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ABSTRACT

In arbitrary separable Hilbert spaces it is possible to define multiscale meth-
ods of constructive approximation based on product kernels, restricting their
choice in certain ways. These wavelet techniques have already filtering and
localization properties and they are applicable in many areas due to their gen-
eralized definition. But they lack detailed information about their stability and
redundancy, which are frame properties. So in this work frame conditions are
introduced for approximation methods based on product kernels. In order to
provide stability and redundancy the choice of product kernel ansatz function
has to be restricted. Taking into account the kernel conditions for multiscale
and for frame approximations one is able to define wavelet frames (= framelets),
inheriting the approximation properties of both techniques and providing a more
precise tool for multiscale analysis than the normal wavelets.

Key words: Hilbert space, wavelets, multiscale approximation, frames, stability, con-
structive approximation, framelets.
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Introduction

The classically used way for the approximation of arbitrary signals has always been
and still is the Fourier analysis in terms of a complete orthonormal system in the
Hilbert space under consideration. This has been discussed sufficiently and in detail
in functional analysis (see [1,24,25]). With the introduction of wavelet analyses (e.g.,
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[3,6,16]) it was possible to choose ansatz functions which are better suited for certain
problems. But completeness and orthonormality of the system of basis functions were
commonly lost for the price of specialization. Despite this, one result was a partially
redundant reconstruction method with unknown stability properties. For gaining
control this procedure has been combined with the topic of frames. Their theory
investigates completeness, stability and redundancy of discrete signal representation
(see, e.g., [4, 5, 7, 16, 18]). The frame constants provide thereby special information
about the redundancy of the frame, even whether the functions are an orthonormal
system in fact. The main focus of the classical theory stays thereby on the one-
dimensional axis, discussions concerning surfaces are even rare. In the context of
spherical wavelets introduced by the Geomathematics Group of the University of
Kaiserslautern, Germany (see [2,12,13]), frame conditions for wavelet transforms can
already be found, too, but frames are less familiar. An exact transformation from
the one-dimensional case to spherical domains does unfortunately not arrive at the
desired destination.

Thus, another kind of ansatz is applied here. As described in [10,17,22] it is pos-
sible to embed spherical wavelet theory within the context of a general Hilbert space
approach by product kernels. Adopting the wavelet transform as the frame operator,
the dual frames emerge as special wavelet types, without the sharp restriction of a
classical transformation. We introduce, therefore, an expansion of the general Hilbert
space approach to wavelet frames (framelets), originating from the combination of
S-type wavelets and product frames.

At first, classical frame properties will be transferred to separable Hilbert spaces.
This results in a theorem describing a complete signal reconstruction using frames
based on product kernels. Due to the similar ansatz functions in wavelet and frame
theory, these can be combined to a unified framelet approach inheriting features of
both methods.

Finally, a direct comparison between classical wavelets and enhanced framelets is
considered for a simple example on the sphere. Both methods are especially investi-
gated in their reaction to errors in form of a set of disturbed coefficients.

1. Preliminaries

Let Na denote all integers larger or equal a ∈ Z. Within the context of this article,
a general Hilbert space approach is used, following the notation from [10,17,22]. See
these references for more details, further properties, proofs, and applications of the
wavelet methods introduced here, too.

(H(Σ), 〈·, ·〉H(Σ)) shall be a separable real functional Hilbert space over a domain
Σ ⊂ R

n. Note that the elements of H(Σ) are functions F : Σ → R. Since the space is
separable, let {Un}n∈N0 be a complete orthonormal system in (H(Σ), 〈·, ·〉H(Σ)). Each
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function F ∈ H(Σ) can then be expanded in its Fourier series relative to {Un}n∈N0 by

F =
∑

n∈N0

F∧(n)Un, where F∧(n) := 〈F,Un〉H(Σ), n ∈ N0,

and the series converges with respect to 〈·, ·〉H(Σ). This is equivalent to the Parseval
identity

‖F‖2
H(Σ) =

∑
n∈N0

(F∧(n))2, 〈F,G〉H(Σ) =
∑

n∈N0

F∧(n)G∧(n), for all F,G ∈ H(Σ).

The main part of the general Hilbert space approach is based on product kernels.
The kernel functions Γ : Σ × Σ → R, defined by a sequence of partial sums, i.e.,

Γ(x, y) :=
∑

n∈N0

Γ∧(n)Un(x)Un(y), x, y ∈ Σ,

with Γ∧(n) ∈ R, n ∈ N0, is called H-product kernel. The sequence {Γ∧(n)}n∈N0

is called symbol of the H-kernel, and additionally H-admissible if it satisfies the
conditions ∑

n∈N0

(Γ∧(n))2 < +∞, (1)

∑
n∈N0

(Γ∧(n)Un(x))2 < +∞ for all x ∈ Σ. (2)

Convolutions in H are commonly scalar products between two functions of H. In case
of an H-product kernel Γ we obtain the following form of representing convolutions.

