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ABSTRACT

In this paper, we have studied a problem of identifiability of boundaries and
stability of the solutions for the direct and the inverse problem concerning a
supercritical and irrotational flow of an inviscid fluid over an obstacle which
lies on the bottom of a channel. The identifiability of the solution means its
uniqueness when it exists. The stability is studied in the sense that for the direct
problem and the inverse one, we study the variation of the obtained geometry
for a little perturbation of the bottom or of the free surface. The proofs of the
theorems are based on Holmgren theorem and the mean value theorem. The
stability obtained is linear.
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1. Position of the problem

We consider a bidimensional, irrotational and stationary flow of an ideal and incom-
pressible fluid in a domain € infinite at the downstream and the upstream, with a
free surface at the upper boundary and an obstacle on the bottom. We suppose that
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Figure 1

the flow is uniform with a velocity Uy at the infinity, upstream and downstream of
the obstacle, where the depth of the flow is denoted H (see figure 1).

The bottom is flat everywhere except in a place where lies an obstacle. y = b(x)
and y = f(x) are respectively the equations of the bottom I', and the free surface I'y.
We denote

Q={(z,y) €eR*|b(z) <y < f(z)}

We suppose that the functions b and f are of the class C? on R. (in the case of a
small height of the obstacle, f belongs to C? because b belongs to C?, see [4]).

In [4], it has been established existence and uniqueness of the free surface for a
small obstacle. In this paper, our aim is to generalize the uniqueness for obstacles
without condition on their height and to establish the identifiability of the obstacle
when the free surface is known.

The irrotationality of the flow and the incompressibility of the fluid permits us to
introduce an harmonic stream function ¢ in Q. We give the relations verified by .
The bottom and the free surface of {2 are streamlines so v is constant on I'y and I'y. We
choose 1 = 0 on the bottom and equal to the rate of flow on the free surface. The flow
being uniform at the infinity upstream and downstream of the obstacle, the function
1) equals y when z tends to +oo. In addition, we have an equilibrium condition on
the free surface, called the Bernoulli equation, which expresses the continuity of the
pressure across the free surface. It is given by

g\V¢|2+pgy=C“ ony = f(x) (1)

where p is the density of the fluid and g the gravity. (For example, see [4] for details.)
The constant which appears in the relation (1) will be evaluated later. Using the
values of Uy and H, we nondimensionalize the equations verified by . Then it

Uy . .
ol called the Froude number which characterizes the flow.

appears a number F =
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The flow is said supercritical when F' > 1 and subcritical when F' < 1. In this paper,
we will focus ourselves on the supercritical case.
The Bernoulli equation becomes

F2
SIVUP+y=C"  ony=f(a). (2)

1) being constant on the free surface, the tangential derivative of v is equal to zero
on this surface. The equation (2) takes the new form

F2<W

2
5 (5e) +v=c* ony=1 Q

where % is the normal derivative of ¢ at the free surface. The constant in equation (3)

is equal to %2 + 1. Indeed at the infinity upstream of the obstacle, we have

i = g1 ad =t
and so 2
— 4+ 1=t
5 +

The equation (3) becomes

o\ 2
(816) =c—cy ony= f(x),
where

2 2
Cl:l—'—ﬁ andczzﬁ. (4)

We note that if a solution exists, it necessarily verifies: y < % Then we obtain

%:im on y = f(x).
In fact we have o
o va—ay  ony=f().
Indeed A o
5= a(x,y)% on I';. (5)

The direction of the flow is towards the positive . Then the horizontal component
of the velocity at each point on any streamline is positive. The velocity is equal to

curly then %(337 y) > 0. Hence 1 is an increasing function of y. Then
0
a(x,y)% >0 onTy. (6)
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On the other hand, at the infinity upstream of the obstacle we have

a—w = % on T
on Oy f
Then
lim a(z,y(x)) =1 on I'y. (7)
r— — 00
From (6) and (7) we have that a(x,y) > 0 on y = f(x). We conclude by (5) that
g—z >0 ony = f(x).
Finally 1 verifies the following problem:
Ay = in Q,
P = on y = b(x),
1 on y = f(z),

