
Generalized Polarized Manifolds
Azzouz AWANE
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ABSTRACT

We introduce and develop the notion of generalized Poisson manifolds and ana-
lyze their main properties. Several generalized Hamiltonian maps for polarized
Poisson manifolds and vectorial Hamiltonian maps for systems in dimension
smaller or equal than 4 are given.
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Introduction

k-symplectic structures were introduced by the author in 1984 ([2, 21]), and later
generalized by Puta Mircea in 1988 [21]. Analogous properties in this context were
analyzed by different authors, see, e.g., [15, 20].

A polarized structure on an even dimensional smooth manifold M is a pair (θ,E)
constituted by a closed differential 2-form θ of maximum rank and by an n-codi-
mensional integrable subbundle E of TM which is Lagrangian with respect to the
2-form θ. Locally, there exists a coordinate system (xi, yi)1≤i≤n (the Darboux coor-
dinate system) such that

θ =
n∑

i=1

dxi ∧ dyi,

and the subbundle E is defined by dy1 = · · · = dyn = 0.

Rev. Mat. Complut.
21 (2007), no. 1, 251–264 251 ISSN: 1139-1138

http://dx.doi.org/10.5209/rev_REMA.2008.v21.n1.16465



Azzouz Awane Generalized polarized manifolds

The notion of a polarized manifold plays an important role in the theory of
Kostant-Souriau’s geometric quantization, see for e.g.[18, 22]. Some important prop-
erties are given by A. Weinstein, P. Dazord, J. M. Morvan, P. Molino, P. Libermann.

Let us recall that one of the main motivations which led to introduce the notion
of k-symplectic structure as an extension of the geometry of polarization ([10]) was to
propose a geometric support for the equations of Nambu ([19]), in analogy with the
well known symplectic geometry and classical Hamiltonian formalism. Some proper-
ties of the Poisson structure subordinate to a k-symplectic manifold have led us to
introduce the notion of vectorial polarized Poisson structure. For a fixed finite dimen-
sional real vector space V , this structure is defined on a foliated manifold (M,F) by a
pair (H(M,F), P ), where H(M,F) is a submodule of the space C∞(M,V ) of V -valued
smooth functions on M , over the ring of basic functions for the foliation F, and P is
a C∞(M)-antisymmetric bilinear mapping

P :
∧

1
(M,V ) ×

∧
1
(M, V ) −→ C∞(M, V )

that coincides with the classical case for V = R.
A remarkable feature of the Hamiltonian description of classical dynamics is Liou-

ville’s theorem, which states that the volume of phase space occupied by an ensemble
of systems is remains invariant. The theorem plays, amongst other things, a funda-
mental role in statistical mechanics. On the other hand, Hamiltonian dynamics is not
the only formalism that makes statistical mechanics possible. Any set of equations
which leads to Liouville theorem in a suitably defined phase space will do (provided, of
course, that ergodicity may be assumed). Nambu proposes a possible generalization
of the Hamiltonian dynamics for a 3-dimensional space.

In this context, k-symplectic geometry represents a geometrical tool which com-
prises differential 2-forms θ1, . . . , θk, such that the Hamiltonian map is R

k-valued H,
the components of which are related to Hamiltonian systems XH by means of the
identity

i(XH)θp = −dHp,

in order to find Nambu-Hamilton equations preserving the specific features of the
classical symplectic geometry.

From this perspective, a k-symplectic structure is a (k + 1)-tuple (θ1, . . . , θk; E)
such that θ1, . . . , θk constitute a non degenerate system vanishing on the tangent
vector fields to leaves.

The generalized Darboux theorem shows that there exists about each point x0

of M a local coordinate system (xp
i , y

i)1≤p≤k,1≤i≤n defined on a neighborhood such
that

θp
|U = dxp

i ∧ dyi

and E is given by dy1 = · · · = dyn = 0.
The study of an exterior system in high dimension, underlines the existence of

an infinite number of systems not algebraically equivalent. k-symplectic systems
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are defined directly by conditions of regularity; they can be interpreted as models
of exterior systems of maximum rank vanishing on the tangent vector fields of the
generalized Lagrangian foliation.

In this work, we introduce the notion of a vectorial polarized structure on a man-
ifold M . This structure is given by (θ,E), where θ is a closed vectorial valued 2-form
on M vanishing on the section of a subbundle E. The polarized manifolds and the
k-symplectic manifolds are particular vectorial polarized manifolds.