Definition 1.1. Let F ∈ H and let Γ : Σ × Σ → R be an H product kernel with
H-admissible symbol. Then the convolution of Γ and F is defined as

(Γ ∗ F )(x) =
∑

n∈N0

Γ∧(n)F∧(n)Un(x) = (F ∗ Γ)(x),

for all x ∈ Σ, where the expansion converges in the H-sense.

Convolutions between two H-product kernels with H-admissible symbols are also
given by these conclusions.

Corollary 1.2. Let Γ1 and Γ2 be H-product kernels with H-admissible symbols.
Then

(Γ1 ∗ Γ2)(x, y) := 〈Γ1(x, ·), Γ2(·, y)〉H =
∑

n∈N0

Γ∧
1 (n)Γ∧

2 (n)Un(x)Un(y),

for all x, y ∈ Σ and we get (Γ1 ∗ Γ2)∧(n) = Γ∧
1 (n)Γ∧

2 (n), n ∈ N0, which is also an
H-admissible symbol.
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After introducing H-product kernels we discuss a multiresolution analysis to model
an arbitrary function in H in terms of wavelets. Further details and all proofs for the
following theorems can be found in [10].

Definition 1.3. For all J ∈ N0 let {Φ∧
J (n)}n∈N0 be an H-admissible symbol of a

family of H-product kernels. It is called generating symbol of an H-scaling function
if it satisfies the following properties:

(i) lim
J→+∞

(Φ∧
J (n))2 = 1, n ∈ N0,

(ii) (Φ∧
J+1(n))2 ≥ (Φ∧

J (n))2, n, J ∈ N0.

The family of kernels {ΦJ}J∈N0 is called H-scaling function.

Convolving the product kernel with an element of H we weight the Fourier series
of the function by definition. Since Definition 1.3 provides a symbol which converges
monotonically to 1 it is obvious that the convolution tends to the identity operator
in the limit for J to infinity. We obtain an approximate identity.

Theorem 1.4 (Approximate Identity). Let {Φ∧
J (n)}n∈N0 , J ∈ N0, be a generating

symbol of an H-scaling function {ΦJ}J∈N0 . Then

lim
J→+∞

‖(ΦJ ∗ F ) ∗ ΦJ︸ ︷︷ ︸
=:FJ

−F‖H = 0

holds for all F ∈ H. FJ is called J-th approximation of F , and J is called scale.

Introducing approximation scales one easily recognizes the special role of differ-
ences between scales, between approximation levels, and even between kernel func-
tions. This gives reason to introduce so-called wavelets.

Definition 1.5. Let {Φ∧
J (n)}n∈N0 , J ∈ N0, be the generating symbol of an H-scaling

function {ΦJ}J∈N0 . Then the generating symbols {Ψ∧
J (n)}n∈N0 and {Ψ̃∧

J (n)}n∈N0 ,
J ∈ N−1, of the associated primal and dual H-wavelets are defined via the refinement
equation

Ψ∧
J (n)Ψ̃∧

J (n) = (Φ∧
J+1(n))2 − (Φ∧

J (n))2 for all n, J ∈ N0, (3)
and

Ψ∧
−1(n) := Φ∧

0 (n) =: Ψ̃∧
−1(n) for all n ∈ N0.

The families of the corresponding H-product kernels {ΨJ}J∈N−1 and {Ψ̃J}J∈N−1 are
called primal and dual H-wavelets associated to the H-scaling function {ΦJ}J∈N0 .

The wavelet transform WT at scale J ∈ N−1 and position x ∈ Σ is defined by

WT(F )(J ; x) := 〈ΨJ(x, ·), F 〉H, F ∈ H. (4)

The elements WT(F )(J ; ·) of H are called H-wavelet coefficients of F at scale J .
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With these coefficients we obtain an easy reconstruction by using the dual wavelets.

Theorem 1.6. Let {Φ∧
J (n)}n∈N0 , {Ψ∧

J (n)}n∈N0 , and {Ψ̃∧
J (n)}n∈N0 , J ∈ N0, be the

generating symbols of an H-scaling function {ΦJ}J∈N0 , as well as of the associated
primal and dual H-wavelets {ΨJ}J∈N−1 and {Ψ̃J}J∈N−1 , let F ∈ H. Then

F =
+∞∑

j=−1

WT(F )(j; ·) ∗ Ψ̃j

is given in the H-sense.

2. H-frames

Frame theory in one dimension investigates the completeness, stability, and redun-
dancy of signal representations. But reconstructing a signal from its frame coefficients
is similar to a wavelet approximation, too. Though we will focus on different proper-
ties here, the combination of frames and wavelets will later on add several structures
to the wavelet methods above. Due to this analogy the consideration of frames will
be done in arbitrary separable Hilbert spaces, which is in parallel to the Euclidean
case in [18] and can be seen in detail in [21].

