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ABSTRACT

This paper studies the distribution of the power generator of pseudorandom
numbers over a residue ring for parts of the period. These results compliment
some recently obtained distribution bounds of the power generator modulo an
arbitrary number for the entire period. Also, the arbitrary modulus case may
have some cryptography related applications and could be of interest in other
settings which require quality pseudorandom numbers.

Key words: sequences, pseudorandom numbers, discrepancy, exponential sums.

2000 Mathematics Subject Classification: Primary 11L07, 11K38; Secondary 11B50,
11K45.

Introduction

Let e ≥ 2, M ≥ 1, and ϑ be integers such that gcd(ϑ, M) = 1. Then one can define
the sequence (un) by the recurrence relation

un ≡ ue
n−1 (mod M), 0 ≤ un ≤ M − 1, n = 1, 2, . . . , (1)

with the initial value u0 = ϑ.
This sequence is known as the power generator of pseudorandom numbers.
It is obvious that the sequence (1) eventually becomes periodic with some pe-

riod τ . In this paper we assume that gcd(e, ϕ(M)) = 1; and so it follows that the
sequence (un) is purely periodic. Apart from some results such as those in [1–5, 10,
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13, 18, 19], as well as [14, 16, 24] which deal with the power generator in more detail,
very little else is known about the distribution of the sequence of numbers produced
by the power generator. More specifically [7, 11] contain distribution bounds for the
case when the modulus is a prime power.

Here we show that the original method of [20], and more recently also used in [8,9],
combined with bounds for exponential sums with sparse polynomials from [12] allows
us to study the distribution of the power generator of pseudorandom numbers over
a residue ring. In particular, in [12] a distribution result for the sequence generated
by (1) has been established for the sequence over the entire period. However, no
analogous results exist for segments of this sequence. In some cases, obtaining a
bound for subsets of a sequence is a much more difficult problem than for the entire
period, e.g., [25]. Furthermore, some publications explicitly set out to obtain results
which only deal with such subsets, e.g., [17, 22] and more recently [7]. Further, the
later applies to prime power moduli, whereas here we aim to establish a result for any
arbitrary modulus.

Several other results about non-linear pseudorandom number generators have been
obtained in [8, 9, 15]. However these apply to generators of the form un ≡ f(un−1)
(mod M) where f is a polynomial or a rational function, whilst [17, 21, 22] provide
results for the inverse generator. Both of these types of generators, however, are of
small degree, while in this paper we do not impose any restrictions on the size of the
exponent e.

1. Preliminaries

For a sequence of N points

Γ = (γn), n = 1, . . . , N (2)

in the half-open interval [0, 1), denote by ΔΓ its discrepancy, that is,

ΔΓ = sup
B⊆[0,1)

∣∣∣∣TΓ(B)
N

− |B|
∣∣∣∣,

where TΓ(B) is the number of points of the sequence Γ which hit the interval

B = [α1, β1) ⊆ [0, 1)

and the supremum is taken over all such intervals.
Also, for an integer a ∈ Z, we put |a| = max{|a|, 1}.
This discrepancy of a sequence of points in the 1-dimensional unit cube can be

estimated by the well-known Erdös–Turán inequality (see [6, Theorem 1.21]) which
we present in the following form.
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Lemma 1.1. There exists a constant C > 0 such that, for any integer L ≥ 1, for
the discrepancy of a sequence of points (2) the bound

ΔΓ < C

(
1
L

+
1
N

∑
0<|a|≤L

1
|a|

∣∣∣∣∣
N∑

n=1

exp(2πiaγn)

∣∣∣∣∣
)

holds, where the sum is taken over all integers a ∈ Z with 0 < |a| ≤ L.

Define the residue ring ZM = Z/MZ for a positive integer M , where we identify
ZM with the integers {0, . . . , M − 1}.

For an integer a ∈ Z we define the exponential sum

Sa(t, τ ; M, N) =
N−1∑
n=0

eM

(
aϑen)

.

where
eM (z) = exp(2πiz/M),

and where t and τ are the multiplicative orders of ϑ and e respectively, with N ≤ τ .
In this paper, we obtain a non-trivial upper bound for the sums Sa(t, τ ; M, N) and

derive (see Theorem 2.2) the uniformity of distribution modulo M of the elements
un, n = 1, . . . , N ≤ τ .

To prove our main result, we also make use the following lemma from [12].

Lemma 1.2. Let a, c be integers with gcd(a, M) = δa < M . Then the bound

t∑
y=1

∣∣∣∣
t∑

x=1

eM (aϑx + cϑxy)
∣∣∣∣
4

� δat9/4M5/2+ε,

holds, for any ε > 0.

2. Discrepancy bound

Now we are ready to formulate our main estimate.

Theorem 2.1. Let (un), the recurrence sequence defined by (1), be of period τ , which
is the multiplicative order of e modulo t. Fix δa = gcd(a, M). Then, for any ε > 0,
the bound

|Sa(t, τ ; M, N)| � N4/9δ1/9t1/4M5/18+ε

holds, where the implied bound depends at most on ε.
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Proof. For any integer k ≥ 0 we have

∣∣∣∣Sa(t, τ ; M, N) −
N−1∑
n=0

eM (aun+kt)
∣∣∣∣ ≤ 2k.