1. Generalized polarized manifolds

1.1. Definition

Let (M,F) be a foliated manifold, M an m-dimensional manifold endowed with a
p-dimensional foliation, and let V be a real k-dimensional vector space.

Let us fix a basis (er)1≤r≤k of V , and let
∧

2(M,V ) =
∧

2(M) ⊗ V be the space
of V -valued differential two forms; that is, the space of

θ = θα ⊗ eα = θ1 ⊗ e1 + · · · + θk ⊗ ek

where θ1, . . . , θk ∈ ∧
2(M).

We say that (θ,E) is a vectorial polarized structure, or generalized polarized man-
ifold, on M , if the following conditions hold:

(i) The V -valued 2-form θ is non degenerate, that is,

∀x ∈ M, ∀X ∈ TxM, i(X)θ = 0 =⇒ X = 0.

(ii) Each leaf of F is maximal totally isotropic with respect to θ.

1.2. Hamiltonian systems

Suppose that M is endowed with a vectorial polarized structure (θ; E) and let

j : X(M) −→ Λ1(M) ⊗ V

be defined by
j(X) = i(X)θ, ∀X ∈ X(M).

A vector field X on M is called a vectorial polarized Hamiltonian system if it is
an infinitesimal automorphism for the vectorial polarized structure (θ; E), that is, if
the following conditions are satisfied:

(i) X is foliate;

(ii) i(X)θ is closed.
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We denote by L(M,F) the C∞(M)-module of infinitesimal automorphisms of the
pair (θ, E).

Let X be a vectorial polarized Hamiltonian system. By Poincaré lemma, for every
x ∈ M , there exists an open neighborhood U of x and a (smooth) mapping H : U → V
satisfying the relationship

i(X)θ|U = −dH|U .

Conversely, if a smooth mapping H : M → V satisfies

dH = dHα ⊗ eα ∈ j(L(M, F)),

there exists a unique vector field on M , denoted XH and called the vectorial polarized
Hamiltonian system associated to H, such that

i(XH)θ = −dH

on M . The vector field XH is called a (strongly) Hamiltonian system.
A smooth mapping H : M → V satisfying dH ∈ j(L(M, F)) is called a vectorial

polarized Hamiltonian mapping of the vectorial polarized structure (θ; E).

1.3. Poisson bracket of a vectorial polarized structure

Let H and K be two vectorial polarized Hamiltonian mappings and XH , XK the
associated polarized Hamiltonian systems. The Lie bracket [XH , YK ] is a polarized
Hamiltonian system. More precisely, the mapping of M into V defined by

{H,K} = θ(XH , XK) = θα(XH , XK)eα

satisfies
[XH , XK ] = X{H,K}.

The mapping {H,K} is called the (vectorial) Poisson bracket of the (vectorial) Hamil-
tonian mappings H and K. We denote the space of all vectorial polarized Hamiltonian
mappings by H(M,F,V ).

2. Polarized manifolds

A real polarization on M is a vectorial polarization (θ,E) such that m = 2p and
V = R.

Theorem 2.1 (Darboux theorem). Every point of M has an open neighborhood U
with local coordinates system (x1, . . . , xn, y1, . . . , yn) such that

θ = dx1 ∧ dy1 + · · · + dxn ∧ dyn

and F is defined by equations dy1 = · · · = dyn = 0.
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And with respect to an adapted coordinates system (x1, . . . , xn, y1, . . . , yn), the
polarized Hamiltonian mapping H takes the form

H =
n∑

i=1

ai(y1, . . . , yn)xi + b(y1, . . . , yn)

where a1, . . . , an, b are basic functions for F. Recall that, by the symplectic duality
ζ : X �→ i(X)θ between the tangent bundle TM and the cotangent bundle T ∗M, we
associate to θ a non degenerate bivector P (the Poisson tensor) defined by

P (α, β) = θ(ζ−1(α), ζ−1(β)) for all α, β ∈
∧

1
(M),

and we have an antisymmetric linear mapping
¯
P :

∧
1(M) → X(M), given by

〈β,
¯
P (α)〉 = P (α, β).

3. k-symplectic manifolds

A k-symplectic structure on M is a vectorial polarization (θ,E) such that m = n(k+1)
and p = nk.