It can be proven that the space

H(N−1 × Σ) =
{

F : N−1 × Σ → R :
∑

J∈N−1

‖F (J ; ·)‖2
H < +∞

}
,

equipped with the scalar product

〈F,G〉H(N−1×Σ) =
∑

J∈N−1

〈F (J ; ·), G(J ; ·)〉H, F, G ∈ H(N−1 × Σ),

is a Hilbert space. From this space the frame coefficients originate. Since the space
is a Cartesian product of an infinite but countable number of versions of H, it is
obviously larger than H. A frame transformation maps a function of H to a number
of smoothed versions, the so-called frame coefficients. These can be reconstructed
to regain the original function they represent. So the space of all possible frame
coefficients will only be a small subset of H(N−1 × Σ), its size will determine how
redundant the ansatz functions have been chosen. Since we are going to have one
H-product kernel for each scale, an additional admissibility condition is necessary,
involving scale and frequency and expanding, therefore, equation (2).

Definition 2.1. Let {ΓJ}J∈N−1 be a family of H-product kernels with H-admissible
symbols {Γ∧

J (n)}n∈N0 for all J ∈ N−1. We define the transform

U : H −→ H(N−1 × Σ)
F �−→ U(F )(J ; ·) := ΓJ ∗ F, J ∈ N−1.
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The family of H-product kernels is called H-frame if this linear operator is bounded
with continuous inverse, i.e., if there exist A, B > 0 such that

A‖F‖2
H ≤ ‖U(F )‖2

H(N−1×Σ) ≤ B‖F‖2
H (5)

for all F ∈ H. The H-functions ΓJ ∗ F , J ∈ N−1, are called H-frame coefficients.

U is called frame operator if the H-frame condition is satisfied. Bounded from
above and below, this operator is invertible and has a bounded inverse. So a frame
guarantees a complete and stable signal representation which may also be redundant.
By using the Parseval identity the following theorem can be proven easily.

Theorem 2.2. Let {ΓJ}J∈N−1 be a family of H-product kernels with H-admissible
symbols {Γ∧

J (n)}n∈N0 for all J ∈ N−1. The H-frame condition (5) is satisfied if and
only if these symbols fulfill the stability condition

A ≤
∑

J∈N−1

(Γ∧
J (n))2 ≤ B for all n ∈ N0. (6)

With this condition at hand we can formulate redundancy for the frame approach
of approximating functions. The frame transformation smooths a function F ∈ H
with a set of kernel functions and structural information is spread along different
scales. Each Fourier coefficient of F is contained in several scales of the resulting
frame coefficients due to the weighting with the symbol of the kernel. Condition (6)
bounds these weights. If they are a partition of unity, the decomposition of F can be
considered as tight. Total knowledge about the function can only be recovered by a
complete reconstruction. No two frame coefficients provide the same information bits.
This uniqueness is especially supported by the frame operator being a norm-isometric
isomorphism. If we only have A = B, all frequencies are handled equally since all
weights sum up to the same constant. The operator is no isometry anymore but the
isomorphism remains. But a simple factorization of the ansatz functions provides a
norm-isometric isomorphism and a tight mapping between the function space and the
domain of the coefficients again. In all other cases the frame is redundant. The opera-
tor is still injective and, therefore, an isomorphic mapping. But the reconstruction can
be done in several ways due to the information surplus within the higher-dimensional
space.

Corollary 2.3. If A = B = 1 the frame operator is an isometric isomorphism on
its image and, therefore, not redundant. So the frame is tight even if we only know
A = B.

For reconstructing F ∈ H from its H-frame coefficients we have to consider the
inversion of U . For this we need knowledge about the image space Im(U).

Lemma 2.4. Let {ΓJ}J∈N−1 be an H-frame. Then Im(U) is closed and strictly
included in H(N−1 × Σ).

Revista Matemática Complutense
2008: vol. 21, num. 2, pags. 453–473 458



Dominik Michel Hilbert space approach to framelets

Proof. Due to the frame inequality (5) it is obvious that Im(U) ⊂ H(N−1 × Σ).
Further, we know from functional analysis that each bounded linear operator with a
continuous inverse (see Definition 2.1) is injective and has a closed image (see [14]).
To prove that Im(U) = H(N−1 × Σ) consider [21].

Roughly speaking, the more redundant the frame is the larger the orthogonal
complement Im(U)⊥ of the image becomes. Since the frame operator is injective, the
restriction to Im(U) is invertible. The pseudo inverse U−1 is the left inverse that is
zero on Im(U)⊥. The following theorem states the boundedness of it, where we need
the adjoint operator of U , too.

Lemma 2.5. The adjoint frame operator U∗ : H(N−1 × Σ) → H(Σ) is given by

G �−→ U∗(G) =
∑

n∈N0

∑
J∈N−1

G(J ; ·)∧(n)Γ∧
J (n)Un =

∑
J∈N−1

G(J ; ·) ∗ ΓJ , (7)

converging in the H-sense.

Theorem 2.6. The pseudo inverse of U satisfies U−1 := (U∗U)−1U∗. It is the left
inverse of minimal norm, estimated by ‖U−1‖ ≤ 1√

A
.

Proof. Let Ū−1 be a left inverse of U which is arbitrary on Im(U)⊥. Let X ∈
H(N−1 × Σ) be arbitrary and decomposable into a sum X = X1 + X2 with X1 ∈
Im(U) and X2 ∈ Im(U)⊥. Then

‖U−1(X)‖H
‖X‖H(N−1×Σ)

=
‖U−1(X1)‖H
‖X‖H(N−1×Σ)

=
‖Ū−1(X1)‖H
‖X‖H(N−1×Σ)

≤ ‖Ū−1(X1)‖H
‖X1‖H(N−1×Σ)

.

