125 (D)) = s = [ (1= w7 (e ) ),
BP

the assertion follows. O

Theorem 4.2. The C*-algebra T,(BP19), generated by all Toeplitz operators with

symbols F € C(B p‘q) which are continuous up to the boundary, can be embedded in
the (¢4 1) x (q + 1)-matriz operator algebra

T, (BY9) C (A](B"))ozij<q = A, (12)
where for i # j we have
AJ(BP) = { compact operators Hyﬂ (B?) ® A7 (C?) — HZ,,;(BP) ® A/(CY) },
whereas for i = j we have
AL(BP) = T, 4(BY) @ End(A¥(CY)).
Here T,,4;(BP) denotes the Toeplitz C*-algebra on HZ ;(BF).
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Proof. For 0 < i, j < q the matrix block of TF(”), from H, ;(B”) to H.,;(BP), has the
operator entries

(TN, =i, I =3,

given explicitly by (11). For ¢ = j, these operator entries belong to the Toeplitz
C*-algebra 7,,;(B?). In order to prove Theorem 4.2 it suffices to show that for ¢ # j
these entries are compact operators. ‘

In the case i > j, the Toeplitz type operator T;’IZJ (f) from HZ, ;(BP) to HZ,,(BP)
is given by the composition PoM where P is the restriction of the Bergman projection
P,yi: L7, (B?) — HZ,,(BP) to the space L7 ;(B”). Using [14, Theorem 2.10], we
see that the restriction P is a continuous operator from L7, ;(B?) to H7, ;(B). Since
the inclusion of H7, ;(BP) in the space H_,(BP) is a compact operator it follows that
the Toeplitz type operator T,fj_rf is compact.

Now suppose |I| < |J|. In this case we have |K| > |I| whenever K D T U J. It
follows that the corresponding operator of multiplication by the function (1—22) K=
from HZ, ;(B?) to L., ;(BP) is a compact operator since |K| — |I| > 1. Then the
operator M is compact, implying that

(TINE =i, =]

is compact. These arguments establish the embedding (12) on the level of generators.
Since the right-hand side of (12) is a C*-algebra, the assertion follows. O

The following Theorem, generalizing Theorem 2.3, is the first main result of this
paper.

Theorem 4.3. For every boundary point s € OBP = S?P~1 there exists a C*-algebra

homomorphism (character)
oy T,,(BP17) — C (13)

that is uniquely determined by the property
0s(T") = Fo(s)

for F = ZLJFI,JC}‘ Cs and Fr j € C(Ep) continuous up to the boundary. Moreover,
the joint null-space
(] Kero, = K(H(B"))
s€OBP
of all these characters coincides with the ideal of all compact operators on the super-
Bergman space H2(BPI9),

Proof. Since the Toeplitz C*-algebra 7, (BP) acts irreducibly on H2(B?) and has a non-
trivial intersection with the compact operators KC(HZ2(BP)), it follows that K(HZ2(BP))
is contained in 7, (BP). Applying [10, Theorem 4.12.32] to the special case of the unit
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ball B? and the Bergman-Toeplitz operators for parameters v+, 0 < ¢ < ¢, we obtain
C*-algebra homomorphisms

ot T, (BP) — C
whose kernel is the ideal of compact operators and satisfy
ol = f(s)

whenever f € C(B"). Now consider the C*-algebra embedding (12) and define, for
s € OBP, a linear map

os: A— C¥

by putting
os(T{) = (@ 1NT]))1cq- (14)

Since, by assumption, the off-diagonal entries TIJ are compact operators and o”™*
vanishes on K(HZ, ;(B?)), a computation analogous to (8) shows that (14) is in fact
a C*-algebra homomorphism.

