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ABSTRACT

We consider linear systems related to the description of the collision of two
solitons for the gKdV equation with quartic nonlinearity. The computations
presented in this note are applied in Martel and Merle [10] to prove a result
concerning inelastic (but almost elastic) collision for a nonintegrable equation.
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Introduction

We consider the quartic generalized Korteweg-de Vries (gKdV) equation:
Ou + 0,(0%u+u') =0, x,teR. (1)

The objective of this note is to solve some linear coupled systems related to the
collision of two solitons for (1) (see also section 2 for the case where the nonlinearity
is u?). Recall that equation (1), unlike the corresponding equations with nonlinearities

u? or u3, is not integrable. In particular, the collision of two solitary waves of (1)
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is not described by explicit 2-soliton solutions. In [10], we have introduced a new
method to understand the collision of two solitary waves of (1) in the special case
where one solitary wave is small with respect to the other. More precisely, denote by
@ the unique even solution of

Q>0, Q"+Q*=0Q, QeH'R), ie, Q)= (5(393)) o
2

2 cosh?

and, for any ¢ > 0, let Q.(z) = C%Q(\/E.T) be a solution of Q” + Q* = cQ.. Then,
for any z¢ € R, ¢ > 0, the functions

RC@D (t’ .’L’) = C)c(aj — Xy — Ct)

are solitary wave solutions of (1), called solitons.
From [7] (see also [8]), there exist solutions u(t,x) of (1) which are asymptotic
N-soliton solutions at ¢ — —oco in the following sense: let N >1,¢; > --- > cy >0,

and x1,...,vn € R, there exists a unique H' solution U of (1) such that
N
tlimooHU(t) =D Qe (-~ —Cjt)H =0.
j=1 H'(R)

The behavior displayed by these solutions is stable in some sense. Considering
for example the case of two solitons, there exist a large class of solutions such that,
as t ~ —o0,

u(t,x) = Qe (x—x1—C1t) + Qpy (x—22—02t) + (1, 2),

where ¢; > ¢ and 7(t) is a dispersion term small in the energy space H' with re-
spect to Qc,, Qc, (see [8]). From the Physics point of view, the two solitons Q.,
and Q., have to collide at some time #y. In the special case ¢y < ¢; (or equivalently,
1Qcollzr <€ |Qeyllmr) and |[9(t)|| g < ||Qeyl| a1, for t close to —oo, we have intro-
duced in [10] explicit computations allowing to understand the collision at the main
orders, using a new nonlinear “basis” to write and compute an approximate solution
v(t,z) up to any order of size.

Recall that the problem of collision of two solitons is a classical question in nonlin-
ear wave propagation (see [3,13,14]). In the so-called integrable cases (i.e., when the
nonlinearity in (1) is u? or u?) it is well-known that there exist explicit multi-soliton
solutions, describing the elastic collision of several solitons (see Hirota [4], Lax [5],
Wadati and Toda [12], and the review paper Miura [11]). Note that in experiments, or
numerically for more accurate nonintegrable models (see Craig et al. [2], Li and Sat-
tinger [6], Bona et al. [1], and other references in [10]), this remarkable property is
mainly preserved, i.e., the collision of two solitons is almost elastic; however, a (very
small) residual part is observed after the collision. Equation (1) being not integrable,
explicit N-soliton solutions are not available in this case. The results obtained in [10],
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using Theorem A of the present paper, are the first rigorous results concerning in-
elastic (but almost elastic) collision in a nonintegrable situation. We refer to the
introduction and the references in [10] for a overview on these questions.

The approximate solution v(¢,z) in [10] has the following structure: let ko > 1,
ly >0, and
Yo={(k,€), 1<k <ky 0<L<l}.

We set

Yye=2+ (1 —c)t and R.(t,z) = Qc(y.),
y=xz—a(y.) and R(t,x)=Q(y),

where for (ak,¢)(k,0)es,

a(s) = /OS B(s")ds’, B(s) = Z arec'Qk (s).