Thus,

‖U−1‖ = sup
X∈H(N−1×Σ)

X 	=0

‖U−1(X)‖H
‖X‖H(N−1×Σ)

≤ sup
X∈H(N−1×Σ)

X 	=0

‖Ū−1(X)‖H
‖X‖H(N−1×Σ)

= ‖Ū−1‖.

Since X1 ∈ Im(U), there exists F ∈ H such that X1 = U(F ). Thus,

‖U−1(X1)‖H = ‖F‖H ≤ 1√
A
‖U(F )‖H(N−1×Σ) =

1√
A
‖X1‖H(N−1×Σ).

To verify the existence of the pseudo inverse we have to verify that the so-called
Gram-operator (see [4]) L := U∗U is invertible. Actually, L is self-adjoint and we have
with (7)

L F = U∗U(F ) = U∗((ΓJ ∗ F )J∈N−1

)
=

∑
n∈N0

∑
J∈N−1

(ΓJ ∗ F )∧(n)Γ∧
J (n)Un

=
∑

n∈N0

∑
J∈N−1

(Γ∧
J (n))2

︸ ︷︷ ︸
≥A

F∧(n)Un.
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Revista Matemática Complutense

2008: vol. 21, num. 2, pags. 453–473



Dominik Michel Hilbert space approach to framelets

By (6) this operator is obviously injective and surjective, hence invertible, where its
inversion has by component comparison the form

L−1 F =
∑

n∈N0

F∧(n)∑
J∈N−1

(Γ∧
J (n))2

Un for all F ∈ H.

L has further a bounded inverse since the Parseval identity gives

‖L−1F‖2
H =

∑
n∈N0

(
F∧(n)∑

J∈N−1
(Γ∧

J (n))2

)2

,

and so
1

B2
‖F‖2

H ≤ ‖L−1F‖2
H ≤ 1

A2
‖F‖2

H.

We are now able to consider the reconstruction of a signal F ∈ H from its frame
coefficients U(F )(J ; ·). This will be done by relating the pseudo inverse of the frame
operator to the dual frame. The connection between the frame {ΓJ}J∈N−1 and its
dual is explicitly given by the Gram-operator L and provides a powerful tool of frame
reconstructions.

Theorem 2.7 (H-Frame Reconstruction). Let {ΓJ}J∈N−1 be an H-frame with H-
admissible symbol and frame bounds A and B. The dual frame {Γ̃J}J∈N−1 defined
by

Γ̃J(x, y) := L−1
x ΓJ(x, y) = L−1

y ΓJ(x, y) =
∑

n∈N0

Γ∧
J (n)∑

j∈N−1
(Γ∧

j (n))2
Un(x)Un(y)

satisfies for all F ∈ H
1
B
‖F‖2

H ≤
∑

J∈N−1

‖F ∗ Γ̃J‖2
H ≤ 1

A
‖F‖2

H

and
F = U−1(U(F )) =

∑
J∈N−1

(ΓJ ∗ F ) ∗ Γ̃J =
∑

J∈N−1

(Γ̃J ∗ F ) ∗ ΓJ ,

being convergent in H-sense. If the frame is tight, then Γ̃J = 1
AΓJ .

Proof. For all X ∈ H(N−1 × Σ) we have with (7)

U−1(X) := L−1(U∗(X)) = L−1
∑

J∈N−1

X(J ; ·) ∗ ΓJ =
∑

J∈N−1

X(J ; ·) ∗ L−1 ΓJ︸ ︷︷ ︸
=:Γ̃J

,
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due to the continuity of L−1. The symbol
{
Γ∧

J (n)
(∑

j∈N−1
(Γ∧

j (n))2
)−1}

n∈N0
of Γ̃J is

H-admissible since conditions (1) and (2) are fulfilled by ΓJ :

∑
n∈N0

(Γ̃∧
J (n))2 =

∑
n∈N0

(
Γ∧

J (n)∑
j∈N−1

(
Γ∧

j (n)
)2

)2

≤ 1
A2

∑
n∈N0

(Γ∧
J (n))2 < +∞,

∑
n∈N0

(Γ̃∧
J (n)Un(x))2 =

∑
n∈N0

(
Γ∧

J (n)∑
j∈N−1

(
Γ∧

j (n)
)2 Un(x)

)2

≤ 1
A2

∑
n∈N0

(Γ∧
J (n)Un(x))2 < +∞,

for all x ∈ Σ. Further, the kernels also constitute a frame since

∑
J∈N−1

⎛
⎝ Γ∧

J (n)∑
j∈N−1

(
Γ∧

j (n)
)2

⎞
⎠2

=

∑
J∈N−1

(Γ∧
J (n))2(∑

j∈N−1

(
Γ∧

j (n)
)2
)2

=
1∑

j∈N−1

(
Γ∧

j (n)
)2 for all n ∈ N0

⇔ 1
B

≤
∑

J∈N−1

(Γ̃∧
J (n))2 ≤ 1

A

⇔ 1
B
‖F‖2

H ≤
∑

J∈N−1

‖F ∗ Γ̃J‖2
H ≤ 1

A
‖F‖2

H,

i.e., the frame bounds are connected to the ones of {ΓJ}J∈N−1 . For the third part
of the theorem we investigate the approximation of F ∈ H. Note that this equals
X = U(F ) in the first part of this proof.