Therefore, for any integer K ≥ 1,

K |Sa(t, τ ; M, N)| ≤ W + K2,

where

W =

∣∣∣∣∣
N−1∑
n=0

K−1∑
k=0

eM (aun+k)

∣∣∣∣∣ ≤
N−1∑
n=0

∣∣∣∣∣
K−1∑
k=0

eM (aun+k)

∣∣∣∣∣.
We then obtain

W 2 ≤ N

N−1∑
n=0

∣∣∣∣∣
K−1∑
k=0

eM (aun+k)

∣∣∣∣∣
2

≤ N

N−1∑
n=0

∣∣∣∣∣
K−1∑
k=0

eM

(
aϑen+k)∣∣∣∣∣

2

≤ N
∑
x∈Zt

∣∣∣∣∣
K−1∑
k=0

eM

(
aϑxek)∣∣∣∣∣

2

≤ N

K−1∑
k1=0

K−1∑
k2=0

∑
x∈Zt

eM

(
a
(
ϑxek1 − ϑxek2 ))

< N

K−1∑
k1=0

K−1∑
k2=0

∣∣∣∣∑
x∈Zt

eM

(
a
(
ϑxek1 − ϑxek2 ))∣∣∣∣

< N
K−1∑
k1=0

K−1∑
k2=0

∣∣∣∣∑
x∈Zt

eM

(
a
(
ϑxek1 − ϑxek2 ))∣∣∣∣

= N
K∑

k1=0

K∑
k2=0

∣∣∣∣∑
v∈Zt

eM

(
a
(
ϑv − ϑvek2−k1 ))∣∣∣∣,

after substituting v ≡ ek1x (mod t).
Now, it is clear that k2−k1 ∈ [−K+1, K−1] for 0 ≤ k1, k2 ≤ K−1. Further, each

k = k2 − k1 ∈ [−K + 1, K − 1] is repeated at most K times for k1, k2 = 0, . . . , K − 1.
Thus,

W 2 ≤ NK

K−1∑
k=−K+1

∣∣∣∣∑
v∈Zt

eM

(
a
(
ϑv − ϑvek))∣∣∣∣.
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Applying the Hölder inequality we now have

(
W 2

K2

)4

≤
(

N

K

)4

K3
K−1∑

k=−K+1

∣∣∣∣∑
v∈Zt

eM

(
a
(
ϑv − ϑvek))∣∣∣∣

4

.

Recalling that τ is the multiplicative order of e modulo t, then if K < t/2 this can be
rewritten as (

W 2

K2

)
≤
(

N

K

)4

K3
τ−1∑
k=0

∣∣∣∣∑
v∈Zt

eM

(
a
(
ϑv − ϑvej))∣∣∣∣

4

=
N4

K

τ−1∑
k=0

∣∣∣∣∑
v∈Zt

eM

(
a
(
ϑv − ϑvej))∣∣∣∣

4

.

Using Lemma 1.2 with c = −a, we obtain(
W 2

K2

)� N4K−1δt9/4M5/2+ε.

Hence,
|Sa(t, τ ; M, N)| � N1/2K−1/8δ1/8t9/32M5/16+ε + K.

Choosing K = �N4/9δ1/9t1/4M5/18+ε	, the theorem obviously follows if

N4/9δ1/9t1/4M5/18+ε < t/2,

else we note |Sa(t, τ ; M,N)| ≤ N ≤ t and so the theorem follows again.

Now let DM (t, τ ; N) denote the discrepancy of the points (un/M),
n = 1, . . . , N ≤ τ .

Theorem 2.2. Let (un), the recurrence sequence defined by (1), be of order τ , which
is the multiplicative order of e modulo t. Then, for any ε > 0, the bound

DM (t, τ ; N) � N−5/9t1/4M5/18+ε

holds, where the implied constant depends at most on ε.

Proof. Using Lemma 1.1, with L = M − 1 and the bound from Theorem 2.1, we
obtain

DM (t, τ ; N) � N−5/9t1/4M5/18+ε/2
∑
δ|M

δ1/9
∑

0<|a|<M
gcd(a,M)=δ

1
|a|

� N−5/9t1/4M5/18+ε/2 log M
∑
δ|M

δ−8/9.
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Noting that d(k), the number of positive divisors of an integer, k ≥ 1, can be bounded
by

log d(k) � log k

log log 3k
,

(see [23, Theorem 5.2, chapter 1]), we obtain the desired result.

3. Remarks

We remark that in order to calculate the s-dimensional discrepancy we would need
an upper bound for

τ−1∑
j=0

∣∣∣∣∣
∑
v∈Zt

eM

(
s−1∑
l=0

al(vvel − vvej+l

)

)∣∣∣∣∣
4

.

Unfortunately, Lemma 1.2 can only be applied to the case where s = 1. It remains
an open problem to find an analogous lemma which could then be used to establish a
discrepancy bound for all other s. And, when N is a value close to t and δ � Mε, then
Theorem 2.1 is non-trivial as long as t > M10/11+ε. Lastly, we also remark that when
t is of order near M the bound of Theorem 2.2 is valuable as long as N > M19/20+ε.
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