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ABSTRACT

We characterize boundedness and compactness of weighted composition op-
erators acting between weighted Bergman spaces Aw,p and weighted Banach
spaces H∞

v of holomorphic functions.
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Introduction

Let v and w be strictly positive bounded continuous functions (weights) on the open
unit disk D in the complex plane and H(D) be the space of holomorphic functions.
We are interested in operators acting between the weighted Bergman space

Aw,p =
{

f ∈ H(D); ‖f‖w,p :=
(∫

D

|f(z)|pw(z) dA(z)
) 1

p

< ∞
}

, 1 ≤ p < ∞,

where dA(z) is the area measure on D normalized so that area of D is 1 and the
weighted Banach space of holomorphic functions (weighted Bergman space of infinite
order)

H∞
v := { f ∈ H(D); ‖f‖v := sup

z∈D
v(z)|f(z)| < ∞}.
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Let φ : D → D and ψ : D → C be analytic mappings. Such maps induce a linear
weighted composition operator ψCφ(f) = ψ(f ◦ φ) between spaces of holomorphic
functions of the type defined above.

Composition operators and weighted composition operators have been studied
on various spaces of holomorphic functions, see, e.g., [2–5, 10]. For more general
information on composition operators we refer to the monographs [6, 9]. In this
article we want to characterize boundedness and compactness of weighted composition
operators acting between spaces of the type defined above in terms of the weights.
Our result is similar to the one Sharma and Sharma obtained in [10] for standard
weights.

1. Preliminaries

We denote by B∞
v the closed unit ball of H∞

v . The so-called associated weights are
an important tool to handle weighted spaces of holomorphic functions. For a weight
v the associated weight ṽ is defined as follows

ṽ(z) :=
1

sup{ |f(z)|; f ∈ H∞
v , ‖f‖v ≤ 1 } =

1
‖δz‖H∞

v
′
, z ∈ D,

where δz is the point evaluation of z. The associated weights are also continuous and
ṽ ≥ v > 0 (see [1]). Furthermore, for each z ∈ D there is fz ∈ H∞

v , ‖f‖v ≤ 1, such
that |fz(z)| = 1

ṽ(z) . A weight is called essential if there is a constant C > 0 with

v(z) ≤ ṽ(z) ≤ Cv(z) for every z ∈ D.

For examples of essential weights and conditions when weights are essential see [1–3].
We fix a ∈ D and consider the automorphism ϕa(z) := z−a

1−āz , z ∈ D, which
interchanges 0 and a. Furthermore we use the fact that

ϕ′
a(z) =

1 − |a|2
(1 − āz)2

, z ∈ D.

2. Results

We first need the following auxiliary result. The following lemma is well-known for
standard weights (see [7] or [8]) but to the best of our knowledge not known for other
weights.

Lemma 2.1. Let w be a weight of the form w = |u| where u is a holomorphic function
without any zeros on D. Then

|f(z)| ≤ 1

(1 − |z|2) 2
p w(z)

1
p

‖f‖w,p

for all z ∈ D, f ∈ Aw,p.
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Proof. Let α ∈ D be an arbitrary point. Consider the map

Tα : Aw,p −→ Aw,p, Tα(f(z)) = f(ϕα(z))ϕ′
α(z)

2
p
u(ϕα(z))

1
p

u(z)
1
p

.

This map is an isometry since a change of variables yields

‖Tαf‖p
w,p =

∫
D

w(z)|f(ϕα(z))|p|ϕ′
α(z)|2 w(ϕα(z))

w(z)
dA(z)

=
∫

D

|f(ϕα(z))|p|ϕ′
α(z)|2w(ϕα(z)) dA(z)

=
∫

D

w(t)|f(t)|p dA(t) = ‖f‖p
w,p.

Now put g(z) = Tα(f(z)). By the mean-value property we obtain

w(0)|g(0)|p ≤
∫

D

w(z)|g(z)|p dA(z) = ‖g‖p
w,p = ‖f‖p

w,p.

Hence
w(0)|g(0)|p = |f(α)|p(1 − |α|2)2w(α) ≤ ‖f‖p

w,p.

Thus |f(α)| ≤ ‖f‖w,p

(1−|α|2)
2
p w(α)

1
p
. Since α was arbitrary, the claim follows.

The proof of the following result was inspired by [10].

Theorem 2.2. Let w be a weight of the form w = |u| where u is a holomorphic
function without any zeros on D. Then the weighted composition operator ψCφ :
Aw,p → H∞

v is bounded if and only if

sup
z∈D

v(z)|ψ(z)|
(1 − |φ(z)|2) 2

p w̃(φ(z))
1
p

< ∞.

Proof. By [1, Example 1.4] we know that under the given assumptions w = w̃. First
suppose that M = supz∈D

v(z)|ψ(z)|
(1−|φ(z)|2)

2
p w(φ(z))

1
p

< ∞. By the lemma we know that

|f(z)| ≤ ‖f‖w,p

(1 − |z|2) 2
p w(z)

1
p

for all z ∈ D, independent of f ∈ Aw,p. Thus, for z ∈ D, we get

‖ψCφf‖v = sup
z∈D

v(z)|ψ(z)||f(φ(z))|

≤ sup
z∈D

v(z)|ψ(z)|
w(φ(z))

1
p (1 − |φ(z)|2) 2

p

‖f‖w,p.
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For the converse let a ∈ D be arbitrary. There exists fp
a ∈ B∞

w such that
|fa(a)|p = 1

w̃(a) . Now put ga(z) := fa(z)ϕ′
a(z)

2
p . Then a change of variables yields

‖ga‖p =
∫

D

|ga(z)|pw(z) dA(z) =
∫

D

|fa(z)|p|ϕ′
a(z)|2w(z) dA(z)

≤ sup
z∈D

w(z)|fa(z)|p
∫

D

|ϕ′
a(z)|2 dA(z) ≤

∫
D

|ϕ′
a(z)|2 dA(z) =

∫
D

dA(t) = 1.