Now consider a generator TF of 7,,(B?7). Using its matrix representation (11) it
follows that

T LA =D) vsin) (i 1 — wa) K-l
W= Fortarg o (T ) - wa) )
CKCQ

= o (T (Ey ) = Fyo(s),

since for K # I we have |K| — |[I| > 1 and the symbol function F\ 1 x\r(w)
(1 — ww) 1= vanishes at s € OBP. Tt follows that (14), when restricted to 7, (BPI4),
has only identical entries for all I C (. Identifying these entries, we obtain the
character (13).

Since the characters o4 (0 < i < ¢) vanish on the ideal K, 1; = K(HZ2, ;(B)) of
all compact operators on H _H(Bp), it is clear that o, vanishes on the ideal

’C<H2(Bp|q)) {(TI Jrucq € A : TI €Kyyyrp forall IcC Q}

of A. Conversely, suppose that an operator matrix (T} )7, 7c¢ in 7, (BPl4) C A belongs
to the joint null-space of o, for all s € 9BP. According to (14), this means

o)y =0

for all I C @ since all entries in (14) are identical. Thus T} € K, 7 are compact
operators, and the assertion follows. O]
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5. Super-Bergman spaces on matrix balls

For 1 <r < p, let O(B"*P) denote the algebra of all holomorphic functions
Yz, 2D, 2k 2R = w(zf)

on the matrix ball

B"*P = {z = (Zg)lgigr eC™P 1 —z2*> 0}
1<j<p

in C™*P, For fixed ¢ > 1, let A" denote the complex Grassmann algebra with r - ¢
generators (1,...,(f,..., ¢}, ..., (2 satisfying the relations

¢/Gh+ Gl =0 (15)
forall 1 <i k <rand 1<y ¢<gq. Putting R:={1,...,r}, we have
AT =C(Cy - M C R x Q),

where

=[] ¢ (16)

(i,j)eM

and the index-pairs (7, j) are ordered lexicographically:
(1,7) < (k,0) <= i<k or i=k, j<U{.
The tensor product algebra
OB*PI"1) = O(B™P) @ A" := O(B"*P){(yr: M C Rx Q)

consists of all “super-holomorphic” functions

U= > dulu

MCRXQ

where 9y € O(B"*P) for all M C R x Q. We sometimes write

U(z,¢) = > vYum(2)m

MCRxXQ
for all z € B"*P. The case r = 1 corresponds to the unit ball.

Definition 5.1. For v > r + p — 1, the weighted Bergman space

H2(B77) = O(B"™7) 0 L2(B™7, dp, )
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consists of all holomorphic functions on B"*? which are square-integrable for the
probability measure

dpy, (2) = — " — det(1 — zz")" " Pdz.

Here dz is the Lebesgue measure for the scalar product (z | w) == tr zw* on C"*P.

It is well-known that H2(B"*P) has the reproducing kernel
K, (z,w) = det(1 — zw*)™"

for all z,w € B"™*P. Let A?Xq denote the complex Grassmann algebra with 2rg
generators @J, ¢ (1 <k <7, 1< 4,4 < q) satisfying the relations (15) and, in
addition,

G+ =0=0c¢+¢d.

Gr= [ ¢

(i,j)eM

Defining

for the reverse lexicographic order (cf. (16)), we thus have

C
Arxq

=C({(yC¢nv: M\NCRxQ)=MAx¢((3y: MCRxQ).
The tensor product

C(BPI4) == C(B™?) ® ATy, = C(B™?){(is (v : M,N C Rx Q)

rXq T
consists of all “continuous” super-functions

F=> funCirin (17)

M,N

where fyry € C(B™*P) for all M, N C R x Q. The Berezin integral on B"*PI"<¢ is
defined by

/dzd( F(z,¢) = /dz Frxq, rxq(2)

Brxplrxa BrXp
for F' € C(B"*PI"*9) as in (17), where the normalization is given by
[ € Gqinsa= [ ¢ TITI &6/ =1.

