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ABSTRACT

In this paper, we have studied a problem of identifiability of boundaries and
stability of the solutions for the direct and the inverse problem concerning a
supercritical and irrotational flow of an inviscid fluid over an obstacle which
lies on the bottom of a channel. The identifiability of the solution means its
uniqueness when it exists. The stability is studied in the sense that for the direct
problem and the inverse one, we study the variation of the obtained geometry
for a little perturbation of the bottom or of the free surface. The proofs of the
theorems are based on Holmgren theorem and the mean value theorem. The
stability obtained is linear.
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1. Position of the problem

We consider a bidimensional, irrotational and stationary flow of an ideal and incom-
pressible fluid in a domain Ω infinite at the downstream and the upstream, with a
free surface at the upper boundary and an obstacle on the bottom. We suppose that
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Figure 1

the flow is uniform with a velocity U0 at the infinity, upstream and downstream of
the obstacle, where the depth of the flow is denoted H (see figure 1).

The bottom is flat everywhere except in a place where lies an obstacle. y = b(x)
and y = f(x) are respectively the equations of the bottom Γb and the free surface Γf .
We denote

Ω = { (x, y) ∈ R
2 | b(x) < y < f(x) }

We suppose that the functions b and f are of the class C2 on R. (in the case of a
small height of the obstacle, f belongs to C2 because b belongs to C2, see [4]).

In [4], it has been established existence and uniqueness of the free surface for a
small obstacle. In this paper, our aim is to generalize the uniqueness for obstacles
without condition on their height and to establish the identifiability of the obstacle
when the free surface is known.

The irrotationality of the flow and the incompressibility of the fluid permits us to
introduce an harmonic stream function ψ in Ω. We give the relations verified by ψ.
The bottom and the free surface of Ω are streamlines so ψ is constant on Γb and Γf . We
choose ψ = 0 on the bottom and equal to the rate of flow on the free surface. The flow
being uniform at the infinity upstream and downstream of the obstacle, the function
ψ equals y when x tends to ±∞. In addition, we have an equilibrium condition on
the free surface, called the Bernoulli equation, which expresses the continuity of the
pressure across the free surface. It is given by

ρ

2
|∇ψ|2 + ρgy = Cte on y = f(x) (1)

where ρ is the density of the fluid and g the gravity. (For example, see [4] for details.)
The constant which appears in the relation (1) will be evaluated later. Using the
values of U0 and H, we nondimensionalize the equations verified by ψ. Then it
appears a number F = U0√

gH
, called the Froude number which characterizes the flow.
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The flow is said supercritical when F > 1 and subcritical when F < 1. In this paper,
we will focus ourselves on the supercritical case.

The Bernoulli equation becomes

F 2

2
|∇ψ|2 + y = Cte on y = f(x). (2)

ψ being constant on the free surface, the tangential derivative of ψ is equal to zero
on this surface. The equation (2) takes the new form

F 2

2

(
∂ψ

∂n

)2

+ y = Cte on y = f(x) (3)

where ∂ψ
∂n is the normal derivative of ψ at the free surface. The constant in equation (3)

is equal to F 2

2 + 1. Indeed at the infinity upstream of the obstacle, we have

lim
x→−∞

∂ψ

∂n
= lim
x→−∞

∂ψ

∂y
= 1 and y = 1,

and so
F 2

2
+ 1 = Cte.

The equation (3) becomes(
∂ψ

∂n

)2

= c1 − c2y on y = f(x),

where
c1 = 1 +

2
F 2

and c2 =
2
F 2

. (4)

We note that if a solution exists, it necessarily verifies: y < c1
c2

. Then we obtain

∂ψ

∂n
= ±√

c1 − c2y on y = f(x).

In fact we have
∂ψ

∂n
= +

√
c1 − c2y on y = f(x).

Indeed
∂ψ

∂y
= a(x, y)

∂ψ

∂n
on Γf . (5)

The direction of the flow is towards the positive x. Then the horizontal component
of the velocity at each point on any streamline is positive. The velocity is equal to
curlψ then ∂ψ

∂y (x, y) > 0. Hence ψ is an increasing function of y. Then

a(x, y)
∂ψ

∂n
> 0 on Γf . (6)
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On the other hand, at the infinity upstream of the obstacle we have

∂ψ

∂n
=
∂ψ

∂y
on Γf .

Then
lim

x→−∞ a(x, y(x)) = 1 on Γf . (7)

From (6) and (7) we have that a(x, y) > 0 on y = f(x). We conclude by (5) that

∂ψ

∂n
> 0 on y = f(x).