Next, we assume that there is a sequence (zn)n∈N ⊂ D such that |φ(zn)| → 1 and

|ψ(zn)|v(zn)

w̃(φ(zn))
1
p (1 − |φ(zn)|2) 2

p

≥ n

for every n ∈ N. Thus consider now gn(z) := gφ(zn)(z) for every n ∈ N as defined
above. Then we obtain that (gn)n lies in the closed unit ball of Aw,p and

c ≥ v(zn)|ψ(zn)||gn(φ(zn))| =
v(zn)|ψ(zn)|

w̃(φ(zn))
1
p (1 − |φ(zn)|2) 2

p

≥ n

for every n ∈ N, which is a contradiction.

Examples 2.3.

(i) Consider p = 1, w(z) = |1 − z|, ψ(z) = 1−z
2 = 1 − z+1

2 , v(z) = (1 − |z|2)2, and
φ(z) = z+1

2 . By [1, Example 1.4] we know that w = w̃. Then we obtain

sup
z∈D

v(z)|ψ(z)|
(1 − |φ(z)|2)2w(φ(z))

= sup
z∈D

(1 − |z|2)2
(1 − | z+1

2 |2)2 < ∞.

Hence the corresponding weighted composition operator is bounded.

(ii) Consider p = 1, w(z) = |1 − z|, ψ(z) = 1−z
2 = 1 − z+1

2 , v(z) = 1 − |z|2, and
φ(z) = z+1

2 . By [1, Example 1.4] we know that w = w̃. Then for z = r ∈ R by
using the rule of L’Hospital we get

v(r)|ψ(r)|
(1 − |φ(r)|2)2w(φ(r))

= 16
1 − r2

9 − 12r − 2r2 + 4r3 + r4
→ ∞ if r → 1.

Hence the operator is not bounded.

The proof of the following result was inspired by [10].

Theorem 2.4. Let w be a weight of the form w = |u| where u is a holomorphic
function without any zeros on D. Moreover let φ : D → D be analytic with ‖φ‖ = 1
and ψ ∈ H∞

v . Then the weighted composition operator ψCφ : Aw,p → H∞
v is compact

if and only if

lim
r→1

sup
{z;|φ(z)|>r}

v(z)|ψ(z)|
(1 − |φ(z)|2) 2

p w̃(φ(z))
1
p

= 0. (*)

Revista Matemática Complutense
2008: vol. 21, num. 2, pags. 475–480 478



Elke Wolf Weighted composition operators

Proof. First, we assume that (*) holds. Let (fn)n be a bounded sequence in Aw,p that
converges to zero uniformly on compact subsets of D. Let M = supn‖fn‖w,p < ∞.
Given ε > 0 there is r > 0 such that if |φ(z)| > r, and then

v(z)|ψ(z)|
(1 − |φ(z)|2) 2

p w̃(φ(z))
1
p

< ε.

By Lemma 2.1 we have

|fn(z)| ≤ ‖fn‖w,p

(1 − |z|2) 2
p w(z)

1
p

.

Thus, for z ∈ D, we obtain

v(z)|ψCφfn(z)| = v(z)|ψ(z)||fn(φ(z))| ≤ v(z)|ψ(z)|
(1 − |φ(z)|2) 2

p w(φ(z))
1
p

‖fn‖w,p ≤ εM

for all n.
On the other hand, since fn → 0 uniformly on {u; |u| ≤ r }, there is an n0 ∈ N

such that, if |φ(z)| ≤ r and n ≥ n0, then |fn(φ(z))| < ε. By assumption we know
ψ ∈ H∞

v . Thus we have N = supz∈D v(z)|ψ(z)| < ∞ and hence

v(z)|ψCφfn(z)| = v(z)|ψ(z)||fn(φ(z))| ≤ Nε.

Conversely, suppose that ψCφ : Aw,p → H∞
v is compact and that (∗) does not hold.

Then there are δ > 0 and (zn)n ⊂ D with |φ(zn)| → 1 such that

v(zn)|ψ(zn)|
w(φ(zn))

1
p (1 − |φ(zn)|2) 2

p

≥ δ.

for all n. Since |φ(zn)| → 1 there exist natural numbers α(n) with limn→∞ α(n) = ∞
and such that |φ(zn)|α(n) ≥ 1

2 for all n. For each n consider the function gn

gn(z) := fφn
(z)ϕ′

φn
(z)

2
p zα(n).

Then (gn)n is norm bounded and gn → 0 pointwise because of the factor zα(n). Thus,
it follows that a subsequence of (ψCφgn)n tends to 0 in H∞

v . On the other hand

‖ψCφgn‖v ≥ v(zn)|ψCφgn(zn)| = v(zn)|ψ(zn)||gn(φ(zn))|

=
v(zn)|ψ(zn)||φ(zn)|α(n)

(1 − |φ(zn)|2) 2
p w(φ(zn))

1
p

≥ 1
2
δ,

which is a contradiction.
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Revista Matemática Complutense
2008: vol. 21, num. 2, pags. 475–480 480