2 o=y ony= f(),

where ¢; and ¢y are defined in the relation (4) and

Jim i (a,y) =y 9)
We call (8), (9) a direct problem if b is known and f is to be determined. It will
be called an inverse problem in the opposite case. ie., f is known (or at least a part
of f) and b is to be identified. In this work, we will consider these two aspects of
the problem: the direct problem and the inverse problem. In the direct problem,
for a given obstacle, we prove the uniqueness of the solution if it exists. Concerning
the inverse problem, we consider two domains €23 and €y with bottoms I',, and I'y,
described by y = b1(z) and y = bo(x), with free surfaces 'y, and 'y, described by
y = fi(z) and y = fo(x) which coincide on a part I'c. Then by (x) = ba(z). Using the
result of the direct problem, we conclude that fi(x) = fo(z). Hence Q; = Qs. Later,
we will study the stability of the bottom of the domain and of the free surface. We
note that some authors have studied the identifiability and the stability of boundaries
for inverse problems (see for example [2]). For small obstacles, the existence and
uniqueness of the solution of the direct problem is done in [4] where we have used the
implicit function theorem. The stability of this solution is deduced from this theorem.

2. Identifiability of the boundaries

2.1. Identifiability of the free surface

We have the following result:
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y=b(x)

Figure 2

Theorem 2.1. For an obstacle given by a function y = b(z) of class C? , lying on
the bottom of a channel, it corresponds at most one free surface f of class C? such
that lim,_.4 o f(z) = 1.

Proof. We denote by y = b(z) the equation of the bottom of {2 and we suppose the
existence of two free surfaces I'y, and I'y, described respectively by y = fi(x) and
y = fa(x) (see figure 2).
We put
Qi = { (z.y) € R? | b(z) <y < fi(a) ).

The stream function v; defined on €; verifies

AY; =0 in £,
;=0 on y = b(z),
P =1 ony = fi(xr),

lim v;(z,y) =y.

r—+o0

On the other hand, the Bernoulli condition is verified on any streamline of the do-
main €2;. This condition, written on the bottom, is given by

F2_ F?
7|V1/1i| +b(x) = >

It may be written
i 2

Let © = (21 UQ2)\ (21 NQs). Suppose that © # (). Let Oy a connected component
of ©. Suppose for example that Oy C Q7 \ (21 N Q). The boundary of O is
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y=by (x)

Figure 3

composed by a part of I'7, which we denote I'; and a part of I'g, which we denote I'y
(see figure 2).
The function 1 = 1)1 — 1o verifies the following system:

AY=0 in Q; NQy,
Y=0 on y = b(x),
oy

a—n—O on y = b(x),

lim (z,y) =0.
r—3Fo0

We apply the Holmgren theorem [6] to deduce that ) = 0 in Q; N s, s0 Y1 = 12 on
the boundary of € N Qs, particularly on I's. In fact ¢ = 1 on I'y, and then ¢ =1
on I'y. This is a contradiction with the increasing of the function v; with respect to
y (because v can not take the value one on I'y and on I's). We conclude that © = (),
and then fi(z) = fo(x). O

2.2. Identifiability of the bottom

We consider €27 and €25 two possible domains with bottoms described respectively by
y = bi(x) and y = ba(x) and free surfaces described respectively by y = f1(x) and
y = fa(x) of class C? |, having a common part I'c (see figure 3) where I'c have a non
empty interior. We want to prove the uniqueness of the bottom for a given part I'c
of the upper free boundary.

We denote these two domains by

Qi ={(z,y) €R* | bi(x) <y < fi(z)}.
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The stream function ; verifies in €2; the following problem:

AY; =0 in Q;,

P; =0 on y = b;(x),

i =1 ony = fi(x), (10)
Oy

o = Ver —eoy ony = fi(x).

Moreover we have lim, 4~ ¥i(z,y) = .

Theorem 2.2. Under the hypothesis above, we have
b1 (x) = ba(x) and fi(x) = fa(x) Ve eR.

Proof. The proof is the same as the one in theorem 2.1. Let © = (21 UQ2)\ (€21 N Qs).
Suppose that © # (. Let O a connected component of ©.

Suppose, for example, that ©p5 C Qs \ (21 N Q). We denote 2 = Q3 NQy and we
put ¥ = 11 — 5. 1 verifies the Cauchy problem

AYp =0 in Q,
=0 on ¢,
g—:ﬁ =0 onTl¢.
The Holmgren theorem [6] permits us to conclude that ¢» = 0 in the connected
domain €. Then
=0 on JN).