FJ :=
J−1∑

j=−1

(Γj ∗ F ) ∗ Γ̃j =
J∑

j=−1

∑
n∈N0

Γ∧
j (n)Γ̃∧

j (n)F∧(n)Un =
J−1∑

j=−1

(Γ̃j ∗ F ) ∗ Γj

Since

‖F − FJ‖2
H =

∑
n∈N0

(
1 −

∑J−1
j=−1(Γ

∧
j (n))2∑

j∈N−1
(Γ∧

j (n))2

)2

︸ ︷︷ ︸
≤1

(F∧(n))2 ≤
∑

n∈N0

(F∧(n))2 < +∞
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the series converges uniformly with respect to J and the limit can be drawn into it.
So FJ converges to F in the H-sense.

Assume for a moment {ΓJ}J∈N−1 being a K-frame for the separable linear closed
subspace (K, 〈·, ·〉H) of a Hilbert space H. So all product kernels, admissibility, and
frame conditions are defined by a small subset of the basis functions of H. For an
element F ∈ H, the frame coefficients U(F ) represent partial information of F . One
is unable to recover F completely since all parts of K⊥ are removed in the calculation
of the frame coefficients. The orthogonal projection in H on K is given by

PKF =
∑

J∈N−1

(ΓJ ∗ F ) ∗ Γ̃J ,

which is the best approximation of F in K (see [14, Theorem 22.3]).
Remark 2.8. In one-dimensional frame theory it was possible to link a truncated
reconstruction to a best approximation in a certain subspace. So a truncated recon-
struction corresponded to the span of the remaining ansatz functions which were all
elements of the Hilbert space itself. Obviously, this cannot be easily transferred here
since product kernels have been used.

The orthogonal projection from H(N−1 × Σ) onto Im(U) is given by

P : H(N−1 × Σ) −→ Im(U)

X �−→ {PX(J ; ·)}J∈N−1 := {U(U−1(X))(J ; ·)}J∈N−1

=
{ ∑

I∈N−1

ΓJ ∗
(
X(I; ·) ∗ Γ̃I

)}
J∈N−1

.

An element X of H(N−1 × Σ) is a sequence of frame coefficients if and only if
PX = X, i.e.,

X(J ; ·) =
∑

I∈N−1

ΓJ ∗ (X(I; ·) ∗ Γ̃I), for all J ∈ N−1.

In several cases frame coefficients are varied a bit. If the scalar product is realized
by an integral then it has to be evaluated numerically, introducing errors. Also by
only having partial information about the originator the results would not fit with
the function but only an approximation of it. Both cases can be considered as the
coefficients being disturbed. But fortunately the reconstruction of frames already
maps noisy frame coefficients back into Im(U). The projector removes the parts
lying in the orthogonal complement of Im(U) due to the zero setting of the pseudo-
inverse for this set. So increasing the frame redundancy increases Im(U)⊥ and reduces,
therefore, the noise remaining in the signal. Suppose the frame coefficients X(J ; ·)
are contaminated by random noise Y (J ; ·). Then we have

P (X + Y ) = X + PY
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with PY (J ; ·) =
∑

I∈N−1
ΓJ ∗ (Y (I; ·) ∗ Γ̃I), where ‖PY ‖H(N−1×Σ) ≤ ‖Y ‖H(N−1×Σ).

Though frame coefficients can, therefore, also be slightly disturbed, redundant frame
theory handles this implicitly by providing a stable method.

3. H-Framelets

Within the last section we introduced H-frames in terms of arbitrary H-product ker-
nels with H-admissible symbols. The formerly mentioned H-wavelets have additional
constraints, reducing the choice of possible kernel types. By combining these two
theories we obtain H-framelets.

Definition 3.1. An H-frame originating from a primal H-wavelet, i.e., a wavelet
frame, is called a H-framelet.

Remark 3.2. The notation of framelets originates from recent publications in the field
of one-dimensional wavelet and frame theory, see for example [8, 23].

So let {Φ∧
J (n)}n∈N0 , {Ψ∧

J (n)}n∈N0 , and {Ψ̃∧
J (n)}n∈N0 , J ∈ N0, be the generating

symbols of an H-scaling function {ΦJ}J∈N0 , as well as of the associated primal and
dual H-wavelets {ΨJ}J∈N−1 and {Ψ̃J}J∈N−1 . The kernel type of interest is just the
primal wavelet. Let it fulfill the stability condition (6):

A ≤
∑

J∈N−1

(Ψ∧
J (n))2 ≤ B for all n ∈ N0.

