A New Proof of the Jawerth-Franke Embedding

Jan VYBÍRAL

Mathematisches Institut Friedrich-Schiller-Universität Jena Ernst-Abbe-Platz 3 07740 Jena — Germany vybiral@minet.uni-jena.de

Received: May 28, 2007 Accepted: July 2, 2007

ABSTRACT

We present an alternative proof of the Jawerth embedding

$$
F_{p_0q}^{s_0}(\mathbb{R}^n) \hookrightarrow B_{p_1p_0}^{s_1}(\mathbb{R}^n),
$$

where

$$
-\infty < s_1 < s_0 < \infty, \quad 0 < p_0 < p_1 \leq \infty, \quad 0 < q \leq \infty
$$

and

$$
s_0 - \frac{n}{p_0} = s_1 - \frac{n}{p_1}.
$$

The original proof given in [3] uses interpolation theory. Our proof relies on wavelet decompositions and transfers the problem from function spaces to sequence spaces. Using similar techniques, we also recover the embedding of Franke [2].

Key words: Besov spaces, Triebel-Lizorkin spaces, Sobolev embedding, Jawerth-Franke embedding.

2000 Mathematics Subject Classification: 46E35.

Rev. Mat. Complut.

21 (2008), no. 1, 75–82 75 ISSN: 1139-1138 http://dx.doi.org/10.5209/rev_REMA.2008.v21.n1.16435

Jan Vybíral A new proof of the Jawerth-Franke embedding

Introduction

Let $B_{pq}^s(\mathbb{R}^n)$ and $F_{pq}^s(\mathbb{R}^n)$ denote the Besov and Triebel-Lizorkin function spaces,
respectively. The elastical Soboley embedding theorem can be extended to these two respectively. The classical Sobolev embedding theorem can be extended to these two scales.

Theorem 0.1. Let $-\infty < s_1 < s_0 < \infty$ and $0 < p_0 < p_1 \leq \infty$ with

$$
s_0 - \frac{n}{p_0} = s_1 - \frac{n}{p_1}.\tag{1}
$$

(i) If $0 < q_0 \leq q_1 \leq \infty$, then

$$
B_{p_0q_0}^{s_0}(\mathbb{R}^n) \hookrightarrow B_{p_1q_1}^{s_1}(\mathbb{R}^n).
$$

(ii) If $0 < q_0, q_1 < \infty$ and $p_1 < \infty$, then

$$
F_{p_0q_0}^{s_0}(\mathbb{R}^n) \hookrightarrow F_{p_1q_1}^{s_1}(\mathbb{R}^n). \tag{2}
$$

We observe that there is no condition on the fine paramters q_0, q_1 in (2). This surprising effect was first observed in full generality by Jawerth, [3]. Using (2), we may prove

and

$$
F_{p_0q}^{s_0}(\mathbb{R}^n) \hookrightarrow F_{p_1p_1}^{s_1}(\mathbb{R}^n) = B_{p_1p_1}^{s_1}(\mathbb{R}^n)
$$

$$
B_{p_0p_0}^{s_0}(\mathbb{R}^n) = F_{p_0p_0}^{s_0}(\mathbb{R}^n) \hookrightarrow F_{p_1q}^{s_1}(\mathbb{R}^n)
$$

for every $0 < q \leq \infty$. But Jawerth [3] and Franke [2] showed that these embeddings are not optimal and may be improved.

Theorem 0.2. Let $-\infty < s_1 < s_0 < \infty$, $0 < p_0 < p_1 \leq \infty$, and $0 < q \leq \infty$ with (1).