(k,0)eXg

The form of v(t,x) is

v(t,x) = Q(y) + QC(Z/C) + W(t,x),
W(t,x) = Z < (QE(ye) Are(y) + (QF) (e) Bre(y)),

(k,£)eX0

where ay ¢, Ak, Bi are to be determined. Let S(t) = 9y + 0,(0%v — v + v?). We
have obtained in [10, Proposition 2.1]:

S(t,z) == CZQ?(%)((ﬁAk,e)/ +ar(3Q —2Q) — Fk,é)?“(y)

(k,L)eXg
= 3 QL () (£Bre) + aie(3Q") = (BAL, +4Q° Age) = Gie ) (1)
(k,0)eSo
+£(t,2),

where
Lw = —azw +w —4Q3%w,

E(t, ) is a lower order term and the functions Fy, ¢, G ¢ are second member terms in
the sense that they depend only on (ax ¢, Ak ¢r, By o), for (k',€) such that k' < k,
0 <t ork' <k, ¢ </l Therefore, to obtain a suitable approximate solution (i.e.,
for which S = &), we want to solve by induction on (k,¢) the following systems:

() (LA +are(3Q —2Q%) = Fry
’ (LBre) +aye(3Q") — 34} , — 4Q% Ay o = Gy .
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We have proved in [10] that for a certain structure of Fj ¢, G ¢, one could always
solve the system (2), see [10, Propositions 2.2 and 2.3].

Using this approximate solution v, and analysis arguments (allowing to relate v(t)
to solutions u(t) of (1)), we have proved the following result in [10, Theorem 1].

Non existence of a pure 2-soliton [10]. Let ¢ > 0. There exists g > 0 such that,
if ¢ < €y, then there exists no pure 2-soliton solution with speeds 1 and c. More
precisely, let u(t) be the unique H* solution of (1) such that

i [u(t) — Q( — 1) — Qu(- — et) |1 = 0.
Then, there exist x{, x5, ¢f > c3 >0, and K > 0 such that

wh(t,z) =u(t,z) — Q + (x—xl—clt) Qz(w—x —cit)

satisfies
i ot (Ol s e = 0,
Le¥ <ef ~1<Kew,  Lef<1- %ch%, (3)
Lt <owt () + Verclwt (O] < K, for tlage. (4

The lower bound in (4) gives the minimal distance of u(t) to a two soliton solution
after the collision. It is thus a qualitative version of the nonexistence of pure 2-soliton
solution. Estimate (3) means that the speed of faster soliton is increased and the
speed of the smaller one is decreased due to the collision.

For the proof of this result in [10], we needed in particular the resolution of (€24 )
and the value of by = lim,_.1 o Bag(z) in (Q2,0). Let Y be the set of functions
f € C*=(R) such that

VieN, 3K, r; >0, VeeR, |[f9O@)] <K+ =)l

The first system (€21 9) has been solved in [10, Proposition 2.3 and Lemma 3.1]. We
recall

(Q ) »CALO —+ 01,0(3Q — 2Q4) = 4Q3
NV (EB) + a10(3Q7) — BAY o — 4Q3A; o = 4Q5.
We found a solution (a1,0, A1,0, B1,0) of (£210) such that Ay ¢ is even, By ¢ is odd, and

1 z : /
Ay = g(Q/(fo Q%) —2Q%) + 2}32 (—3Q — 22Q") €V,
B1,0:§10+b10(_%) Bip€e), (5)
2
ayo = — ffgz 0, blO* hm BlO***/QS fQ) <0.
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’

(Note that by explicit computations limioo(—%) = £1.) The interpretation of the
resolution of the first system is the following: a; ¢ is related to the shift on the first
soliton due to the collision and b, o is related to the shift on the second soliton. In
particular, in contrast with the cases of the nonlinearities u? and w3, the shifts on Q
and Q. are both negative, see [10, Remark 2]. Note that the explicit computation
of By is possible but it is not required in [10].

For the system (£2,0), which writes as follows (see [10, Proposition 2.1]):

(LA20) + a2,0(3Q —2Q") = (6Q*(1 + A1,)?)
—a1,0(4Q% + 347 +4Q3 Ay o)’ + 3af ,QW,
(©220) (LBsyp) + 3a2,0Q" — 314/2/,0 - 4Q3A2J)

=6Q%*(1+ A10)> + (6Q°B1o(1+ A1)
— $a1,0(947 o+ 3B1 o +4Q° By o) + 547 ,Q",

we claim the following, which is the main result of this note.