Finally ψ verifies the following problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δψ = 0 in Ω,
ψ = 0 on y = b(x),
ψ = 1 on y = f(x),
∂ψ
∂n =

√
c1 − c2y on y = f(x),

(8)

where c1 and c2 are defined in the relation (4) and

lim
x→±∞ψ(x, y) = y. (9)

We call (8), (9) a direct problem if b is known and f is to be determined. It will
be called an inverse problem in the opposite case. ie., f is known (or at least a part
of f) and b is to be identified. In this work, we will consider these two aspects of
the problem: the direct problem and the inverse problem. In the direct problem,
for a given obstacle, we prove the uniqueness of the solution if it exists. Concerning
the inverse problem, we consider two domains Ω1 and Ω2 with bottoms Γb1 and Γb2
described by y = b1(x) and y = b2(x), with free surfaces ΓH1 and ΓH2 described by
y = f1(x) and y = f2(x) which coincide on a part ΓC . Then b1(x) = b2(x). Using the
result of the direct problem, we conclude that f1(x) = f2(x). Hence Ω1 = Ω2. Later,
we will study the stability of the bottom of the domain and of the free surface. We
note that some authors have studied the identifiability and the stability of boundaries
for inverse problems (see for example [2]). For small obstacles, the existence and
uniqueness of the solution of the direct problem is done in [4] where we have used the
implicit function theorem. The stability of this solution is deduced from this theorem.

2. Identifiability of the boundaries

2.1. Identifiability of the free surface

We have the following result:
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Figure 2

Theorem 2.1. For an obstacle given by a function y = b(x) of class C2 , lying on
the bottom of a channel, it corresponds at most one free surface f of class C2 such
that limx→±∞ f(x) = 1.

Proof. We denote by y = b(x) the equation of the bottom of Ω and we suppose the
existence of two free surfaces ΓH1 and ΓH2 described respectively by y = f1(x) and
y = f2(x) (see figure 2).

We put
Ωi = { (x, y) ∈ R

2 | b(x) < y < fi(x) }.
The stream function ψi defined on Ωi verifies⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Δψi = 0 in Ωi,
ψi = 0 on y = b(x),
ψi = 1 on y = fi(x),
lim

x→±∞ψi(x, y) = y.

On the other hand, the Bernoulli condition is verified on any streamline of the do-
main Ωi. This condition, written on the bottom, is given by

F 2

2
|∇ψi|2 + b(x) =

F 2

2
.

It may be written
∂ψi
∂n

=

√
1 − 2

F 2
b(x).

Let Θ = (Ω1 ∪Ω2) \ (Ω1 ∩ Ω2). Suppose that Θ �= ∅. Let ΘH a connected component
of Θ. Suppose for example that ΘH ⊂ Ω1 \ (Ω1 ∩ Ω2). The boundary of ΘH is
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Figure 3

composed by a part of ΓH1 which we denote Γ1 and a part of ΓH2 which we denote Γ2

(see figure 2).
The function ψ = ψ1 − ψ2 verifies the following system:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Δψ = 0 in Ω1 ∩ Ω2,

ψ = 0 on y = b(x),
∂ψ

∂n
= 0 on y = b(x),

lim
x→±∞ψ(x, y) = 0.

We apply the Holmgren theorem [6] to deduce that ψ = 0 in Ω1 ∩ Ω2, so ψ1 = ψ2 on
the boundary of Ω1 ∩ Ω2, particularly on Γ2. In fact ψ2 = 1 on Γ2, and then ψ1 = 1
on Γ2. This is a contradiction with the increasing of the function ψ1 with respect to
y (because ψ1 can not take the value one on Γ1 and on Γ2). We conclude that Θ = ∅,
and then f1(x) = f2(x).

2.2. Identifiability of the bottom

We consider Ω1 and Ω2 two possible domains with bottoms described respectively by
y = b1(x) and y = b2(x) and free surfaces described respectively by y = f1(x) and
y = f2(x) of class C2 , having a common part ΓC (see figure 3) where ΓC have a non
empty interior. We want to prove the uniqueness of the bottom for a given part ΓC
of the upper free boundary.

We denote these two domains by

Ωi = { (x, y) ∈ R
2 | bi(x) < y < fi(x) }.
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The stream function ψi verifies in Ωi the following problem:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δψi = 0 in Ωi,
ψi = 0 on y = bi(x),
ψi = 1 on y = fi(x),
∂ψi
∂n

=
√
c1 − c2y on y = fi(x).