Then the wavelet transform (4) satisfies the primal conditions to be a frame operator
and we denote the frame by

ΨS
J := ΨJ , (8)

where “S” refers to the stability conditions later on.
The dual frame corresponding to this wavelet kernel is not necessarily given by

the dual wavelet. Due to Theorem 2.7 we have for its symbol

(Ψ̃S
J)∧(n) =

(ΨS
J)∧(n)∑

J∈N−1

(
(ΨS

J)∧(n)
)2 . (9)

This dual frame is obviously only in certain cases identical to the dual wavelet. But
since ∑

J∈N−1

(ΨS
J)∧(n)(Ψ̃S

J)∧(n) = 1 ∀ n ∈ N0,

frame and dual frame are a partition of unity and are also capable of being wavelets by
themselves, the so-called S-wavelets. The dual wavelet also has an H-admissible sym-
bol since the denominator is bounded between A and B. Constructing a correspond-
ing scaling function including an approximate identity requires additional stability
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conditions. We define its symbol by

(ΦS
J)∧(n) :=

( J−1∑
j=−1

(ΨS
j )∧(n)(Ψ̃S

j )∧(n)
)1/2

=

( ∑J−1
j=−1

(
(ΨS

j )∧(n)
)2∑

j∈N−1

(
(ΨS

j )∧(n)
)2

)1/2

, (10)

for all n ∈ N0 and J ∈ N0. This generates a scaling function since

lim
J→∞

(ΦS
J)∧(n) = 1,

(
(ΦS

J+1)
∧(n)

)2 =
J−1∑

j=−1

(ΨS
j )∧(n)(Ψ̃S

j )∧(n) + (ΨS
J)∧(n)(Ψ̃S

J)∧(n)︸ ︷︷ ︸
≥0

≥ (Φ∧
J (n))2.

For ΦS
J being an H-product kernel we need to check the two conditions of an admissible

symbol. Condition (1) requires

∑
n∈N0

(
(ΦS

J)∧(n)
)2 =

∑
n∈N0

∑J−1
j=−1

(
(ΨS

j )∧(n)
)2∑

j∈N−1

(
(ΨS

j )∧(n)
)2 < +∞ (11)

for all J ∈ N0. Condition (2) further needs

∑
n∈N0

(
(ΦS

J)∧(n)Un(x)
)2 =

∑
n∈N0

∑J−1
j=−1

(
(ΨS

j )∧(n)
)2∑

j∈N−1

(
(ΨS

j )∧(n)
)2 (Un(x))2 < +∞ (12)

for all x ∈ Σ and all J ∈ N0. Since {ΦS
J}J is a scaling function, the property of an

approximate identity is obviously fulfilled. These two major conditions, i.e., (11) and
(12), combined with (6), are the three primary stability conditions for a sequence
{Ψ∧

J (n)}J∈N−1,n∈N0 to generate S-type scaling functions and wavelets.

Theorem 3.3 (S-type H-Framelets). Let {Ψ∧
J (n)}n∈N0 be a family of sequences in R.

Let each sequence be an H-admissible symbol and let them fulfill together the frame
condition (6) with the two frame constants 0 < A ≤ B < +∞ and the two summability
conditions (11) and (12). Then the symbols generated by equations (8), (9), and (10)
are also H-admissible symbols and generate primal H-wavelets, dual H-wavelets, and
H-scaling functions. They have the approximative identity property given by Theorems
1.4 and 1.6 and the stable frame reconstruction property given by Theorem 2.7.

4. Example

To demonstrate the restrictions necessary for S-type H-framelets we consider the
following example. Let Σ be the unit sphere Ω and H the space of (equivalence classes
of almost everywhere identical) square integrable scalar valued functions on Ω, which
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is denoted by L2(Ω). See, e.g., [9] for further details. This set is a separable Hilbert
space with the scalar product 〈F,G〉L2(Ω) =

∫
Ω

F (η)G(η) dω(η) and the closed and
complete orthonormal system of spherical harmonics Yn,j , with degree n ∈ N0 and
order j ∈ {−n, . . . , n}. Due to the addition theorem (see [9]) all product kernels have
the form

K(ξ, η) =
∑

n∈N0

2n + 1
4π

K∧(n)Pn(ξ · η), ξ, η ∈ Ω,

where {K∧(n)}n∈N0 is the isotropic symbol of the kernel. Note that this symbol has
been chosen to be independent of the degree of the basis functions. The two conditions
for admissible symbols, i.e., conditions (1) and (2), are identical due to the addition
theorem and result in K ∈ L2([−1, 1]).

A certain realization is done by the cubic polynomial symbol

φ(x) =

{
(1 − x)2(1 + 2x), x < 1,

0, x ≥ 1.