3.1. Canonical k-symplectic structure on R
n(k+1)

Consider R
n(k+1) endowed with its Cartesian coordinates (xα

i , yi)1≤α≤k,1≤i≤n. Let E
be the subbundle of TR

n(k+1) defined by the equations

dy1 = 0, . . . , dyn = 0

and
θ = θα ⊗ eα = (dxα

i ∧ dyi) ⊗ eα

The pair (θ,E) defines a k-symplectic structure on R
n(k+1) called the canonical

k-symplectic structure. This structure induces a natural k-symplectic structure on
the torus T

n(k+1).

3.2. The generalized Darboux theorem

Let M be an n(k + 1)-dimensional manifold. If (θ = θα ⊗ eα, E) is a k-symplectic
structure on M then for every point p of M there exists an open neighborhood U of M
containing p endowed with local coordinates (xα

i , yi)1≤α≤k,1≤i≤n called an adapted
coordinate system, such that the V -valued differential form θ is represented on U by

θ = θα ⊗ eα = (dxα
i ∧ dyi) ⊗ eα,

and E is defined by the equations dy1 = 0, . . . , dyn = 0.
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Proposition 3.1. Let H = (Hα)1≤α≤k be a vectorial polarized Hamiltonian map-
ping and let XH be the associated polarized Hamiltonian system. With respect to an
adapted coordinates system (xα

i , yi)1≤α≤k,1≤i≤n, the components Hp of H and XH

can be written as
Hα = xα

j f j(y1, . . . , yn) + gα(y1, . . . , yn)

and

XH = −
(

xα
j

∂f j

∂ys
(y1, . . . , yn) +

∂gα

∂ys
(y1, . . . , yn)

)
∂

∂xα
s

+ fs(y1, . . . , yn)
∂

∂ys
,

where f j and gα are smooth basic functions on U .

Remark 3.2. Assume that k ≥ 2. It follows from the proof of the previous proposition
that, if the Pfaffian forms i(X)θ1, . . . , i(X)θk are closed (or equivalently LXθ1 = · · · =
LXθk = 0), then the vector field X is necessarily an infinitesimal automorphism of F.

With respect to an adapted coordinate system (xα
i , yi)1≤α≤k,1≤i≤n, the compo-

nents {H,K}α of {H,K} are given by

{H,K}α =
n∑

s=1

(
∂Hα

∂xα
s

∂Kα

∂ys
− ∂Hα

∂ys

∂Kα

∂xα
s

)
,

Let H(M) be the set of Hamiltonian mappings of the k-symplectic structure
(θ1, . . . , θk; E). The correspondence (H,K) → {H,K}, of H(M)×H(M) into H(M),
is a skew-symmetric R-bilinear mapping satisfying the Jacobi identity.

Proposition 3.3. (H(M), { , }) is an infinite-dimensional Lie algebra.

4. Nambu’s statistical mechanics

Let (x, y, z) be a triplet of dynamical variables (a canonical triplet) which spans a
3-dimensional phase space M . This is a formal generalization of conventional phase
space spanned by a canonical pair (p, q). Next, we will introduce two functions H
and G depending on (x, y, z) which serve as a pair of “Hamiltonians” to determine the
motion of points in phase space. More precisely Nambu has postulated the following
Hamilton equations: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
=

D(H,G)
D(y, z)

,

dy

dt
=

D(H,G)
D(z, x)

,

dz

dt
=

D(H,G)
D(x, y)

,
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where D(H,G)/D(y, z) denote the Jacobian

D(H,G)
D(y, z)

=
∂H

∂y

∂G

∂z
− ∂H

∂z

∂G

∂y
.

The above equations are called Nambu’s equations of motion, and the vector field
whose integral curves are given by Nambu’s equations of motion will be denoted
by Xn

(H,G) and called the dynamical system of Nambu.
Consider the space M = R

3 endowed with its canonical 2-symplectic structure
(θ1, θ2; E) defined by ⎧⎪⎨

⎪⎩
θ1 = dx ∧ dz,

θ2 = dy ∧ dz,

E = ker dz.