(10)

Moreover we have limx→±∞ ψi(x, y) = y.

Theorem 2.2. Under the hypothesis above, we have

b1(x) = b2(x) and f1(x) = f2(x) ∀x ∈ R.

Proof. The proof is the same as the one in theorem 2.1. Let Θ = (Ω1∪Ω2)\(Ω1 ∩ Ω2).
Suppose that Θ �= ∅. Let ΘB a connected component of Θ.

Suppose, for example, that ΘB ⊂ Ω2 \ (Ω1 ∩ Ω2). We denote Ω = Ω1 ∩Ω2 and we
put ψ = ψ1 − ψ2. ψ verifies the Cauchy problem

⎧⎪⎪⎨
⎪⎪⎩

Δψ = 0 in Ω,
ψ = 0 on ΓC ,
∂ψ

∂n
= 0 on ΓC .

The Holmgren theorem [6] permits us to conclude that ψ = 0 in the connected
domain Ω. Then

ψ = 0 on ∂Ω.

This implies that ψ1 = ψ2 on ∂Ω. In particular ψ1 = ψ2 = 0 on Γb1 . This is a
contradiction with the fact that ψ2 = 0 on Γb2 and the fact that ψ2 is an increasing
character function with respect to y, then Θ = ∅ and b1(x) = b2(x).

The identifiability result of the direct problem (theorem 1) permits us to conclude
that f1(x) = f2(x) ∀ x ∈ R and then Ω1 = Ω2.

Remark 2.3. We can formulate the last theorem in this way:
Let b1 and b2 two possible bottoms to identify. Let ψi the solution of the prob-

lem (10). Then
∂ψ1

∂n
=
∂ψ2

∂n
on ΓC implies b1 = b2.

3. Stability of the boundaries of the domain

First, we give some notations, which will be useful from now on.
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3.1. Some notations

The fluid domain Ω given by a figure at the first section can be written as

Ωγb =
{

(x, y) ∈ R
2 | −∞ < x < +∞, b(x) < y < 1 + γ(x)

}
,

where b is the function describing the bottom and γ is the perturbation of the hori-
zontal surface y = 1. Using a change of variables,⎧⎨

⎩
x̃ = x,

ỹ =
y − b(x)

1 + γ(x) − b(x)
,

the domain Ωγb becomes the rectangle

Ω0
0 = { (x, y) ∈ R

2 | −∞ < x < +∞, 0 < y < 1 }
and the relation (2) takes the form T (b, γ) = 0, where

T (b, γ) = γ − F 2

2

{[
∂ψ̃

∂x̃
(x̃, 1) − γ′

(1 + γ − b)2
∂ψ̃

∂ỹ
(x̃, 1)

]2

+
1

(1 + γ − b)2
(
∂ψ̃

∂ỹ
(x̃, 1))2

}
− F 2

1 + γ − b

∂ψ̃

∂ỹ
(x̃, 1) (11)

and ψ̃ verifies the system ⎧⎪⎨
⎪⎩

Δψ̃ + Pγb ψ̃ = 0 in Ω0
0,

ψ̃(x̃, 0) = −b(x̃), x̃ ∈ R,

ψ̃(x̃, 1) = −γ(x̃), x̃ ∈ R.

(12)

Pγb is defined by

Pγb = a1
∂2

∂x̃∂ỹ
+ a2

∂2

∂ỹ2
+ a3

∂

∂ỹ
, (13)

a1 = 2
ỹ(b′ − γ′) − b′

1 + γ − b
,

a2 =
(a1

2

)2

− 1 +
1

(1 + γ − b)2
,

a3 =
−1

1 + γ − b
[b′′ + ỹ(γ′′ − b′′)] +

2
(1 + γ − b)2

(γ′ − b′)[b′ + ỹ(γ′ − b′)].

b and γ are in the space

B2,λ
c (R)=

{
v ∈ C2,λ(R)

∣∣∣∣ ∑
0≤k≤2

sup
x∈R

ec|x||Dk
xv(x)| <∞

}
,
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where 0 < λ < 1 and c > 0. It has been proved in [4] that for a given small b
in B2,λ

c (R), there exists one and only one γ in the same space such that (b, γ) verifies
T (b, γ) = 0 with ψ̃ solution of (12).

3.2. Stability of the lower boundary of the domain

In this section, our aim is to establish a stability result of the bottom of the domain
with respect to the observed free surface. This stability expresses the continuity of
the bottom configuration with respect to the data on ΓC . For this study, we define a
set of admissible bottoms as follows:

Γad = { (x, b(x)) | b ∈ C2,λ(R), supp b ⊂ [−M,M ], M > 0 }
where supp b is the compact support of b.