Theorem A. Let (a1, A1,0,B1,0) satisfy (1,0) and (5). Then, there exists a solu-
tion (a2,0, A2,0, B2.o) of (Q2,0) such that As o is even, By is odd, and

A20 €Y, Bag=DBsg+bao (—%)7 By €,

JQUQ) 1 (e _,
J Q2 18 (sz)2

The fact that ba o # 0 is fundamental in the proof of [10, Theorem 1]. Note that
the explicit computation of by o in this note does not require the complete resolution
of the system (€2,0). A main difficulty in solving systems (€2 ¢) is to find explicit
antecedents by the operator £. In the proof of Theorem A, we use the resolution
of (1), bo,o = limy Bap = limyo, LBy and the self-adjointness of £ to avoid
computing as g, A2, and By . The structure of operator £ is described in Lemma 1.1
in section 1.

Formally, the fact that by # 0 means that for t =T, = c_%_l%)o7 (i.e., long after
the collision time ¢ = 0), we have

0(Te, ) = Q(y) ~ Qe(ye) — b1,0Qu(Ye) — b2,0(Q2) (ye)
~ Qc(yc - bl,O) - b2,0(Qg)/(yc)‘

Thus, v(T,) does not match a two soliton solution because of the nonzero term
b2.0(Q%) (ye) (for details, see proof of [10, Proposition 3.1]). Let u(¢, z) be the asymp-
totic 2-soliton solution at —oo, with speeds 1, ¢. Then, it follows from the analysis
in [10] that the size of (b2,0Q?)" measures the distance of u(t,z) from a pure two soli-
ton solution after the collision (some analysis arguments are required in addition to

. 1 3
b2,0 = 1+1ng,0 = _E/QQ T
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deal with the asymptotics in large time, see [9]). Recall that this is the first rigorous
description of inelastic collision of two solitons.

The plan of this note is as follows. In section 1, we prove Theorem A. In section 2,
we present some similar computations for the case u? in equation (1), used in [10].
The appendix contains the proof of some technical results.

1. Proof of Theorem A
We first recall the following elementary properties of the operator £ (see Lemma 2.2
in [10]).
Lemma 1.1 (Properties of £, [10]). The operator L defined in L*(R) by
Lf=—f"+[-4Q°f
is self-adjoint and satisfies the following properties:
(i) First eigenfunction: L£Q3 = ,%Q%_
(ii) Second eigenfunction: LQ' = 0; the kernel of L is {\Q', \ € R}.

(iii) For any function h € L*(R) orthogonal to Q' for the L? scalar product, there ex-
ists a unique function f € H*(R) orthogonal to Q' such that Lf = h; moreover,
if h is even (respectively, odd), then f is even (respectively, odd).

(iv) Suppose that f € H*(R) is such that Lf € Y, then f € Y.

Proof of Theorem A. The existence part, with the required structure on Az, B2,
was proved in [10, Proposition 2.3]. In this proof, for the sake of simplicity, we denote

aro=a1, Aiog=A1, Bio=DBi, ao=a, Aso=As, Byo=DBs.
From [10, Proposition 2.1], system (€22) writes
(LA5) +a2(3Q —2Q%) = (6Q*(1 + A;)?)
—a1(4Q° + 347 +4Q% A1) + 3a2QW
(Q2) 4 (LBy) +3a:Q" — 3AL—4Q° Ay
=6Q*(1+ A1)” + (6Q°B1 (1 + Ay))
— 2a1(94] + 3BY +4@Q*By) + 241Q",

where (a1, A1, By) satisfy (€21) and (5). Recall also the following functions used in
the resolution of the system (£21) in [10, Lemma 3.1]:

V0:_7 _71‘Qa £V0:3Q_2Q45
Vi=5(Q(y @) -20%), £vi =40,
Zo =3Q" + 3V +4Q%Vh, Z; =3V +4Q3V; +4Q3.
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We now claim
20y = —ay <6/Q2(1 + A1)V —ay /(ﬁBl)’Vo - gal /AlQ” + ;af/Q”Q

1
+3 [any)+o [@aeararn -a [wsyn ©)
Proof of (6). Denote by V5 the (even) solution of

LVy =6Q%(1+ A1)* — a1 (4Q° + 3AY + 4Q A1) + 347Q".