The Hamiltonian mapping of the 2-symplectic structure is the mapping

H : M −→ R
2

whose components are given by{
H1 = f(z)x + g1(z),
H2 = f(z)y + g2(z),

where f , g1, and g2 are smooth real functions depending only on the variable z. The
integral curves of the Hamiltonian system XH of the 2-symplectic structure are given
by the following equations:

dx

dt
= −∂H1

∂z
,

dy

dt
= −∂H2

∂z
,

and
dz

dt
=

∂H1

∂x
=

∂H2

∂y
.

Theorem 4.1. Let H = (H1, H2) be a Hamiltonian mapping of the 2-symplectic
structure, where H1 = f(z)x+g1(z) and H2 = f(z)y+g2(z)). Then the Hamiltonian
system XH and the dynamical system of Nambu Xn

H are related by

Xn
H = f(z)XH .

Corollary 4.2. The mapping

(f(z))−1H = (x + h1(z), y + h2(z))

is a solution of Nambu’s equations of motions on a domain where f(z) is a non-
vanishing function and

h1(z) = (f(z))−1g1(z), h2(z) = (f(z))−1g2(z).
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5. Vectorial polarized Poisson manifolds

5.1. Definition

Let (M,F) be a foliated manifold, let M be an n-dimensional manifold endowed with
a p-dimensional foliation, and let V be a k-dimensional real vector space.

Let us fix a basis (er)1≤r≤k of V with dual basis (ωr)1≤r≤k , and let
∧

1(M, V ) =∧
1(M)⊗ V be the space of V -valued differential forms of degree 1, that is, the space

of
α = α1 ⊗ e1 + · · · + αk ⊗ ek

where α1, . . . , αk ∈ ∧
1(M). Locally, on an open neighborhood U endowed with local

coordinates system (x1, . . . , xn), each element α ∈ ∧
1(M, V ) has the form

α|U =
k∑

r=1

n∑
i=1

αr
i dxi ⊗ er

where αr
i : U → R are smooth mappings.

We denote by Eo
V the annihilator of the subbundle E in

∧
1(M, V ), that is, the

space of V -valued 1-forms on M vanishing on the cross sections of E.

Definition 5.1. Let (M,F) be a foliated manifold, let H(M,F) be a submodule
of C∞(M, V ) over the ring B(M,F) of basic functions for the foliation F and let

P :
∧

1
(M,V ) ×

∧
1
(M,V ) −→ C∞(M,V )

be an antisymmetric C∞(M)-bilinear mapping. We say that (H(M,F), P ) is a vecto-
rial polarized Poisson structure on M , if the following properties hold:

(i) P (α, β) = 0 for all α, β ∈ Eo
V ,

(ii) for all H,K ∈ H(M,F), P (dH, dK) ∈ H(M,F),

(iii) the correspondence (H,K) → {H,K} = P (dH, dK), from H(M, F) × H(M,F)
with values in H(M, F), gives to H(M, F) a Lie algebra law,

(iv) each H ∈ H(M, F) corresponds to a vector field XH such that

〈dK, XH〉 = {H,K},
for all K ∈ H(M,F).

P will be called a vectorial polarized Poisson tensor.

Let us consider an open neighborhood U of M endowed with an adapted local
coordinates system (x1, . . . , xp, y1, . . . , yq). Since P is zero on the annihilator Eo

V of
the subbundle E in

∧
1(M,V ), then the tensor P has the form

P = Aijr
pq

(( ∂

∂xi
⊗ωp

)
∧( ∂

∂xj
⊗ωq

))
⊗er +Bijr

pq

(( ∂

∂xi
⊗ωp

)
∧( ∂

∂yj
⊗ωq

))
⊗er (1)
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where Aijr
pq , Bijr

pq : U → R are differential mappings. The Jacobi identity implies that

∂Aabr
uv

∂xl
Alcυ

rw − ∂Aabr
uv

∂ym
Bcmυ

wr +
∂Abcr

vw

∂xl
Alaυ

ru

− ∂Abcr
vw

∂ym
Bamυ

ur +
∂Acar

wu

∂xl
Albυ

rv − ∂Acar
wu

∂ym
Bbmυ

vr = 0,

∂Aabr
uv

∂xl
Blcυ

rw +
∂Bbcr

vw

∂xl
Alaυ

ru − ∂Bbcr
vw

∂ym
Bamυ

ur − ∂Bacr
uw

∂xl
Albυ

rv +
∂Bacr

uw

∂ym
Bbmυ

vr = 0,

∂Babυ
uv

∂xl
Albυ

rv − ∂Bacr
uw

∂xl
Blbυ

rv = 0.