The classical wavelets can then, for example, be defined for each scale J ∈ N0 as
follows:

Φ∧
J (n) = φ(2−Jn)

Ψ∧
J (n) = φ(2−J−1n) − φ(2−Jn)

Ψ̃∧
J (n) = φ(2−J−1n) + φ(2−Jn)

(13)

Note that these are the so-called M-wavelets (see [9]). It is possible to choose the
wavelet symbols, i.e., the solution of the refinement equation (3) in a different way.
Especially wavelets of type P (see [9]) are very common but they are unable to result
in something different than a tight frame. For the frame construction the primal
wavelet symbol {Ψ∧

J (n)}n∈N0 is used. [2] has shown that the frame constants are
A = (11/32)2 and B = 2. The frame condition is overall behaving quite stable
(figure 1). Nevertheless, the symbol of the dual framelet is defined by dividing the
primal framelets symbol by it. From these two a new scaling function is defined. The
comparison of this new symbol to the original one is illustrated in figure 2. Especially
in figure 3 we can see the result of forcing stability and redundancy on the product
kernels. The left picture illustrates (in logarithmic view) the kernel function Φ7 with
one argument fixed, where the right one is the S-type scaling function ΦS

7 . The
original one is very localizing and diminishing very quickly. The stabilized kernel is
localizing, too, but it is heavylier oscillating and shows a smaller decay behavior. So a
bit of its localization property has been sacrificed to obtain the additional properties
of stability and redundancy.

To further demonstrate the stabilizing properties we choose the EGM96 Earth
gravity model (see [15]) as an appropriate example. It consists of spherical harmonic
coefficients up to degree and order 360. For our purpose this frequency band is cut
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Figure 1 – Denominator of dual framelet and scaling function, i.e., frame condition (6)
plotted against the frequency n
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Figure 2 – Symbol of the L2(Ω)-scaling function, scales 1 to 6

Revista Matemática Complutense
2008: vol. 21, num. 2, pags. 453–473 466



Dominik Michel Hilbert space approach to framelets

(a) original (b) stabilized

Figure 3 – L2(Ω)-scaling function, scale 7. Logarithmic view.

between 3 and 100. Using the above introduced wavelet function (see (13)) as framelet
ΨJ = ΨS

J , the wavelet/framelet coefficients ΨJ ∗ F = ΨS
J ∗ F of the gravitational

potential F can be evaluated. From this stage we can use both, the original dual
wavelet or the new dual framelet, to reconstruct the potential and to produce the
same results for J → ∞. But in case of any disturbances of the coefficients these
results will be different. So we choose for each scale J ∈ N0 a randomly generated
function GJ with G∧

J (n) being a normal distribution with expectation value 0 and
variance 10−8 and add these errors to the coefficients, i.e.,�ΨJ ∗ F = ΨJ ∗ F + GJ .
Afterwards, the reconstruction of�ΨJ ∗ F is performed by convolution with Ψ̃J and Ψ̃S

J .
We denote the approximations of F as

FN
J =

J∑
j=−1

Ψj ∗ F ∗ Ψ̃j , �FN
J =

J∑
j=−1

�Ψj ∗ F ∗ Ψ̃j ,

F S
J =

J∑
j=−1

ΨS
j ∗ F ∗ Ψ̃S

j , �F S
J =

J∑
j=−1

�ΨS
j ∗ F ∗ Ψ̃S

j ,

where FN
J and F S

J are the undisturbed approximations with dual wavelet and framelet,
respectively, �FN

J is the disturbed approximation with the original wavelets, and �F S
J

is the disturbed approximation using framelets. Table 1 gives the resulting errors in
the disturbed approximations compared to the undisturbed ones, i.e., the columns
in this table include the energy of the signal ‖FN

J ‖L2(Ω), the error of the normal
reconstruction ‖�FN

J − FN
J ‖L2(Ω), the signal energy ‖F S

J ‖L2(Ω), and the error of the
framelet reconstruction ‖�F S

J − F S
J ‖L2(Ω). Note that the total energy of the original

signal itself is 2.9622 · 10−6.
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Table 1 – Errors due to disturbances in the wavelet/framelet coefficients when recon-
structing up to a certain scale

scale signal energy N error energy N signal energy S error energy S
0 0 0 0 0
1 0 2.9434·10−8 0 3.0904·10−8

2 7.2510·10−8 4.1282·10−8 2.02732·10−7 5.0112·10−8

3 1.3810·10−6 8.1589·10−8 2.5648·10−6 9.6075·10−8

4 2.0361·10−6 1.3064·10−7 2.9136·10−6 1.6965·10−7

5 2.2060·10−6 2.2110·10−7 2.9628·10−6 3.0592·10−7

6 2.2385·10−6 4.6494·10−7 2.9726·10−6 6.4138·10−7

7 2.2462·10−6 8.7276·10−7 2.9773·10−6 1.2238·10−6

8 2.2490·10−6 1.6095·10−6 2.9785·10−6 1.6662·10−6

9 2.2495·10−6 2.4199·10−6 2.9786·10−6 1.7208·10−6

10 2.2496·10−6 3.1060·10−6 2.9786·10−6 1.7253·10−6

11 2.2496·10−6 3.6941·10−6 2.9786·10−6 1.7257·10−6

As we can see in table 1 our chosen disturbances of the wavelet/framelet coeffi-
cients is quite strong. But when investigating the behavior of the third and fourth
column (stabilized reconstruction) against the first and second column (normal re-
construction) we see two major points:

• The stabilized reconstruction reaches its convergent state earlier, the energy
amount of the limit is closer to the original than in the normal reconstruction.