Then, Ay = V3 — a3V} is solution of the first line of the system (22). Moreover, since
(LB1) = 4Q3% — 3a:Q" + 3AY +4Q3 Ay,

EVVQ = 6@2(1 + A1>2 - CL1(£31>/. (7)
Recall from [10, Proposition 2.3] that the functions As, Bs have the following

structure: As € Yiseven and By = §2+b230 is odd, where By € YV and lim o p ==+l
o ed(p= —%, see [10, Claim 2.1]). Thus,
2by = Egg By — 1_1{2 By = Egé LBsy — 1_12[01 LBy = /(CBQ)’.
Therefore, from the second line of (£23), and then by (7), we obtain
2by = 4/Q3A2 + 6/@2(1 +Ap)? = 4/Q3V2 —4a2/Q3V0 + 6/@2(1 + Ay)?
= /(cvz)v1 —4a2/Q3V0 +6/Q2(1 + Ay)?
= 6/@2(1 + A1+ V1) —a /(ﬁBl)’Vl - 4a2/Q3V0.

Since Vg = —3Q — 32Q’ and [ Q* = [ Q, we have

i feva=g [@tes [a0@d =5 [o=a [

2, = (112/622)@1a2+6/Q2(1+A1)2(1+V1)—a1 /(cBl)/vl. (8)

Now, we determine ao from the equation of Bs, where we have replaced
Ay =Va —asVh,

Thus,

9 3
(LBy) +azZy = 3V5 +4Q°Va + 6Q%(1+ A1)* = S Af + Sa?Q”

1
- 5al(?,Bg’ +4Q°By) +6(Q*(1 4+ Ay)By)'.
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Multiplying by @, integrating, and using £Q' = 0 and

/ZOQ— —*/QQ 9)

(see proof of (9) at the end of appendix A), we obtain

1
_ 12(/Q2>a2
:/(3V2”+4Q3V2)Q+6/Q3(1+A1)2_‘3 /A//Q+ /QNQ
+/ [La1 (3B} +4Q°By) — 6Q°B; — 6Q°A, B, Q'
:/1/2(3Q”+4Q4)+6/Q3(1+A1)2— gal/A’l’Q+gag/Q/,Q
+/ [%01(362/” +4Q3Q/) o GQQQ/ _ 6Q2A1Q/] Bl.

On the one hand,
3Q"+4Q' =3Q+ Q' =L(Vo - Q)
since £Q = —3Q*. On the other hand, since £LA; = 4Q3 — a1 (3Q" + Q*%),

3a1(3Q" +4Q°Q") — 6Q°Q’ — 6Q*A,1Q" = —F(LA)) — $A,(4Q%)
=—1((LA) + 4Q%) Ay) = —3L(A)).

Thus, by (7), since LQ' =0,

(/Q) /Evz)(Vo— +6/Q31+A)
72 / A”Q+ / QQ+ / AV(LB,Y

:6/@2(1+A1) Vo —al/(ﬁBl)’(Vo—Q)

al/A”Q+ /Q”Q+ /A1 LB)

:6/Q2(1+A1) Vo —al/(LBl)’VO

2 /m@+ /QQ+ /mwa%

By inserting this value of ag into (8), we obtain (6). "
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As A1 =V; — a1V and then (£LB1) = 4Q3 — 3a1Q" + 3AY + 4Q3 Ay, we obtain
2 3 3 / 9 2 " 3 3 "
2bp =6 [ Q°(1+ A1) — 5™ A1(LB1)" + 701 [ AQ7 —gar [ Q°Q
3
= 6/@2(1 —|— A1)3 — 5@1 /A1(4Q3 — 30,1@” + 3A/1/ + 4Q3A1)
9 3
+§a%/A "—ia‘;’/Q”Q

= 6/Q2(1 —+ Al)g — %al /A1(4Q3 — 6a1Q” + 3A,1/ + 4Q3A1) — gaf/QNQ.