COlrxq COlrxq 1=1j=1
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Definition 5.2. For any parameter v > p+ 1 — g+ 1, the (weighted) super-Bergman
space
H2(Br><p\r><q) C O(Brxp\rxq)
14

consists of all super-holomorphic functions ¥(z, () which satisfy the square-integra-
bility condition

- L(v+1-—j)
v, = s
mr L T+l —j+q—p)

X / dzd¢ det(1 — zz* — CC*)V TP U (2,()* U(2,() < +o0. (18)

Brxplrxq

The main result of this section, generalizing Proposition 1.3 (for the unit disk)
and Proposition 3.5 (for the unit ball), is an explicit orthogonal decomposition of
the (scalar-valued) super-Bergman space H2(B"*PI"%4) as a direct sum of “ordinary”
weighted Bergman spaces over the matrix ball B"*P. It turns out that for domains
of higher rank r > 1 it is not enough to consider scalar-valued Bergman spaces,
as introduced in Definition 5.1, but vector-valued holomorphic functions arise in a
canonical way in the decomposition of H?2(B"*PI"*4), These vector-valued functions
are parameterized by partitions of length smaller than or equal to r and, as an inter-
esting feature, the associated multiplicity space corresponds exactly to the conjugate
partition.

A partition of length smaller than or equal to r is a non-increasing sequence of
integers

m=mi>mg>--2>m; >0

It is well-known [5] that partitions classify irreducible (finite-dimensional) represen-
tations of the matrix group GL,(C). A canonical model for the corresponding repre-
sentation space is given by the Schur functor denoted by S,,(C"). Let

Tm : GL,(C) — GL(S;(C"))

be the corresponding representation, and choose an inner product (u | v)y, on S, (C),
conjugate-linear in u, which is invariant under the unitary subgroup U(r). Graphi-
cally, a partition m is represented by its Young diagram

{Gl1<i<r, 1<j<m}.
We will mainly consider partitions satisfying the additional requirement m; < g, i.e.,
q>my>my>--->m, > 0. (19)
In this case the Young diagram is contained in the rectangle

RxQ={(i,j)[1<i<r, 1<j<q}
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It is easy to show that there exist exactly (qu) partitions m of this type. Every
partition m has a conjugate partition m* obtained by transposing its Young diagram.
If (19) holds, the conjugate partition m! has length < ¢, so we have the corresponding
Schur functor S, (C?) and the associated representation 7, of GL4(C).

Definition 5.3. For any partition
m=my>--->my >0

of length smaller than or equal to r, and v > r 4+ p — 1, the vector-valued Bergman
space
HZ(B™?, S (C7))

consists of all holomorphic maps
P :B7P — S, (C")

into the Schur functor representation space, which satisfy the square-integrability
condition

Lo Tw+l-y)
(W1)vm = = 1] Tw+r1=j-p)

« /dz det(1, — 22*)" =" . ((2) 7o (Lr — 22%) (2))m < +00.  (20)

BrXp

Note that 1,—zz* € GL,.(C) for any z € B"*? making m,,, (1,—22*) € GL(S,,(C"))
well-defined. It is well-known that a similar construction yields the so-called holo-
morphic discrete series of the group U(r,p), and other semi-simple Lie groups of
Hermitian type.

Our main result concerning Bergman spaces of super-holomorphic functions on
the matrix ball is the following

Theorem 5.4. For v > r+p—q—1, the super-Bergman space HE(IB%TXPVXQ) intro-
duced in Definition 5.2 has an orthogonal decomposition

H2 BP0y = N~ H2(B7P, S, (CT)) ® SE,(CY)
mCRXQ

where m, runs over all partitions
gzmy =---=2mp 20

with Schur functor S,,(C"), and Si,(C9) is the Schur functor representation space
associated with the conjugate partition m* of length smaller than or equal to q.
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Remark 5.5. For rank » =1 and 0 < m < ¢, the conjugate partition
mf =1mim

has the Schur functor S, (C?) = A™(C?). Since Sf,(C') = C in this case, we recover
the decomposition (10) for the unit ball.