(2)

For each element α ∈ ∧
1(M, V ) we can associate a C∞(M)-linear mapping

P (α, ·) :
∧

1
(M,V ) −→ C∞(M, V )

such that P (α, ·)(β) = P (α, β) for each β ∈ ∧
1(M,V ). The linear mapping P (α, ·)

coincides with the vector field
¯
P (α) for k = 1.

6. Model vectorial polarized Poisson manifolds

Let us consider the model space R
n = R

p × R
q endowed with the p-dimensional

model foliation F defined by the equations dy1 = · · · = dyq = 0, where (xi, yj), with
i = 1, . . . , p and j = 1, . . . , q, are the Cartesian coordinates system and let V = R

k be
the real space where the canonical basis (er)1≤r≤k with dual basis (ωr)1≤r≤k is fixed.

Let (H(M, F), P ) be a vectorial polarized Poisson structure on R
n. The vectorial

polarized Poisson bivector P takes the form (1) and satisfies the Jacobi identity (2),
and H(M, F) is a submodule of C∞(Rn, V ) over the ring B(Rn,F) of basic functions.
Now we give some examples of polarized Poisson structures widening the space of
vectorial polarized Hamiltonian mappings subordinate to k-symplectic manifolds.

(i) Let H(Rn,F) be the B(M,F)-submodule of C∞(Rn, V ) spanned by e1, . . . , ek.
Thus H(Rn,F) = B(Rn,F) × · · · × B(Rn,F) (k times) and for all vectorial
polarized Poisson bivector P , the associated Lie algebra (B(M,F), { , }) is
Abelian.

(ii) For V = R
2 we consider the B(M, F)-submodule H(Rn,F) of C∞(Rn, V ) span-

ned by the mappings

XI : (x, y) �−→ xIe1 (I = 1, . . . , p),

Xij : (x, y) �−→ xixje2 (i, j = 1, . . . , p),
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and by the vectors e1, e2. The components H1 and H2 of each element H of
B(M,F) take the form

H1 =
p∑

i=1

fi(y1, . . . , yq)xi + g1(y1, . . . , yq) (i = 1, . . . , p),

H2 =
p∑

i,j=1

fij(y1, . . . , yq)xixj + g2(y1, . . . , yq) (i, j = 1, . . . , p),

where fi, fij , g
1, g2 ∈ B(M, F).

(iii) Suppose that p = mk. We denote by (x, y) = (xra, y1, . . . , yq)1≤a≤m, 1≤r≤k the
Cartesian coordinates system of R

n. Let H(Rn,F) be the B(M,F)-submodule
of C∞(Rn, V ) spanned by the mappings

Xa : (x, y) �−→
k∑

r=1

xraer (a = 1, . . . , m)

and by the vectors e1, . . . , ek. The component Hr of each element H of H(M,F)
takes the form

Hr =
m∑

a=1

fa(y1, . . . , yn)xra + gr(y1, . . . , yn) (r = 1, . . . , k),

where fa, gr ∈ B(M,F).

(iv) In the previous notations, we consider the B(M,F)-submodule H(Rn,F) of
C∞(Rn, V ) spanned by the mappings

Xab : (x, y) �−→
k∑

r=1

xraxrber (a, b = 1, . . . , m),

and by the vectors e1, . . . , ek. The component Hr of each element H of B(M,F)
has the form

Hr =
m∑

a,b=1

fab(y1, . . . , yn)xraxrb + br(y1, . . . , yn) (r = 1, . . . , k),

where fab, g
r ∈ B(M, F).

(v) In the previous notations, we consider the B(M, F)-submodule H(Rn,F) of
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C∞(Rn, V ) spanned by the mappings

Xa : (x, y) �−→
k∑

r=1

xraer (a = 1, . . . , m),

Xab : (x, y) �−→
k∑

r=1

xraxrber (a, b = 1, . . . , m)

and by the vectors e1, . . . , ek. The components Hr of each element H of
B(M,F) take the form

Hr =
m∑

a=1

fa(y1, . . . , yn)xra +
m∑

a,b=1

fab(y1, . . . , yn)xraxrb + br(y1, . . . , yn),

where r = 1, . . . , k and fa, fab, g
r ∈ B(M,F).