Since
LA +a1(3Q —2Q") = —AY + A} —4Q%A; + 30,Q — 20, Q" = 4Q3,
we deduce
4Q° — 6a1Q" + 3AY +4Q3A; = —8Q3(1 4+ Ay) + 3(A1 + a1Q),
and so

3 3
2by = 6/@2(1 + A1)3 + ial /A1 (8@3(1 + A1) —3(A1 + ChQ)) — 5&?/@”@.
We use again A1 = V7 — a1V and we sort terms by increasing powers of a;. We get

2by = 6/Q2(1 + Vi — a1V0)3 + 12a4 /(Vl — @1V0)Q3(1 + Vi — Cbl‘/o)

— S [ - )+ oY+ @) - Sat [ Q"

= pio + arpn + aips + aips,
where
10 =6/Q2(1+V1)3,
[y = —18/@2(1+V1)2V0+12/V1(1+V1)Q3— %/Vf,
fo = 18/@2(1+V1)V02 — 12/1/0(1+2v1)Q3 +§/V1(2v0 -Q),

p=-o [@rvg vz [Qvi -3 [vi+ ] [ve-3 [ea

We claim the following values for pg, 11, p2, and pus.
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LEMMA 1.2.

_ 1 2 _3 3 _ 1 2
po = 9/62, u1—4/Q, u2—24/62, p3 = 144/69

Assuming Lemma 1.2, and using a; = —2f Q/[ Q?, we obtain

3
; f Q2 (f Q)"
This completes the proof of Theorem A provided we prove Lemma 1.2. O

Proof of Lemma 1.2. The main ingredient is Lemma A.1 (see appendix).

o Computation of .

uo=6/Q2+18/Q2V1+18/Q2V12+6/Q2V13~

By Lemma A.1,
18/Q2V1 :G/QQ(Q’(IO‘"” Q%) —2Q°)
=—2/@5—12/Q5=—14/Q5=—20/Q2,
18/Q2V12 =2/Q2 Q(Jfy @) —20°)°
o fearer s [eater o
f2/Q4f0Q2 /Q7f0Q2 28/Q8

6/Q2V13 = 2/QZ Q(f7 @) - 2%’
s [e@rur e -5 [@@ris e’
+7/@8 foQg)—*/Q“
/Q4 (5 @)’ 45/627 (s @)’ -3 [ @U@’
b fecure -3 o

56
:_B/Q7 fo Qz +%/Q10(f0 QZ)Q_ﬁ/Qll'
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By Lemma A.1, [ Q" (foz Q2)2 = % fQ7(fo$ Q2) 9 17 P/ Q''. Thus,
3 z 19
6/Q2‘G3:_T0/Q7 fo Qz 2——/@“
/Q7 f() Q2 40 /Q8
Therefore,
s [@vive [evi =2 [Qi(re’ - [@Urey + T [ @

By Lemma A.1, [ Q7( /[y Q2)2 =201 ([ Q2)2 — 2 [ Q% and so

18/@2‘/124—6/@21/13:%/@8.
=1 [ @+ [@ = [

since, by Lemma A.1, [Q® =22 [Q° = 230 [ Q2.

Finally,

o Computation of .
= —18/@2(1+V1)2V0+12/Q3V1(1+V1) - g/vf.

First,

718/Q2 14+ V1)V = —18Q? 0—36/Q2V1 0—18/Q2V1 Vo.

We use that Vy = f%Q — %xQ’:
—18Q%*V, = 6/Q3+27/xQ’Q2 = 73/Q3,
~36 [ Qive=1 [ QI @) - 20)(@ + $+@)
_4/Q3 fQ2+18/Q2 z( [y Q%)

—8/@6—36/1@’@5

- _3/Q6 +18/xQ4(f0 Q?) — /zQ7(f0 Q?),
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B -l / Vv = / Q(Q(J5 @) —20°)"(@ + 32Q)
=2 @+ g
(@U@ -3 @) -4 (Jy @) +4e°)
/Q5J‘OQ2 15/628]0@2 /Q6 ( Q2)
/Q9+3/xc2@4<f0 @) - L [r@ (7 @y
- 12/33Q (Jo @)+ /wa(fo Q?) +12/xQ Q®
/Q5 o @’ 60/Q8 s @’ 12/Q9

-5 [e@ @) + 35 [0 @),
Summing up
48/@2(1+V1)2Vo - —3/623 —3/Q6+Q/Q9+18/xQ4(f§Q2)
-5 [a@ U @)+ 3 [e@ U @)
v @U@’ /QS Ji @)’