Proof of Theorem 5.4. Identify
A = A(C™) = A(C" @ CY)

with the exterior algebra over C"*¢ = C" ® C?, and consider the canonical action of
GL,(C) x GL4(C) on A™*? induced by left and right matrix multiplication

(g, )¢ =g(h™!
for g € GL,(C), h € GL4(C), and ¢ € C"*9. A basic result in combinatorial harmonic

analysis [5, Exercise 6.11, p. 80] asserts that there is a multiplicity-free decomposition

A(C™0) = ) Sm(C") @ 8}, (CY) (21)

mCRXQ

into irreducible GL,(C) x GL4(C)-submodules, where m =m; > --- > m, > 0 runs
over all partitions of length smaller than or equal to r satisfying m; < ¢, and the

associated Schur functor representations are defined as above. For g € GL,.(C) and
h € GL,(C), it follows that

m(g,h)(a ®b) = Tm(g) a @ wh, (h) b
whenever a € S,,(C") and b € St (C?). For ¢ = (¢/) € C™9, with adjoint matrix

(* € C?7*", we have
roq
trCC*:§ § aal.

i=1 j=1

Applying Lemma 3.3 to the index set R x @ (endowed with the lexicographic total
ordering) we obtain for the Berezin integral

/d{ e Ty = (u | v) (22)
(CO\rxq

for any u,v € A"™*9 where (u | v) is the inner product defined as in Lemma 3.3. This
inner product is invariant under the action

C—gCh”
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of (g,h) € U(r) x U(q) on A™*9. Since the decomposition (21) is multiplicity free, it

follows that
Wlv) =Y (tum | Vm)m, m (23)
mCRXQ

whenever u = Y Uup and v = Y Up,, with components tm,,vm € Sp(C") ®
SE,(C?). For any m the U(r) x U(q)-invariant inner product ( | )y, mt on Spm(C7) ®
St (C?) is a tensor product

(@®b[c® ) ms = (@] )m (0] )i (24)

of a U(r)-invariant inner product ( | )m on S,,(C") and a U(g)-invariant inner product
(|)%, on'S§,(CY). For a matrix variable ¢ € C"*4, the Fischer-Fock reproducing kernel
functions Kpm((,¢) [7] are defined by the expansion

e =3 K¢, €) (25)

where m = my > --- > m, > 0 runs over all partitions of length < r. Moreover, one
can express

m(C,¢) = Z i (¢) wi(Q)* (26)

in terms of an orthonormal basis u; in the associated U(r)x U (q)-submodule Py, (C"*9)
of polynomials on C"*9. (For details, see [7] or [10].) Now assume that ¢ = (¢}) is a
“Grassmann” matrix, satisfying the relations (15). Define

Km((,Q) € AL,

by (26), using the involution * of AS, 4 Then the Grassmann relations (15) imply

that K., (¢,¢) = 0 unless my < ¢, i.e., m C R x Q. Thus in this case (25) becomes

eitrCC* = Z (_1)|m|Km(C7<)a

mCRXQ

where |m|:=mj + -+ m,. In view of (22) and (23), this implies

/dC Km (¢, Q) u'v = (_1)‘m‘ (um | Vm)m,m= (27)

COlrxq

for all u,v € A"% and m C R x Q. Thus the projection operators associated with the
decomposition (21) can be expressed via the Berezin integral. The Faraut-Kordnyi
binomial expansion [6], for matrices ¢ € C"*9, yields the formula

det(lr - CC*)Q - Z(_a)m Km(<7 <)

m
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where
(—Q)m = H(_a+ L—i)m, = H H(J —i—a)

is the multivariable Pochhammer symbol. Note that

room;

(D" (=a)m =[] [T(a+i-1)

i=1j=1

Imposing the Grassmann relations (15), it follows that only partitions m C R x @
occur, and we obtain

det(Ly = ¢C)* = Y (—a)m Em(¢, Q).