We define on Γad the distance

d(Γ1,Γ2) = ‖b1(x) − b2(x)‖C2,λ(R).

Note that (Γad, d) is a compact metric space.

Theorem 3.1. Let Γbn
a sequence of elements of Γad. Let Φn the trace of the normal

derivative of the solution of the problem (8) defined on Ωn with bottom Γbn
and free

surface Γfn
. Let Φ the trace of the normal derivative of the solution of (8) defined

on Ω with bottom Γb and free surface Γf . Then we have

Φn → Φ in B1,λ
c (R) =⇒ Γbn → Γb in Γad

Proof. To prove this theorem, we begin by showing the continuity of the application

Γad −→ B1,λ
c (R)

Γb �−→ ∂ψ

∂n
.

(14)

Indeed, Γad is isomorph to the following space:

B =
{
b ∈ C2,λ(R)

∣∣ b with a compact support included in [−M,M ]
}
.

and we have
B ↪−→ B2,λ

c (R) ↪−→ B1,λ
c (R)

b �−→ b �−→ ∂ψ
∂n .

So we have the continuity of the application given by (14). Γad being compact, we can
extract a subsequence noted again Γbn

that tends to Γb1 . Thanks to the continuity
of the application Γ �→ Φ = ∂ψ

∂n , we obtain Φn → Φ1, which is the trace of the normal
derivative of the solution of the problem (8) defined on Ωb1 with free surface Γf . The
uniqueness of the limit allows to Φ1 = Φ; in fact, if Φ1 = Φ, we have ∂ψ1

∂n = ∂ψ
∂n on

ΓC , and then b1 = b (see remark 2.3).
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3.3. Stability of the free boundary for a small perturbation of the linear
lower boundary

In this section our aim is to study the variation of the free surface with respect to the
variation of the flat bottom Γ0 (y = 0). Here we introduce some hypothesis which
allows us the establish the stability result. We denote the initial domain by Ω0

0 and
let bh a sequence of bottoms obtained by deforming the flat bottom. Let bh be

bh(x) = hΘ(x),

where Θ is in C2,λ(R) with a compact support and Θ(x) ≥ 0. We have the following
result:

Theorem 3.2. Under the hypothesis and notations above, we have

lim
h→0

∥∥∥yh − y0
h

∥∥∥
B2,λ

c (R)
exists and is strictly positive,

where yh = 1 + γh and y0 = 1 are the free surfaces corresponding respectively to the
bottoms given by y = bh(x) and y = 0.

Remark 3.3. We recall that, for F > 1, y0 = 1 is the unique free surface corresponding
to the flat bottom (y = 0) but, for F < 1, y0 = 1 is not unique (see [3, 5]).

Proof. We deduce from [4] that, for h small enough, there exists a C1 function g
defined in a neighborhood of zero such that

yh = 1 + g(bh) and y0 = 1 + g(0), (15)

where g(0) = 0 and bh is in a neighborhood of zero.
We have

lim
h→0

∥∥∥yh − y0
h

∥∥∥
B2,λ

c (R)
= lim
h→0

∥∥∥g(bh) − g(0)
h

∥∥∥
B2,λ

c (R)
.

Applying the mean value theorem, we can write

lim
h→0

∥∥∥yh − y0
h

∥∥∥
B2,λ

c (R)
= lim
h→0

∥∥∥∥g′(ch)(bh)h

∥∥∥∥
B2,λ

c (R)

where ch ∈]0, bh[,

and g′(ch) is a linear application from B2,λ
c (R) into itself. Because

lim
h→0

bh − 0
h

= Θ(x) in B2,λ
c (R) and lim

h→0
g′(ch) = g′(0)

(g′ is continuous) we deduce that

lim
h→0

∥∥∥yh − y0
h

∥∥∥
B2,λ

c (R)
= ‖g′(0) · Θ‖B2,λ

c (R).
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A consequence of the implicit function theorem lets us write

g′(0) = −
(
∂T

∂γ
(0, 0)

)−1

◦
(
∂T

∂b
(0, 0)

)
.

It has been shown in [4] that T (b, γ) is continuously differentiable with respect to b
and γ at the point (0, 0) and ∂T

∂γ (0, 0) is injective from B2,λ
c (R) into B2,λ

c (R). ∂T
∂b (0, 0)

is also injective from B2,λ
c (R) into B2,λ

c (R) (see [1]). Then we conclude that g′(0)
is injective. This implies that ‖g′(0).Θ‖B2,λ

c (R) �= 0 because Θ is nonzero. Then we
arrive to the final result:

lim
h→0

∥∥∥yh − y0
h

∥∥∥
B2,λ

c (R)
> 0.