By Lemma A.1,

[rier=3 [ower o

thus
—18/Q21—|—V1 :_S/QS /QG /Q9+%/Q5(IOIQ2)2
5 [ @U@ +1s [ 20! @)
99 rQ7(J7 Q).
From Lemma A.1,

/$Q7(fo Q?) = / Q5 @) - 10 11- 12/Q6
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so that
9 1 .
718\/Q2(1+V1)2‘/0:73/Q37§/Q6+§/Q9+T5/Q0(f0 Q2)2
7 x
5 [@Urey”
and

12/1/1(1+V1)Q3 = 12/%Q3+12/V12Q3
1 [@ (@) -2
g [@UF @)~ 35 @) 4@ (J; @) +40°¢°

= ,Q/QG 128/Q9 /QE)(IOI Q2)2

8
_B/Q8f0Q2 )

Therefore,
—18/@2 1+17)? V()+12/V1 (1+)Q _—3/Q3 81/Q6
156/Q9 /QQ fow Q2)2
8 2
- @/Q fo Q2) :
We use that 0
CU@r=5 [eUen -5 [
Thus

)

—18/@(1+V1)V()+12/V11+V1 :—3/Q3 81/626 15/629
+%/Q"’f0@2

:—3/Q3+3§9/Q6
+2%/Q5(I§Q2)2,

since [ Q% =2 [Q° (Lemma A.1).
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S vt [ @ -0
——5 @ [@Ure v [e@tre) -2 [ @

——5 [@Uren’ [euren -] [ e

Summing up, we get

m=-s [@r P [@-5 [eUren s o [@Ur ey’

/Qs fo Qz 10/Q2 fo QQ /QG

and [ Q% =2 [Q3, by Lemma A.1, so that

Mlzz/QS-

but

o  Computation of us.

u2_18/Q21+V1)V0—12/Q3V01+2V1 /V12V0—
First,
18 [ Qv =3 [ Qe+ Q@) - 20%)(@Q+ §aQ)°
=2 [+ 9:0°0 + 302Gt - Q)
< (3+Q'(Jy @) —2Q°)
:2/Q4+18/mQ3Q’+%/:¢2Q4
—%/ﬁczw?/@* Q5 @)
6 [aQ (7 @) - % [ @' @)

27

+5 [PeUre) -5 [fdere) -5 [@

—12/1:@ Q' —27/x2Q7+€/x2Q10.
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Thus,

18/@21+V1 /Q4 7*+12 /@7 81/2Q4 @/mzy

17-27

0 )T / Qo @) - /xQS(fo Q?).

/szm 7/ 22Q7 — 717/627

20 5
247 _ 4V 294 2 4
/:EQ_M/“:Q 22/Q’

459

T [e@ T [ =T [t T ot -3 @

Therefore,

18/Q21+V1V[)_ /Q4 /Q7

3 [e@ (@) - 5 [ 225 @)

But (Lemma A.1)

and

so that

—12 [V +20@° =1 [(@+ 300 (1+ 3/} @) - 4
1 /(@ + 320'0") +§/Q4 (5 @)
+12/mQ5(f0 Q?) - /sz 17 Q?) ,7/627
- 24/:cQ6Q’
= —*/Q“ /Q7+12/xQ5(f0”Q2)
Q@) -5 [ @
Thus,

18 [ @+ Vg - 12 [ o1+ 211)Q°
33 265 63 117
6@ [T [remren -5 [« e
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But, by Lemma A.1,
[aUre) =5 [« (e -5 [

and so

18/622(1+V1)V02 - 12/1/0(1+2V1)Q3

ot a8 fae)

As [Q7 =20 [Q*, we get

18/Q21+V1)V0—12/V01+2V1 = 109/624 /xQ5 (fy @%)

and

9

5/vl(wo—cz):—%/( (7 Q%) - 20°)(5Q + 92Q)

=3 e e -3 [ +F [w@ ;@)

+5/Q4 +9/xQ Q'
P e ToRe Pl
Finally,
~Rfete g [ -5 [0 @)
But, by Lemma A.1,

63

w@ ([ Q@) =5 [« @) - 3 [ @t

9 -m e

Thus

o Computation of us.
9 9 3
=0 [@vg ez [Qvi-5 [vi+] [vie-3 [
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First,
—6/Q2V03+12/Q3V02 = 6/V02(—v0+2Q)
— 3 [@+ 30210 + @)
— g/(QZ +9$Q/Q+ %IEQQQ _ %.'ITQQS))
X (1Q° + J2Q*Q)
_u / Q@+ / 2Q'Q +14 [2Q'Q 10 [ @7
- / 2208 + 63/x2Q5+%/x3Q4Q’
63/ 22Q° — 7/$3Q7Q,
_ 13/Q5 567/x2Q5—%/:p2Q8.