mCRxQ

Therefore (27) implies for all u,v € A™*4

Co\rxq

|
n
£
3

\
T
:
=
>
3
3

- Z Hﬁ(o‘+i*j)(um | Um)m, mt- (28)

MmCRXQ i=1j=1
To finish the proof of Theorem 5.4, let
U(2,¢) € O(B*PI*9) = O(B™P) @ A™*1

be a super-holomorphic function, and consider its canonical decomposition

mCRxQ

with W, (2) € Sy (C7) @ S, (CY), according to (21). For any z € B"*? consider the
fermionic change of variables

¢ = (1, — 22*)/20.
Since

1, — 22" — CC* =1, — 22" — (1, — 22°)Y200% (1, — 22%)'/?
= (1, — 2221, — 99") (1, — 22*)1/?
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it follows that

det(1, — zz* — (¢*) = det(1, — 2zz¥) det(1, — ¥I").

Therefore the fermionic integral transformation formula [3] yields

/dz d¢ det(1, — zz" — (C)" TP W(2, ()" U (2, ()
BrXxplrxaq

= /dz det(1, — zz*)””q*p*r/dﬂ det(1, — 99*)vTer=r

Brxp COlrxgq

X W(z, (1, — 2z2*)29)* U (2, (1, — 22")/29).  (30)

Since (1, — 22*)/? acts only on the left, its effect on the decomposition (29) is given
by

U(z, (I —22%)20) = Y w((Lr — 227)12, 1) U (2).
mCRXQ

Applying (28) to a :=v +q—p—7r and u = v == U(z, (1, — 22*)/20) € A"*9(¥) we
obtain, using the self-adjointness of 1, — zz* € GL,.(C),

/dﬁ det(1 — 99*)" TP (2, (1, — 22%)20)" W(z, (1, — 227)"/?0)
COlrxa

T om;

> M[w+a-r-r+i-i

mMmCRXQ i=1j=1

X (T ((Lr = 222, 19) U (2) | T (1 — 22%)1/2, 10) Ui (2)) o

= IIe+a-p-r+i-i

mCRXQ i=1j=1

X (U (2) | Tm (1 — 227, 14) \I]m(z))m,mﬁ (31)
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Combining (18), (30), and (31) we obtain

(W[ w),
= Dl + 1 —J) / dz det(1, — zz*)vF2a-p=r
P L P +1—j+q—p)

~
I

Brxp
X /dz? det(1, — 99*)FI P W(z, (1, — 225) 2 0) W(z, (1, — 22*) /2 0)
(C()lrxq

— 1 - Fw+1-7) E: fifi@+q—p—r+i—ﬁ

= 11"(1/+l—j+q—p) MCRXQ i=1j=1

=

X

\?

dz det(1, — zz*)””q_p_T(\I/m(z)\wm(lr — 22", 1) Ui (2))m, mt- (32)

Brxp

For each m C R x @Q, choose an orthonormal basis By, of Sf,(C?) and write

Upn(2) = Y Uh(2) @b

bEBm,

where 2, : B™P — §,,(C") is holomorphic. Since 7, (1, — 22*,1,) =
Tm (1, — 22%) @ 1id acts only on the left factor of S, (C") ® S¥,,(C?) we have

T (1 — 227, 1) Uy (2) = Z Tom (1, — 22°) 8 (2) @b
bE B,

and therefore, using (24) and orthonormality of By,

(Um(2) [ Tm (1r = 227, 1) Um(2))m,m: = Z (wfn(z) | T (1 — 227) wfn(z))m
bEBm

In terms of the inner product (20) for the vector-valued Bergman space we obtain

/dz det(1, — zz*)”+2q_p—r(\llm(z) | Tm (L — 227, 14) ¥ (2) ), me

Brxp
= 3 [ e det(t, 22 W) [Tl 22) ()
bEBom
— b b _
= Z (V. | Yra)va2q,m = (Ui | \Iim)HngQq([BrXp,sm((cr))®s§n(<cq)-
bEB,,
In view of (32), the assertion follows. O
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