3.4. Stability of the free boundary for a small perturbation of a general
lower boundary

From the last section, for small h and h1, we can write

yh = y0 + α · h+ h2R(h) (16)
and

yh1 = y0 + α · h1 + h2
1R(h1), (17)

where α �= 0 and R is a bounded function of h. The following lemma gives the
regularity of the function R:

Lemma 3.4. yh is an analytical function of h for h small enough.

Proof. We have yh = 1 + γh with γh = g(bh) (see (15)), where bh = hΘ(x) is an
analytical function of h . If we prove that ψ̃ is an analytical function of b and γ,
then T , given by (11), will be an analytical function of b and γ. Hence, using the
implicit function theorem, we deduce that γ = g(b) is an analytical function of b.
Since bh is analytical with respect to h, then γh is also analytical with respect to h.

Now, we verify that ψ̃ is analytical with respect to b and γ. Indeed, ψ̃ verifies the
system ⎧⎪⎨

⎪⎩
Δψ̃ + Pγb ψ̃ = 0 in Ω0

0,

ψ̃(x, 0) = −b(x), x ∈ R,

ψ̃(x, 1) = −γ(x), x ∈ R,

(18)

where Pγb is given by the relation (13). The system (18) can be written as

F (ψ̃, (b, γ)) = 0 (19)

with
F (ψ̃, (b, γ)) = (F1(ψ̃, (b, γ)), F2(ψ̃, (b, γ)), F3(ψ̃, (b, γ))),
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where

F1(ψ̃, (b, γ)) = Δψ̃ + Pγb ψ̃,
F2(ψ̃, (b, γ)) = ψ̃(·, 0) + b,

F3(ψ̃, (b, γ)) = ψ̃(·, 1) + γ.

The functions F1, F2, and F3 are defined from B2,λ
c (Ω0

0) × B2,λ
c (R) × B2,λ

c (R) into
B0,λ
c (Ω0

0), B
2,λ
c (R), and B2,λ

c (R) respectively. It is easily seen that F1, F2, and F3 are
analytical with respect to ψ̃, b, and γ. Applying the implicit function theorem to the
equation (19), at the point (0, (0, 0)), we conclude that ψ̃ is an analytical function
of b and γ.

Theorem 3.5. Let h1 > 0 small enough. Then,

lim
h→h1

∥∥∥yh − yh1

h− h1

∥∥∥
B2,λ

c (R)
exists and is strictly positive.

Proof. The equations (16) and (17) imply∥∥∥yh − yh1

h− h1

∥∥∥
B2,λ

c (R)
=

∥∥∥∥α+ (h+ h1) ·R(h) +
h2

1(R(h) −R(h1))
h− h1

∥∥∥∥
B2,λ

c (R)

.

The mean value theorem applied to the function R lets us write∥∥∥yh − yh1

h− h1

∥∥∥
B2,λ

c (R)
= ‖α+ (h+ h1) ·R(h) + h2

1R
′(ξ)‖B2,λ

c (R),

where ξ ∈ ] min(h, h1),max(h, h1)[. When h tends to h1 (for small h and h1) we obtain

lim
h→h1

∥∥∥yh − yh1

h− h1

∥∥∥
B2,λ

c (R)
= ‖α+ 2h1 ·R(h1) + h2

1R
′(h1)‖B2,λ

c (R).

The triangular inequality gives

lim
h→h1

∥∥∥yh − yh1

h− h1

∥∥∥
B2,λ

c (R)
≥ ‖α‖B2,λ

c (R) − |h1| · ‖2R(h1) + h1R
′(h1)‖B2,λ

c (R).

We can choose h1 small enough such that

|h1| · ‖2R(h1) + h1R
′(h1)‖B2,λ

c (R) <
‖α‖B2,λ

c (R)

2
.

Hence,

lim
h→h1

∥∥∥yh − yh1

h− h1

∥∥∥
B2,λ

c (R)
≥

‖α‖B2,λ
c (R)

2
> 0.

Remark 3.6. The norms ‖yh−y0‖B2,λ
c (R) and ‖yh−yh1‖B2,λ

c (R) are O(h) and O(h − h1 )
respectively.
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Revista Matemática Complutense
2008: vol. 21, num. 1, pags. 61–73