/ 2208 = §/x2Q57133/Q5’

2 24 5
76\/Q2‘/03+12/Q3‘/02 _ 09/@0 73 I,QQL)'

But, by Lemma A.1,

and so

360

Second,
g/vo(—vo +Q) = —% /(Q +52Q")(4Q + 52Q")
—% / (4Q% + 52QQ" + 182Q'Q + %xQQQ — 82°Q°)

_ 29 2 81 2,2 §/25
_S/Q 8/3:Q+20 Q.

Thus,
fesmfot oo o
" [e@ =2 [#@ -2 [@* and /Q5 7]
so that

2
Hs = 144/Q =
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2. Resolution of systems (€2,0) and (€24,1) for p =2

In this section, we consider the equation
Opu+ 0,(?u+u®) =0, x,tcR.

The problem is similar, except that there exist explicit multi-solitons which describe
the collision of several solitons. Our objective in [10] was to point out that at the main
orders our decomposition corresponds to the explicit 2-soliton solution. In doing so, we
needed to compute the solutions of (Q1 ), (21,1) and (Q20) (for the nonlinearity u?,
the system (€2,1) appears at the same order of size as (€22,0)). Note that the same
could be done for u3.

In the case u?,

Qz) = §cosh_l(%) solves Q"+ Q = Q%

2
We recall from [10, Lemma 3.1] that the resolution of (4 o) gives
2 1 o
1.0 3 ) 1,0 3 Q7 1,0 Q

We now solve (€22) and (€4.1).
Proposition 2.1 (Resolution of (Q3) and (€2 1) for p = 2).
4 2 4 2 1 4
== =2, Ayo=-2+4-Q, A1 =2--Q—~2Q', byg=1limBygy = -.
aso g’ 11 =73 Azo +3Q, 1,1 SQ 333Q , boo=1limByo =2
for solutions to systems (Q2,0) and (Q1,1).
From [10, Corollary 3.1], there are several solutions. Indeed, in general, if
(ak.e, Ak.e, Bre) is solution of (Q ), then for any (v, 0x.¢) € R?,
(ak,e + Yk,001,00 Ao + Vo (L + A1,0), Bre + Ve,0B1,0 + 01,0Q") (10)

is also solution, which gives two degrees of freedom at each step. The choice of the
solution above is related to the exact 2-soliton solutions.

Proof of Proposition 2.1.
o System (2,0).

From [10, Proposition 2.1],

(LA20) + a2,0(3Q —2Q%) = (—A10 + A7 o) — (3B} ¢ + 2QB1)
—a1,0(Q + 347 ) +2QA10) + 3a7 ,Q®,
(LBa) +3a2,0Q" — 3AY — 2QAs
= A10+ AT g+ (—2B1 + A1,0B10)
- %al,O(QAILo + 3B£0 +2QB1,) + %a?,o "
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Replacing A; ¢ and B g, the first line of the system becomes

(LA20) = (3Q + Q%) — (—2Q" +4Q'QQ")
—2(Q-4Q" — Q) + 4QW — a50(3Q — 2Q?)
— (3Q - 4Q% — a2,0(3Q — 2Q?))".

We choose 29 = —2 in (10), so that we consider As ¢ solution of

LAz =58Q — 2Q% — a20(3Q —2Q%) —
Consider the function V5 defined by
16 2
Vo= -2+ 5Q+52Q LVa=5Q-3Q° -2
Then, Az ¢ = Vo — a2 0V, where in this case Vo = —Q — %mQ’ solves LVy = 3Q —2Q>.
Inserting the expressions of aj 0, A1,0, B1,, and Ay into the second line of (Qs)

and after some calculations, we obtain the following equation for B o:

(LB2yp)" + a2,0Z0 = 3Vy +2QV> + Q + Q2

where Zy = 3Q" + 3Vy' + 2QVy. The value of as is thus given by

QQ,O/ZOQ:/ZQQa

where Zy = 3Vy' +2QVa + 5Q + Q% Recall that [ ZoQ = —3 [ Q? [10, Claim 2.3].