7. Local models of vectorial polarized systems

For polarized manifolds and k-symplectic manifolds, there is a unique model: the
Darboux model and its generalization.

In the case of the vectorial polarized systems, there is not a unique model.
Here we give, some local models of the vectorial polarized systems and the cor-

responding vectorial polarized Hamiltonian mappings, in the some cases where the
dimension of the space is less or equal than 4.

7.1. For k = 2 and m = 3

If every R
2-valued form θ = θ1 ⊗ e1 + θ2 ⊗ e2 in R

3 admits a maximal solutions of
dimension 2, then it is a 2-symplectic system and can be written under the following
local form: {

θ1 = dx1 ∧ dx3,

θ32 = dx2 ∧ dx3.

7.2. For k = 3 and m = 3

Consider the R
3-valued form in R

3 given by

θ = θ1 ⊗ e1 + θ2 ⊗ e2 + θ3 ⊗ e3,

with rank 3, such that the system {θ1, θ2, θ3} is not algebraically equivalent to the
2-system. Then, locally, this system is algebraically equivalent to the following model:⎧⎪⎨

⎪⎩
θ1 = dx2 ∧ dx3,

θ2 = dx3 ∧ dx1,

θ3 = dx1 ∧ dx2.
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This system has a 1-dimensional maximal solutions.
The vectorial polarized Hamiltonian mappings take the following expressions:⎧⎪⎨

⎪⎩
H1 = ax2x3 + b3x

2 − b2x
3 + α1,

H2 = −ax1x3 + b1x
3 − b3x

1 + α2,

H3 = −ax1x2 + b2x
1 − b1x

2 + α3.

where a, b1, b2, b3, α1, α2, α3 are real numbers.

7.3. For k = 2 and m = 4

Let θ = θ1 ⊗ e1 + θ2 ⊗ e2 be a R
2-valued form in R

4 with maximum rank and with
maximal solutions of dimension 2. Then locally we have{

θ1 = dx1 ∧ dy1,

θ2 = dx2 ∧ dy2.

This system has a 2-dimensional maximal solutions (the foliation defined by dy1 =
dy2 = 0).

The vectorial polarized Hamiltonians mappings take the following expressions:{
H1 = f1(y1, y2)x1 + g1(y1, y2),
H2 = f2(y1, y2)x2 + g2(y1, y2),

where f1, f2, g1, g2 are basic functions for the foliation defined by dy1 = dy2 = 0.

7.4. For k = 3 and m = 4

We consider only

(i) The 3-symplectic system

(S1)

⎧⎪⎨
⎪⎩

θ1 = dx1 ∧ dy,

θ2 = dx2 ∧ dy,

θ3 = dx3 ∧ dy.

(ii) The system

(S2)

⎧⎪⎨
⎪⎩

θ1 = dx1 ∧ dy2 + dx2 ∧ dy1,

θ2 = dx1 ∧ dy1,

θ3 = dx2 ∧ dy2.

This system has a 2-dimensional maximal solutions (the foliation defined by
dy1 = dy2 = 0).
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The vectorial polarized Hamiltonian mappings take the following expressions:⎧⎪⎨
⎪⎩

H1 = f1(y1, y2)x1 + g1(y1, y2),
H2 = f2(y1, y2) x2 + g2(y1, y2),
H3 = f2(y1, y2t)x1 − f1(y1, y2)x2 + g3(y1, y2).

where f1, f2, f3, g1, g2, g3 are basic functions for the foliation defined by
dy1 = dy2 = 0.

(iii) The system

(S3)

⎧⎪⎨
⎪⎩

θ1 = dx1 ∧ dx2 + dx3 ∧ dx4,

θ2 = dx1 ∧ dx3 − dx2 ∧ dx4,

θ3 = dx1 ∧ dx4 + dx2 ∧ dx3.

Locally, this system has a 1-dimensional maximal solution.

The vectorial polarized Hamiltonian mappings take the following expressions:⎧⎪⎨
⎪⎩

H1(x1, x2, x3, x4) = ax1 + bx2 + cx3 + dx4 + α1,

H2(x1, x2, x3, x4) = −dx1 − cx2 + bx3 + ax4 + α2,

H3(x1, x2, x3, x4) = cx1 − dx2 − ax3 + bx4 + α3.

where a, b, c, d, α1, α2, α3 are real numbers.
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