(i) Then

.

$$
F_{p_0q}^{s_0}(\mathbb{R}^n) \hookrightarrow B_{p_1p_0}^{s_1}(\mathbb{R}^n). \tag{3}
$$

(ii) If $p_1 < \infty$, then

$$
B_{pop_1}^{s_0}(\mathbb{R}^n) \hookrightarrow F_{p_1q}^{s_1}(\mathbb{R}^n). \tag{4}
$$

The original proofs (see $[2,3]$) use interpolation techniques. We rely on a different method. First, we observe that using (for example) the wavelet decomposition method, (3) and (4) are equivalent to

$$
f_{p_0q}^{s_0} \longleftrightarrow b_{p_1p_0}^{s_1} \quad \text{and} \quad b_{p_0p_1}^{s_0} \longleftrightarrow f_{p_1q}^{s_1} \tag{5}
$$

Revista Matemática Complutense 2008: vol. 21, num. 1, pags. 75–82 76

under the same restrictions on parameters s_0 , s_1 , p_0 , p_1 , q as in Theorem 0.2. Here, b_{pq}^s and f_{pq}^s stands for the sequence spaces of Besov and Triebel-Lizorkin type. We prove (5) directly using the technique of non-increasing rearrangement on a rather elementary level.

All the unimportant constants are denoted by the letter c , whose meaning may differ from one occurrence to another. If $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ are two sequences of positive real numbers, we write $a \leq b$ if and only if there is a positive real number positive real numbers, we write $a_n \lesssim b_n$ if, and only if, there is a positive real number $c > 0$ such that $a_n \leq c b_n, n \in \mathbb{N}$. Furthermore, $a_n \approx b_n$ means that $a_n \lesssim b_n$ and simultaneously $b_n \lesssim a_n$.

1. Notation and definitions

We introduce the sequence spaces associated with the Besov and Triebel-Lizrokin spaces. Let $m \in \mathbb{Z}^n$ and $\nu \in \mathbb{N}_0$. Then $Q_{\nu m}$ denotes the closed cube in \mathbb{R}^n with sides parallel to the coordinate axes, centred at $2^{-\nu}m$, and with side length $2^{-\nu}$. By $\chi_{\nu m} = \chi_{Q_{\nu m}}$ we denote the characteristic function of $Q_{\nu m}$. If

$$
\lambda = \{ \lambda_{\nu m} : \nu \in \mathbb{N}_0, m \in \mathbb{Z}^n \},
$$

 $-\infty < s < \infty$, and $0 < p, q \leq \infty$, we set

$$
\|\lambda \mid b_{pq}^s\| = \left(\sum_{\nu=0}^{\infty} 2^{\nu(s-\frac{n}{p})q} \left(\sum_{m \in \mathbb{Z}^n} |\lambda_{\nu m}|^p\right)^{\frac{q}{p}}\right)^{\frac{1}{q}},
$$

appropriately modified if $p = \infty$ and/or $q = \infty$. If $p < \infty$, we define also

$$
\|\lambda|f_{pq}^s\| = \bigg\|\bigg(\sum_{\nu=0}^{\infty}\sum_{m\in\mathbb{Z}^n}|2^{\nu s}\lambda_{\nu\,m}\chi_{\nu\,m}(\cdot)|^q\bigg)^{1/q}\bigg| L_p(\mathbb{R}^n)\bigg\|.
$$

The connection between the function spaces $B_{pq}^{s}(\mathbb{R}^{n})$, $F_{pq}^{s}(\mathbb{R}^{n})$ and the sequence spaces b_{pq}^s , f_{pq}^s may be given by various decomposition techniques, we refer to [7, chapters 2 and 3] for details and further references.

As a result of these characterizations, (3) is equivalent to (5).

We use the technique of non-increasing rearrangement. We refer to [1, chapter 2] for details.

Definition 1.1. Let μ be the Lebesgue measure in \mathbb{R}^n . If h is a measurable function on \mathbb{R}^n , we define the non-increasing rearrangement of h through

$$
h^*(t) = \sup \{ \lambda > 0 : \mu \{ x \in \mathbb{R}^n : |h(x)| > \lambda \} > t \}, \qquad t \in (0, \infty).
$$

We denote its averages by

$$
h^{**}(t) = \frac{1}{t} \int_0^t h^*(s) \, ds, \quad t > 0.
$$

Revista Matemática Complutense 2008: vol. 21, num. 1, pags. 75–82

Jan Vybíral A new proof of the Jawerth-Franke embedding

We shall use the following properties. The first two are very well known and their proofs may be found in [1, Proposition 1.8 in chapter 2, Theorem 3.10 in chapter 3].

Lemma 1.2. If $0 < p \leq \infty$, then

$$
||h \mid L_p(\mathbb{R}^n)|| = ||h^* \mid L_p(0, \infty)||
$$

for every measurable function h.

Lemma 1.3. If $1 < p \leq \infty$, then there is a constant c_p such that

$$
||h^{**} | L_p(0, \infty)|| \le c_p ||h^* | L_p(0, \infty)||
$$

for every measurable function h.

Lemma 1.4. Let h_1 and h_2 be two non-negative measurable functions on \mathbb{R}^n . If $1 \leq p \leq \infty$, then

$$
||h_1 + h_2 | L_p(\mathbb{R}^n)|| \le ||h_1^* + h_2^* | L_p(0, \infty)||.
$$

Proof. The proof follows from Theorems 3.4 and 4.6 in [1, chapter2].

2. Main results

In this part, we present a direct proof of the discrete versions of Jawerth and Franke embedding. We start with the Jawerth embedding.

Theorem 2.1. Let $-\infty < s_1 < s_0 < \infty$, $0 < p_0 < p_1 \leq \infty$, and $0 < q \leq \infty$. Then

$$
f_{p_0q}^{s_0} \longleftrightarrow b_{p_1p_0}^{s_1} \quad if \quad s_0 - \frac{n}{p_0} = s_1 - \frac{n}{p_1}.
$$

Proof. Using the elementary embedding

$$
f_{pq_0}^s \longrightarrow f_{pq_1}^s \quad \text{if} \quad 0 < q_0 \le q_1 \le \infty \tag{6}
$$

and the lifting property of Besov and Triebel-Lizorkin spaces (which is even simpler in the language of sequence spaces), we may restrict ourselves to the proof of

$$
f_{p_0\infty}^s \longrightarrow b_{p_1p_0}^0
$$
, where $s = n\Big(\frac{1}{p_0} - \frac{1}{p_1}\Big)$.

Let $\lambda \in f_{p_0\infty}^s$ and set

$$
h(x) = \sup_{\nu \in \mathbb{N}_0} 2^{\nu s} \sum_{m \in \mathbb{Z}^n} |\lambda_{\nu m}| \chi_{\nu m}(x).
$$

Revista Matemática Complutense 2008: vol. 21, num. 1, pags. 75–82 78 \Box

Jan Vyb´ıral A new proof of the Jawerth-Franke embedding

Hence

$$
|\lambda_{\nu m}| \le 2^{-\nu s} \inf_{x \in Q_{\nu m}} h(x), \quad \nu \in \mathbb{N}_0, \quad m \in \mathbb{Z}^n.
$$

Using this notation,

$$
\|\lambda \| f_{p_0\infty}^s \| = \|h \| L_{p_0}(\mathbb{R}^n) \|
$$

and

$$
\|\lambda \|b_{p_1p_0}^0\|^{p_0} \le \sum_{\nu=0}^{\infty} 2^{-\nu n} \Bigl(\sum_{m \in \mathbb{Z}^n} \inf_{x \in Q_{\nu m}} h(x)^{p_1}\Bigr)^{p_0/p_1}
$$

$$
\le \sum_{\nu=0}^{\infty} 2^{-\nu n} \Bigl(\sum_{k=1}^{\infty} h^*(2^{-\nu n}k)^{p_1}\Bigr)^{p_0/p_1}.
$$

Using the monotonicity of h^* and $p_0 < p_1$ we get

$$
\|\lambda \|b_{p_1p_0}^{0}\|^{p_0} \lesssim \sum_{\nu=0}^{\infty} 2^{-\nu n} \left(\sum_{l=0}^{\infty} 2^{nl} \cdot (2^n - 1) \cdot h^*(2^{-\nu n} 2^{nl})^{p_1}\right)^{p_0/p_1}
$$

$$
\lesssim \sum_{\nu=0}^{\infty} 2^{-\nu n} \sum_{l=0}^{\infty} 2^{nl \frac{p_0}{p_1}} h^*(2^{-\nu n} 2^{nl})^{p_0}.
$$

We substitute $j = l - \nu$ and obtain

$$
\begin{split} \|\lambda \|b_{p_1p_0}^0\|^{p_0} &\lesssim \sum_{j=-\infty}^{\infty} \sum_{\nu=-j}^{\infty} 2^{-\nu n} 2^{n(\nu+j)\frac{p_0}{p_1}} h^*(2^{jn})^{p_0} \\ &= \sum_{j=-\infty}^{\infty} 2^{nj\frac{p_0}{p_1}} h^*(2^{jn})^{p_0} \sum_{\nu=-j}^{\infty} 2^{n\nu\left(\frac{p_0}{p_1}-1\right)} \\ &\approx \sum_{j=-\infty}^{\infty} 2^{nj} h^*(2^{nj})^{p_0} \approx \|h^* \| L_{p_0}(0,\infty)\|^{p_0} = \|h \| L_{p_0}(\mathbb{R}^n)\|^{p_0} .\end{split}
$$

If $p_1 = \infty$, only notational changes are necessary.

Theorem 2.2. Let $-\infty < s_1 < s_0 < \infty, 0 < p_0 < p_1 < \infty$, and $0 < q \leq \infty$. Then

$$
b^{s_0}_{p_0p_1}\longleftrightarrow f^{s_1}_{p_1q}\quad if\quad s_0-\frac{n}{p_0}=s_1-\frac{n}{p_1}.
$$

Proof. Using the lifting property and (6), we may suppose that $s_1 = 0$ and $0 < q < p_0$.

By Lemma 1.4, we observe that

$$
\|\lambda|f_{p_1q}^0\| = \left\| \left(\sum_{\nu=0}^{\infty} \sum_{m \in \mathbb{Z}^n} |\lambda_{\nu m}|^q \chi_{\nu m}(x) \right)^{1/q} \mid L_{p_1}(\mathbb{R}^n) \right\|
$$

Revista Matemática Complutense 2008: vol. 21, num. 1, pags. 75–82

 \Box

may be estimated from above by

$$
\left\| \sum_{\nu=0}^{\infty} \sum_{m=0}^{\infty} \tilde{\lambda}_{\nu m}^q \tilde{\chi}_{\nu m}(\cdot) \right\| L_{\frac{p_1}{q}}(0,\infty) \right\|^{1/q}, \tag{7}
$$

where $\tilde{\lambda}_{\nu} = {\tilde{\lambda}_{\nu m}}_{m=0}^{\infty}$ is a non-increasing rearrangement of $\lambda_{\nu} = {\lambda_{\nu m}}_{m \in \mathbb{Z}^n}$ and $\tilde{\chi}_{\nu m}$ is a characteristic function of the interval $(2^{-\nu n}m, 2^{-\nu n}(m+1)).$

Using duality, (7) may be rewritten as

$$
\sup_{g} \left(\int_0^\infty g(x) \left(\sum_{\nu=0}^\infty \sum_{m=0}^\infty \tilde{\lambda}_{\nu m}^q \tilde{\chi}_{\nu m}(x) \right) dx \right)^{1/q} = \sup_{g} \left(\sum_{\nu=0}^\infty \sum_{m=0}^\infty 2^{-\nu n} \tilde{\lambda}_{\nu m}^q g_{\nu m} \right)^{1/q}, \tag{8}
$$

where the supremum is taken over all non-increasing non-negative measurable functions g with $||g|| L_{\beta}(0, \infty)|| \leq 1$ and $g_{\nu m} = 2^{\nu n} \int g(x) \tilde{\chi}_{\nu m}(x) dx$. Here, β is the conjugated index to $\frac{p_1}{q}$. Similarly, α stands for the conjugated index to $\frac{p_0}{q}$.

We use twice Hölder's inequality and estimate (8) from above by

$$
\left(\sum_{\nu=0}^{\infty} 2^{-\nu n} \left(\sum_{m=0}^{\infty} \tilde{\lambda}_{\nu m}^{p_0}\right)^{\frac{p_1}{p_0}}\right)^{1/p_1} \cdot \sup_{g} \left(\sum_{\nu=0}^{\infty} 2^{-\nu n} \left(\sum_{m=0}^{\infty} g_{\nu m}^{\alpha}\right)^{\frac{\beta}{\alpha}}\right)^{\frac{1}{\beta q}} \tag{9}
$$

Since $s_0 = n\left(\frac{1}{p_0} - \frac{1}{p_1}\right)$ and $p_1(s_0 - \frac{n}{p_0}) = -n$, the first factor in (9) is equal to $\|\lambda\|_{p_0p_1}^{s_0}$. To finish the proof, we have to show that there is a number $c > 0$ such that that

$$
\left(\sum_{\nu=0}^{\infty} 2^{-\nu n} \left(\sum_{m=0}^{\infty} g_{\nu m}^{\alpha}\right)^{\frac{\beta}{\alpha}}\right)^{\frac{1}{\beta q}} \leq c \tag{10}
$$

holds for every non-increasing non-negative measurable functions g with $||g||L_{\beta}(0,\infty)||$ \leq 1. We fix such a function g. Using the monotonicity of g, we get

$$
\sum_{m=0}^{\infty} g_{\nu m}^{\alpha} = \sum_{l=0}^{\infty} \sum_{m=2^{ln}-1}^{2^{(l+1)n}} \left(2^{\nu n} \int_{2^{-\nu n}m}^{2^{-\nu n}(m+1)} g(x) dx \right)^{\alpha}
$$

$$
\lesssim \sum_{l=0}^{\infty} 2^{ln} \left(2^{\nu n} \int_{2^{-\nu n}(2^{ln}-1)}^{2^{-\nu n}2^{ln}} g(x) dx \right)^{\alpha} \le \sum_{l=0}^{\infty} 2^{ln} (g^{**})^{\alpha} (2^{(l-\nu)n}).
$$

Revista Matemática Complutense 2008: vol. 21, num. 1, pags. 75–82 80

We use $1 < \beta < \alpha$, Lemma 1.3 and obtain

$$
\left(\sum_{\nu=0}^{\infty} 2^{-\nu n} \left(\sum_{m=0}^{\infty} g_{\nu m}^{\alpha}\right)^{\frac{\beta}{\alpha}}\right)^{1/\beta} \le \left(\sum_{\nu=0}^{\infty} 2^{-\nu n} \left(\sum_{l=0}^{\infty} 2^{ln} (g^{**})^{\alpha} (2^{(l-\nu)n})\right)^{\frac{\beta}{\alpha}}\right)^{1/\beta}
$$

$$
\le \left(\sum_{\nu=0}^{\infty} 2^{-\nu n} \sum_{l=0}^{\infty} 2^{ln\frac{\beta}{\alpha}} (g^{**})^{\beta} (2^{(l-\nu)n})\right)^{1/\beta}
$$

$$
\le \left(\sum_{k=-\infty}^{\infty} 2^{kn\frac{\beta}{\alpha}} \sum_{\nu=-k}^{\infty} 2^{\nu n (\frac{\beta}{\alpha}-1)} (g^{**})^{\beta} (2^{kn})\right)^{1/\beta}
$$

$$
\lesssim \left(\sum_{k=-\infty}^{\infty} 2^{kn} (g^{**})^{\beta} (2^{kn})\right)^{1/\beta}
$$

$$
\lesssim ||g^{**}|| L_{\beta}(0, \infty)|| \le c ||g|| L_{\beta}(0, \infty)|| \le c.
$$

Taking the $\frac{1}{q}$ -power of this estimate, we finish the proof of (10).

$$
\Box
$$

The Theorems 2.1 and 2.2 are sharp in the following sense.

Theorem 2.3. Let $-\infty < s_1 < s_0 < \infty$, $0 < p_0 < p_1 \leq \infty$, and $0 < q_0, q_1 \leq \infty$ with

$$
s_0 - \frac{n}{p_0} = s_1 - \frac{n}{p_1}.
$$

 (i) If

$$
f_{p_0q_0}^{s_0} \longleftrightarrow b_{p_1q_1}^{s_1},\tag{11}
$$

then $q_1 \geq p_0$.

(ii) If
$$
p_1 < \infty
$$
 and

$$
b_{p_0 q_0}^{s_0} \hookrightarrow f_{p_1 q_1}^{s_1}, \qquad (12)
$$

then $q_0 \leq p_1$.

Remark 2.4. Using (any of) the usual decomposition techniques, the same statements hold true also for the function spaces. These results were first proved in [4].

Proof. (i) Suppose that $0 < q_1 < p_0 < \infty$ and set

$$
\lambda_{\nu m} = \begin{cases} \nu^{-\frac{1}{q_1}} 2^{\nu(\frac{n}{p_1} - s_1)} & \text{if } \nu \in \mathbb{N} \text{ and } m = 0, \\ 0, & \text{otherwise.} \end{cases}
$$

A simple calculation shows that $\|\lambda \| f_{p_0q_0}^{s_0}\| < \infty$ and $\|\lambda \| b_{p_1q_1}^{s_1}\| = \infty$. Hence, (11) does not hold.

(ii) Suppose that $0 < p_1 < q_0 \leq \infty$ and set

Revista Matemática Complutense 2008: vol. 21, num. 1, pags. 75–82

Jan Vybíral A new proof of the Jawerth-Franke embedding

$$
\lambda_{\nu m} = \begin{cases} \nu^{-\frac{1}{p_1}} 2^{\nu(\frac{n}{p_1} - s_1)} & \text{if } \nu \in \mathbb{N} \text{ and } m = 0, \\ 0, & \text{otherwise.} \end{cases}
$$

Again, it is a matter of simple calculation to show, that $\|\lambda \| b_{p_0q_0}^{s_0}\| < \infty$ and $\|\lambda \| f_{s_1} \| = \infty$. Hence (12) is not true $\|\lambda \| f_{p_1q_1}^{s_1}\| = \infty$. Hence, (12) is not true.

References

- [1] C. Bennett and R. Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press Inc., Boston, MA, 1988.
- [2] J. Franke, *On the spaces* \mathbf{F}_{pq}^s *of Triebel-Lizorkin type: pointwise multipliers and spaces on do-mains*, Math. Nachr. **125** (1986), 29–68.
- [3] B. Jawerth, Some observations on Besov and Lizorkin-Triebel spaces, Math. Scand. **40** (1977), no. 1, 94–104.
- [4] W. Sickel and H. Triebel, *Hölder inequalities and sharp embeddings in function spaces of* B_{pq}^s and F_{pq}^{s} type, Z. Anal. Anwendungen **14** (1995), no. 1, 105–140.
- [5] H. Triebel, Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhäuser Verlag, Basel, 1983.
- [6] , Theory of function spaces, II, Monographs in Mathematics, vol. 84, Birkhäuser Verlag, Basel, 1992.
- [7] , Theory of function spaces, III, Monographs in Mathematics, vol. 100, Birkhäuser Verlag, Basel, 2006.

Revista Matemática Complutense 2008: vol. 21, num. 1, pags. 75–82 82