We claim .
[za-fo y
Proof of (11).

[ 20— [vas@+ 207 / @y [
— [eva-20-3@)+ 5 [@r4g [ @
- [Be-1@-pee+ )+ 5 @) [@
fo-sforr2 o=t -

4 4
az o = —§ and A270 =-2+4 EQ

Thus,
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Finally, we compute bao. As in section 1, we have 2by g = [(L£LBs)’. Thus, since

[Q=6, [QVo=—1[Q,and [VoQ = —3 [ Q, we obtain
2b2,0=—2a2,0/V0Q+2/V2Q+§/Q+§/Q2:g/ng

o System (Q1,1).

The system (€4 1) writes
(LA11) +0a11(3Q —2Q%) =34, o+ 3B/, +2QB
(EBlyl)/ + 3(11’1Q" — 3A/1/71 — 2QA171 = 33170.

Replacing A,y and By by their respective expressions, the first line of the system
becomes

(LA11) = —2Q" —a11(3Q — 2Q?)".
We choose 71,1 = 2, so that

,CAl,l = 2 — 2Q — a1’1(3Q — 2@2) and Al,l = 2 — 2Q — $Ql — a1,1V0.
Thus, the second line of the system becomes

(LB11) +a11Z0 = —2Q + 3(—2Q — 2Q")" +2Q(2 — 2Q — zQ’),

al,l/Zon—g/Q2+g/Q3Z—%/QZZ—%/Q-

Since [ ZoQ = —2 [ Q, we deduce a1 ; = 2 and so A;,1 =2 — 2Q — $2Q’. O

and so

Appendix: Identities for solutions of (2)
Lemma A.1. Let Q be defined in (2). For any r > 1,
r+3 _ or T
Jare=3" e (12)
” z 2 br R 2 10 ”
Jorl @) =575 [ QW - Gy [ 0

r+3 T o 57”’ r [T o 10(T+1) r+2
/xQ+f0 Q272T+3/xQ o @ (2T+3)r(r+2)/Q+, (14)

2\r+3 57“ 2T 10 r
/IQ+727‘+3/IQ r(2r+3)/Q' (15)
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Proof. To prove this lemma, we only use

2Q5_

Q'=Q-Q" ad (@)=Q*-;

Proof of (12). By integration by parts,

Jae-[ae=[e@-a)= [ore-n [@re
/Qr B 7/Qr+3

27”;‘3/(02#3:70/@@ .

Proof of (13). By similar arguments,
Jorer= [ereure) - [ee-enr @)
= / Q7@ +r -1 / (@7Q(Jy @¥)°
vzl e
- [arey -T2 [osurey -2 o

Thus,

Thus,
2r + 3

[erurey=r [atrey -2y [a :
Proof of (14).
[ao i@ = [aat; @ = [« @@ @

- [s@ i@ v ooy [@ree s [oa )@
+/xQT+1QI

:T/erfomQQ - 2(7”5— 1) /erJrSfOxQQ _ (14_ Ti2)/QT+2'

r

2r;3/Z'QT+SIO$Q2:T‘/IQTIOIQ2—2(r+1)/Qr+2_

r(r+2)

Thus,
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Proof of (15).
[ea = [2o@-a)= [fo+o-1 [#@re
+2/xQ7'_1Q’
o [ BN [ 2 g
Thus,
2r5+3/x2Qr+3:,,/sz_§/Qr_ .

Proof of (9). This is [10, Claim 2.3]. We repeat it here for convenience.
We compute [ ZoQ, where Zy = 3Q" + 3V§' +4Q3*V,. By Q" = Q — Q*, we get:

/ZOQ - /(3Q”+3Vd’+4Q3%)Q :3/622 —3/Q5+/%(3Q”+4Q4)

:3/Q2—3/Q5+/VO<3Q+Q4>.

We compute the last term, integrating by parts:
5 1
[wee+a)=- [Ga+ge)eeren =5 [@ -5 @

Finally, using Lemma A.1,

[2a-t fo- % o [ :
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