• The error within the approximation is (at higher scales) smaller in case of sta-
bilized approximations. It even seems to stay at this height, even though new
disturbances occur at these levels.

This implies that the result has been more stabilized since a larger amount of disturbed
coefficients has been omitted. In table 2 the different wavelet/framelet scales are
not summed up, i.e., here the errors in the frequency bands are illustrated. The
effect of framelets stabilizing the signal is stronger in higher scales, preserving the
small amount of information that has not already been reconstructed. Moreover, we
observe that the framelets concentrate the noise on certain scales in a better way than
standard spherical wavelets do. So we have a clearer distinction of ”good” and ”bad”
wavelet coefficients in the signal decomposition, too. Altogether, the error behaviour
in the L2(Ω)-norm is clearly in favour of the framelet reconstruction. The last figures
show a visual inspection of this.

In figure 4 we see the original function, i.e., the EGM96 gravitational potential
between spherical harmonic degrees 3 and 100. The following figure 5 illustrates the
error of a reconstruction of the undisturbed wavelet coefficients after a full recon-
struction up to wavelet scale 10, i.e., at approximation scale 11. Clearly visible here
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Table 2 – Errors due to disturbances in the wavelet/framelet coefficients when recon-
structing a certain wavelet scale

scale signal energy N error energy N signal energy N error energy S
0 0 2.9434·10−8 0 3.0904·10−8

1 7.2510·10−8 2.8945·10−8 2.0273·10−7 3.9448·10−8

2 1.3790·10−6 7.0375·10−8 2.5568·10−6 8.1971·10−8

3 1.4962·10−6 1.0203·10−7 1.3823·10−6 1.3982·10−7

4 8.4892·10−7 1.7838·10−7 5.3800·10−7 2.5456·10−7

5 3.7996·10−7 4.0900·10−7 2.4094·10−7 5.6372·10−7

6 1.8615·10−7 7.3861·10−7 1.6680·10−7 1.0423·10−6

7 1.1197·10−7 1.3523·10−6 8.6482·10−8 1.1307·10−6

8 4.9588·10−8 1.8071·10−6 1.2519·10−8 4.3012·10−7

9 1.5572·10−8 1.9472·10−6 1.0853·10−9 1.2482·10−7

10 4.2524·10−9 1.9998·10−6 7.8544·10−11 3.4323·10−8

Figure 4 – Example: EGM96 gravitational potential, degrees 3 to 100
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(a) original (b) stabilized

Figure 5 – Reconstruction accuracy of the undisturbed signal at scale 11, calculated
with the ”normal” or “stabilized” method

is that stabilizing the process and choosing dual framelets has already accelerated the
converging behavior of the wavelet reconstruction.

For a comparison of the spatial accuracy of the different approximation methods in
terms of the disturbed coefficients, table 3 gives the root mean square difference of the
undisturbed approximations and the differences between disturbed and undisturbed
reconstructions for the normal and the stabilized version, all for all approximation
scales up to scale 11. These differences are calculated on a discrete equiangular point
grid with an angular step size of about 0.5◦.

Two things are clearly visible from this table: From column two, the difference
between the undisturbed reconstructions, we get the different speed of approximations
the two methods have. Columns three and four show that the normal method is
slightly better in accuracy at the lower scales (where the signal is still stronger). But
in higher scales (where the signal is overruled by errors) the normal method grows in
error, but the stabilized version stays on a certain level.
So the last figure, figure 6, illustrates the reconstruction up to the highest scale 11
when using the disturbed wavelet coefficients. The improvement of the stabilized
reconstruction is obvious, the shape of the signal (figure 4) recognizable. This seconds
the previous results of the framelets being a more accurate and more precise tool for
multiscale analysis than the normal wavelets.

5. Conclusion

Methods of wavelet approximations, though already generalized to arbitrary separable
Hilbert spaces, are still lacking usability in certain applications. This is mainly due
to the amount of properties they have. The task of this paper was to provide these
methods with concrete and detailed information about stability and redundancy. This
was done by including the topic of frames into the constructive approximation process
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Table 3 – Root mean square errors between the different approximation types: nor-
mal/stabilized reconstruction of disturbed/undisturbed coefficients

scale rms FN
J − F S

J rms �FN
J − FN

J rms �F S
J − F S

J

1 0.0000 0.0027 0.0033
2 0.0160 0.0049 0.0055
3 0.1621 0.0082 0.0104
4 0.1100 0.0139 0.0202
5 0.0520 0.0271 0.0358
6 0.0225 0.0528 0.0780
7 0.0127 0.1066 0.1485
8 0.0068 0.2005 0.2067
9 0.0023 0.2954 0.2154
10 0.0006 0.3798 0.2159
11 0.0002 0.4510 0.2160

(a) reconstruction (original) (b) reconstruction (stabilized)

(c) error (original) (d) error (stabilized)

Figure 6 – Reconstruction of the disturbed signal at scale 11, calculated with the
“normal” or “stabilized” method
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based on product kernels. It has been shown that this combination is possible, re-
sulting just in a minor restriction of the kernels symbol. These framelets inherit now
the best properties of both theories and provide an huge area of further possibilities
and applications.
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