This implies that 11 = 12 on 0. In particular ¢y = 99 = 0 on I'p,. This is a
contradiction with the fact that ¥ = 0 on I'y, and the fact that 9 is an increasing
character function with respect to y, then © = () and by (z) = ba(x).

The identifiability result of the direct problem (theorem 1) permits us to conclude
that f1(z) = fo(z) Vo € R and then Q = Q. O

Remark 2.3. We can formulate the last theorem in this way:
Let b1 and by two possible bottoms to identify. Let 1; the solution of the prob-
lem (10). Then
o1 Oy

o = o on I'c implies by = bs.

3. Stability of the boundaries of the domain

First, we give some notations, which will be useful from now on.
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3.1. Some notations
The fluid domain §2 given by a figure at the first section can be written as
Q) ={(z,y) eR? | —00 <z < 400, b(z) <y <1+7(2)},

where b is the function describing the bottom and ~ is the perturbation of the hori-
zontal surface y = 1. Using a change of variables,

=
Il

y — b(x)
1+ v(z) —b(x)’

the domain €] becomes the rectangle

<
I

Q) ={(z,y) ER? | —co <z < 400, 0<y<1}
and the relation (2) takes the form 7'(b,v) = 0, where

2 7 , ~ 2
T(b,’y)'y};{ ?é(f,l)(l_i_z_wglg(f,l)]
1 O o 2 oy
+m(a—g(x,1)) }—Wag(a:,l) (11)

and @/; verifies the system

AY+PJp =0 in QY
B(%,0) = —b(z), TE€R, (12)

¥(z,1) = —(T), T€R
P, is defined by

0? o2 )

p = Glgeas T a2 taags 13
P =mgzas T 2o T ey (13)
oo BV =)=

' 1+y—b

a2 1

ag_(2> _1+(1+7—b)2’

S | S TN #/_//~/_/
@ = o " 0" =Y+ e (0 0 =)L

b and ~ are in the space

Z sup el*l | DFu(z)| < oo },

Bg”\(]R):{v € C* R)
0<k<2 reR
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where 0 < A < 1 and ¢ > 0. It has been proved in [4] that for a given small b
in B2*(R), there exists one and only one 7 in the same space such that (b,~) verifies
T'(b,~v) = 0 with ¢ solution of (12).

3.2. Stability of the lower boundary of the domain

In this section, our aim is to establish a stability result of the bottom of the domain
with respect to the observed free surface. This stability expresses the continuity of
the bottom configuration with respect to the data on I'c. For this study, we define a
set of admissible bottoms as follows:

Tag = { (z,b(z)) | b€ C**R), suppbC [-M,M], M >0}

where supp b is the compact support of b.
We define on I'yq the distance

d(T1, ) = [[br(2) = ba()l| 2 (m)-

Note that (Taq,d) is a compact metric space.

Theorem 3.1. Let I'y, a sequence of elements of I'aa. Let ®,, the trace of the normal
derivative of the solution of the problem (8) defined on §, with bottom Ty, and free
surface Ty, . Let ® the trace of the normal derivative of the solution of (8) defined
on Q with bottom I'y and free surface I'y. Then we have

®, — ®in BP*R) = T}, — T} inTa
Proof. To prove this theorem, we begin by showing the continuity of the application

Taq — BI(R)
o (14)

Iy — —.

on

Indeed, I',q4 is isomorph to the following space:
B={be C?* (R) | b with a compact support included in [—M, M] }.

and we have
B — B(R) — B*(R)
oY
on*
So we have the continuity of the application given by (14). T'q being compact, we can
extract a subsequence noted again I';, that tends to I',,. Thanks to the continuity

of the application I' — & = 9% e obtain ®,, — P, which is the trace of the normal

b — b —

on?
derivative of the solution of the problem (8) defined on 2, with free surface I'y. The
uniqueness of the limit allows to ®; = ®; in fact, if & = @, we have % = g% on

I'c, and then by = b (see remark 2.3).
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3.3. Stability of the free boundary for a small perturbation of the linear
lower boundary

In this section our aim is to study the variation of the free surface with respect to the
variation of the flat bottom T’y (y = 0). Here we introduce some hypothesis which
allows us the establish the stability result. We denote the initial domain by Q) and
let by, a sequence of bottoms obtained by deforming the flat bottom. Let by, be

bp(z) = hO(z),

where © is in C?*(R) with a compact support and ©(x) > 0. We have the following
result:

Theorem 3.2. