A New Proof of the Jawerth-Franke Embedding

Jan VYBÍRAL

Mathematisches Institut Friedrich-Schiller-Universität Jena Ernst-Abbe-Platz 3 07740 Jena — Germany vybiral@minet.uni-jena.de

Received: May 28, 2007 Accepted: July 2, 2007

ABSTRACT

We present an alternative proof of the Jawerth embedding

$$F_{p_0q}^{s_0}(\mathbb{R}^n) \hookrightarrow B_{p_1p_0}^{s_1}(\mathbb{R}^n),$$

where

$$-\infty < s_1 < s_0 < \infty, \quad 0 < p_0 < p_1 \le \infty, \quad 0 < q \le \infty$$

and

$$s_0 - \frac{n}{p_0} = s_1 - \frac{n}{p_1}.$$

The original proof given in [3] uses interpolation theory. Our proof relies on wavelet decompositions and transfers the problem from function spaces to sequence spaces. Using similar techniques, we also recover the embedding of Franke [2].

 $K\!ey$ words: Besov spaces, Triebel-Lizorkin spaces, Sobolev embedding, Jawerth-Franke embedding.

 $2000\ Mathematics\ Subject\ Classification:\ 46E35.$

Introduction

Let $B^s_{pq}(\mathbb{R}^n)$ and $F^s_{pq}(\mathbb{R}^n)$ denote the Besov and Triebel-Lizorkin function spaces, respectively. The classical Sobolev embedding theorem can be extended to these two scales

Theorem 0.1. Let $-\infty < s_1 < s_0 < \infty$ and $0 < p_0 < p_1 \le \infty$ with

$$s_0 - \frac{n}{p_0} = s_1 - \frac{n}{p_1}. (1)$$

(i) If $0 < q_0 \le q_1 \le \infty$, then

$$B^{s_0}_{p_0q_0}(\mathbb{R}^n) \hookrightarrow B^{s_1}_{p_1q_1}(\mathbb{R}^n).$$

(ii) If $0 < q_0, q_1 \le \infty$ and $p_1 < \infty$, then

$$F_{p_0q_0}^{s_0}(\mathbb{R}^n) \longleftrightarrow F_{p_1q_1}^{s_1}(\mathbb{R}^n). \tag{2}$$

We observe that there is no condition on the fine paramters q_0, q_1 in (2). This surprising effect was first observed in full generality by Jawerth, [3]. Using (2), we may prove

$$F_{p_0q}^{s_0}(\mathbb{R}^n) \longleftrightarrow F_{p_1p_1}^{s_1}(\mathbb{R}^n) = B_{p_1p_1}^{s_1}(\mathbb{R}^n)$$

and

$$B^{s_0}_{p_0p_0}(\mathbb{R}^n) = F^{s_0}_{p_0p_0}(\mathbb{R}^n) \longrightarrow F^{s_1}_{p_1q}(\mathbb{R}^n)$$

for every $0 < q \le \infty$. But Jawerth [3] and Franke [2] showed that these embeddings are not optimal and may be improved.

Theorem 0.2. Let $-\infty < s_1 < s_0 < \infty$, $0 < p_0 < p_1 \le \infty$, and $0 < q \le \infty$ with (1).

(i) Then

$$F_{p_0q}^{s_0}(\mathbb{R}^n) \longrightarrow B_{p_1p_0}^{s_1}(\mathbb{R}^n).$$
 (3)

.

(ii) If
$$p_1 < \infty$$
, then

$$B_{p_0p_1}^{s_0}(\mathbb{R}^n) \longrightarrow F_{p_1q}^{s_1}(\mathbb{R}^n).$$
 (4)

The original proofs (see [2,3]) use interpolation techniques. We rely on a different method. First, we observe that using (for example) the wavelet decomposition method, (3) and (4) are equivalent to

$$f_{p_0q}^{s_0} \longleftrightarrow b_{p_1p_0}^{s_1} \quad \text{and} \quad b_{p_0p_1}^{s_0} \longleftrightarrow f_{p_1q}^{s_1}$$
 (5)

under the same restrictions on parameters s_0 , s_1 , p_0 , p_1 , q as in Theorem 0.2. Here, b_{pq}^s and f_{pq}^s stands for the sequence spaces of Besov and Triebel-Lizorkin type. We prove (5) directly using the technique of non-increasing rearrangement on a rather elementary level.

All the unimportant constants are denoted by the letter c, whose meaning may differ from one occurrence to another. If $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ are two sequences of positive real numbers, we write $a_n \lesssim b_n$ if, and only if, there is a positive real number c > 0 such that $a_n \leq c b_n$, $n \in \mathbb{N}$. Furthermore, $a_n \approx b_n$ means that $a_n \lesssim b_n$ and simultaneously $b_n \lesssim a_n$.

1. Notation and definitions

We introduce the sequence spaces associated with the Besov and Triebel-Lizrokin spaces. Let $m \in \mathbb{Z}^n$ and $\nu \in \mathbb{N}_0$. Then $Q_{\nu m}$ denotes the closed cube in \mathbb{R}^n with sides parallel to the coordinate axes, centred at $2^{-\nu}m$, and with side length $2^{-\nu}$. By $\chi_{\nu m} = \chi_{Q_{\nu m}}$ we denote the characteristic function of $Q_{\nu m}$. If

$$\lambda = \{ \lambda_{\nu m} : \nu \in \mathbb{N}_0, m \in \mathbb{Z}^n \},\$$

 $-\infty < s < \infty$, and $0 < p, q \le \infty$, we set

$$\|\lambda \mid b_{pq}^s\| = \left(\sum_{\nu=0}^{\infty} 2^{\nu(s-\frac{n}{p})q} \left(\sum_{m \in \mathbb{Z}^n} |\lambda_{\nu m}|^p\right)^{\frac{q}{p}}\right)^{\frac{1}{q}},$$

appropriately modified if $p = \infty$ and/or $q = \infty$. If $p < \infty$, we define also

$$\|\lambda|f_{pq}^{s}\| = \left\| \left(\sum_{\nu=0}^{\infty} \sum_{m \in \mathbb{Z}^{n}} |2^{\nu s} \lambda_{\nu \, m} \chi_{\nu \, m}(\cdot)|^{q} \right)^{1/q} \, \right| \, L_{p}(\mathbb{R}^{n}) \right\|.$$

The connection between the function spaces $B_{pq}^s(\mathbb{R}^n)$, $F_{pq}^s(\mathbb{R}^n)$ and the sequence spaces b_{pq}^s , f_{pq}^s may be given by various decomposition techniques, we refer to [7, chapters 2 and 3] for details and further references.

As a result of these characterizations, (3) is equivalent to (5).

We use the technique of non-increasing rearrangement. We refer to [1, chapter 2] for details.

Definition 1.1. Let μ be the Lebesgue measure in \mathbb{R}^n . If h is a measurable function on \mathbb{R}^n , we define the non-increasing rearrangement of h through

$$h^*(t) = \sup\{\lambda > 0 : \mu\{x \in \mathbb{R}^n : |h(x)| > \lambda\} > t\}, \qquad t \in (0, \infty).$$

We denote its averages by

$$h^{**}(t) = \frac{1}{t} \int_0^t h^*(s) \, ds, \quad t > 0.$$

We shall use the following properties. The first two are very well known and their proofs may be found in [1, Proposition 1.8 in chapter 2, Theorem 3.10 in chapter 3].

Lemma 1.2. If 0 , then

$$||h| L_p(\mathbb{R}^n)|| = ||h^*| L_p(0,\infty)||$$

for every measurable function h.

Lemma 1.3. If $1 , then there is a constant <math>c_p$ such that

$$||h^{**}| L_n(0,\infty)|| \le c_n ||h^*| L_n(0,\infty)||$$

for every measurable function h.

Lemma 1.4. Let h_1 and h_2 be two non-negative measurable functions on \mathbb{R}^n . If $1 \leq p \leq \infty$, then

$$||h_1 + h_2| L_p(\mathbb{R}^n)|| \le ||h_1^* + h_2^*| L_p(0, \infty)||.$$

Proof. The proof follows from Theorems 3.4 and 4.6 in [1, chapter2]. \Box

2. Main results

In this part, we present a direct proof of the discrete versions of Jawerth and Franke embedding. We start with the Jawerth embedding.

Theorem 2.1. Let $-\infty < s_1 < s_0 < \infty$, $0 < p_0 < p_1 \le \infty$, and $0 < q \le \infty$. Then

$$f_{p_0q}^{s_0} \longleftrightarrow b_{p_1p_0}^{s_1} \quad if \quad s_0 - \frac{n}{p_0} = s_1 - \frac{n}{p_1}.$$

Proof. Using the elementary embedding

$$f_{pq_0}^s \longleftrightarrow f_{pq_1}^s \quad \text{if} \quad 0 < q_0 \le q_1 \le \infty$$
 (6)

and the lifting property of Besov and Triebel-Lizorkin spaces (which is even simpler in the language of sequence spaces), we may restrict ourselves to the proof of

$$f_{p_0\infty}^s \longleftrightarrow b_{p_1p_0}^0$$
, where $s = n\left(\frac{1}{p_0} - \frac{1}{p_1}\right)$.

Let $\lambda \in f_{p_0 \infty}^s$ and set

$$h(x) = \sup_{\nu \in \mathbb{N}_0} 2^{\nu s} \sum_{m \in \mathbb{Z}^n} |\lambda_{\nu m}| \, \chi_{\nu m}(x).$$

Hence

$$|\lambda_{\nu m}| \le 2^{-\nu s} \inf_{x \in Q_{\nu m}} h(x), \quad \nu \in \mathbb{N}_0, \quad m \in \mathbb{Z}^n.$$

Using this notation,

$$\|\lambda \mid f_{p_0\infty}^s\| = \|h \mid L_{p_0}(\mathbb{R}^n)\|$$

and

$$\|\lambda \mid b_{p_1 p_0}^0\|^{p_0} \le \sum_{\nu=0}^{\infty} 2^{-\nu n} \Big(\sum_{m \in \mathbb{Z}^n} \inf_{x \in Q_{\nu m}} h(x)^{p_1} \Big)^{p_0/p_1}$$
$$\le \sum_{\nu=0}^{\infty} 2^{-\nu n} \Big(\sum_{k=1}^{\infty} h^* (2^{-\nu n} k)^{p_1} \Big)^{p_0/p_1}.$$

Using the monotonicity of h^* and $p_0 < p_1$ we get

$$\|\lambda \mid b_{p_1 p_0}^0\|^{p_0} \lesssim \sum_{\nu=0}^{\infty} 2^{-\nu n} \left(\sum_{l=0}^{\infty} 2^{nl} \cdot (2^n - 1) \cdot h^* (2^{-\nu n} 2^{nl})^{p_1} \right)^{p_0/p_1}$$
$$\lesssim \sum_{\nu=0}^{\infty} 2^{-\nu n} \sum_{l=0}^{\infty} 2^{nl} \frac{p_0}{p_1} h^* (2^{-\nu n} 2^{nl})^{p_0}.$$

We substitute $j = l - \nu$ and obtain

$$\begin{split} \|\lambda \mid b_{p_1 p_0}^0\|^{p_0} &\lesssim \sum_{j=-\infty}^{\infty} \sum_{\nu=-j}^{\infty} 2^{-\nu n} 2^{n(\nu+j)\frac{p_0}{p_1}} h^*(2^{jn})^{p_0} \\ &= \sum_{j=-\infty}^{\infty} 2^{nj\frac{p_0}{p_1}} h^*(2^{jn})^{p_0} \sum_{\nu=-j}^{\infty} 2^{n\nu \left(\frac{p_0}{p_1}-1\right)} \\ &\approx \sum_{j=-\infty}^{\infty} 2^{nj} h^*(2^{nj})^{p_0} \approx \|h^* \mid L_{p_0}(0,\infty)\|^{p_0} = \|h \mid L_{p_0}(\mathbb{R}^n)\|^{p_0}. \end{split}$$

If $p_1 = \infty$, only notational changes are necessary.

Theorem 2.2. Let $-\infty < s_1 < s_0 < \infty, 0 < p_0 < p_1 < \infty, \text{ and } 0 < q \le \infty.$ Then

$$b_{p_0p_1}^{s_0} \longleftrightarrow f_{p_1q}^{s_1} \quad \text{if} \quad s_0 - \frac{n}{p_0} = s_1 - \frac{n}{p_1}.$$

Proof. Using the lifting property and (6), we may suppose that $s_1 = 0$ and $0 < q < p_0$.

By Lemma 1.4, we observe that

$$\|\lambda|f_{p_1q}^0\| = \left\| \left(\sum_{\nu=0}^{\infty} \sum_{m \in \mathbb{Z}^n} |\lambda_{\nu m}|^q \chi_{\nu m}(x) \right)^{1/q} \mid L_{p_1}(\mathbb{R}^n) \right\|$$

may be estimated from above by

$$\left\| \sum_{\nu=0}^{\infty} \sum_{m=0}^{\infty} \tilde{\lambda}_{\nu m}^{q} \tilde{\chi}_{\nu m}(\cdot) \right\| L_{\frac{p_{1}}{q}}(0, \infty) \right\|^{1/q}, \tag{7}$$

where $\tilde{\lambda}_{\nu} = \{\tilde{\lambda}_{\nu m}\}_{m=0}^{\infty}$ is a non-increasing rearrangement of $\lambda_{\nu} = \{\lambda_{\nu m}\}_{m \in \mathbb{Z}^n}$ and $\tilde{\chi}_{\nu m}$ is a characteristic function of the interval $(2^{-\nu n}m, 2^{-\nu n}(m+1))$.

Using duality, (7) may be rewritten as

$$\sup_{g} \left(\int_{0}^{\infty} g(x) \left(\sum_{\nu=0}^{\infty} \sum_{m=0}^{\infty} \tilde{\lambda}_{\nu m}^{q} \tilde{\chi}_{\nu m}(x) \right) dx \right)^{1/q} = \sup_{g} \left(\sum_{\nu=0}^{\infty} \sum_{m=0}^{\infty} 2^{-\nu n} \tilde{\lambda}_{\nu m}^{q} g_{\nu m} \right)^{1/q}, (8)$$

where the supremum is taken over all non-increasing non-negative measurable functions g with $\|g \mid L_{\beta}(0,\infty)\| \leq 1$ and $g_{\nu m} = 2^{\nu n} \int g(x) \tilde{\chi}_{\nu m}(x) dx$. Here, β is the conjugated index to $\frac{p_0}{q}$. Similarly, α stands for the conjugated index to $\frac{p_0}{q}$.

We use twice Hölder's inequality and estimate (8) from above by

$$\left(\sum_{\nu=0}^{\infty} 2^{-\nu n} \left(\sum_{m=0}^{\infty} \tilde{\lambda}_{\nu m}^{p_0}\right)^{\frac{p_1}{p_0}}\right)^{1/p_1} \cdot \sup_{g} \left(\sum_{\nu=0}^{\infty} 2^{-\nu n} \left(\sum_{m=0}^{\infty} g_{\nu m}^{\alpha}\right)^{\frac{\beta}{\alpha}}\right)^{\frac{1}{\beta q}}$$
(9)

Since $s_0 = n(\frac{1}{p_0} - \frac{1}{p_1})$ and $p_1(s_0 - \frac{n}{p_0}) = -n$, the first factor in (9) is equal to $\|\lambda \mid b_{p_0p_1}^{s_0}\|$. To finish the proof, we have to show that there is a number c > 0 such that

$$\left(\sum_{\nu=0}^{\infty} 2^{-\nu n} \left(\sum_{m=0}^{\infty} g_{\nu m}^{\alpha}\right)^{\frac{\beta}{\alpha}}\right)^{\frac{1}{\beta q}} \le c \tag{10}$$

holds for every non-increasing non-negative measurable functions g with $||g|| L_{\beta}(0,\infty)|| \le 1$. We fix such a function g. Using the monotonicity of g, we get

$$\begin{split} \sum_{m=0}^{\infty} g_{\nu m}^{\alpha} &= \sum_{l=0}^{\infty} \sum_{m=2^{ln}-1}^{2^{(l+1)n}} \left(2^{\nu n} \int_{2^{-\nu n} m}^{2^{-\nu n} (m+1)} g(x) \, dx \right)^{\alpha} \\ &\lesssim \sum_{l=0}^{\infty} 2^{ln} \left(2^{\nu n} \int_{2^{-\nu n} (2^{ln}-1)}^{2^{-\nu n} 2^{ln}} g(x) \, dx \right)^{\alpha} \leq \sum_{l=0}^{\infty} 2^{ln} (g^{**})^{\alpha} (2^{(l-\nu)n}). \end{split}$$

We use $1 < \beta < \alpha$, Lemma 1.3 and obtain

$$\left(\sum_{\nu=0}^{\infty} 2^{-\nu n} \left(\sum_{m=0}^{\infty} g_{\nu m}^{\alpha}\right)^{\frac{\beta}{\alpha}}\right)^{1/\beta} \leq \left(\sum_{\nu=0}^{\infty} 2^{-\nu n} \left(\sum_{l=0}^{\infty} 2^{l n} (g^{**})^{\alpha} (2^{(l-\nu)n})\right)^{\frac{\beta}{\alpha}}\right)^{1/\beta} \\
\leq \left(\sum_{\nu=0}^{\infty} 2^{-\nu n} \sum_{l=0}^{\infty} 2^{l n \frac{\beta}{\alpha}} (g^{**})^{\beta} (2^{(l-\nu)n})\right)^{1/\beta} \\
\leq \left(\sum_{k=-\infty}^{\infty} 2^{k n \frac{\beta}{\alpha}} \sum_{\nu=-k}^{\infty} 2^{\nu n (\frac{\beta}{\alpha}-1)} (g^{**})^{\beta} (2^{k n})\right)^{1/\beta} \\
\leq \left(\sum_{k=-\infty}^{\infty} 2^{k n} (g^{**})^{\beta} (2^{k n})\right)^{1/\beta} \\
\leq \left(\sum_{k=$$

Taking the $\frac{1}{q}$ -power of this estimate, we finish the proof of (10).

The Theorems 2.1 and 2.2 are sharp in the following sense.

Theorem 2.3. Let $-\infty < s_1 < s_0 < \infty$, $0 < p_0 < p_1 \le \infty$, and $0 < q_0, q_1 \le \infty$ with

$$s_0 - \frac{n}{p_0} = s_1 - \frac{n}{p_1}.$$

(i) If
$$f_{p_0q_0}^{s_0} \longleftrightarrow b_{p_1q_1}^{s_1}, \tag{11}$$

then $q_1 \geq p_0$.

(ii) If
$$p_1 < \infty$$
 and
$$b_{p_0q_0}^{s_0} \longleftrightarrow f_{p_1q_1}^{s_1}, \tag{12}$$

then $q_0 \leq p_1$.

Remark 2.4. Using (any of) the usual decomposition techniques, the same statements hold true also for the function spaces. These results were first proved in [4].

Proof. (i) Suppose that $0 < q_1 < p_0 < \infty$ and set

$$\lambda_{\nu m} = \begin{cases} \nu^{-\frac{1}{q_1}} 2^{\nu(\frac{n}{p_1} - s_1)} & \text{if } \nu \in \mathbb{N} \text{ and } m = 0, \\ 0, & \text{otherwise.} \end{cases}$$

A simple calculation shows that $\|\lambda \mid f_{p_0q_0}^{s_0}\| < \infty$ and $\|\lambda \mid b_{p_1q_1}^{s_1}\| = \infty$. Hence, (11) does not hold.

(ii) Suppose that $0 < p_1 < q_0 \le \infty$ and set

$$\lambda_{\nu m} = \begin{cases} \nu^{-\frac{1}{p_1}} 2^{\nu(\frac{n}{p_1} - s_1)} & \text{if } \nu \in \mathbb{N} \text{ and } m = 0, \\ 0, & \text{otherwise.} \end{cases}$$

Again, it is a matter of simple calculation to show, that $\|\lambda \mid b_{p_0q_0}^{s_0}\| < \infty$ and $\|\lambda \mid f_{p_1q_1}^{s_1}\| = \infty$. Hence, (12) is not true.

References

- [1] C. Bennett and R. Sharpley, *Interpolation of operators*, Pure and Applied Mathematics, vol. 129, Academic Press Inc., Boston, MA, 1988.
- [2] J. Franke, On the spaces \mathbf{F}_{pq}^s of Triebel-Lizorkin type: pointwise multipliers and spaces on domains, Math. Nachr. 125 (1986), 29–68.
- [3] B. Jawerth, Some observations on Besov and Lizorkin-Triebel spaces, Math. Scand. 40 (1977), no. 1, 94–104.
- [4] W. Sickel and H. Triebel, Hölder inequalities and sharp embeddings in function spaces of B_{pq}^s and F_{pq}^s type, Z. Anal. Anwendungen 14 (1995), no. 1, 105–140.
- [5] H. Triebel, Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhäuser Verlag, Basel, 1983.
- [6] ______, Theory of function spaces, II, Monographs in Mathematics, vol. 84, Birkhäuser Verlag, Basel, 1992.
- [7] ______, Theory of function spaces, III, Monographs in Mathematics, vol. 100, Birkhäuser Verlag, Basel. 2006.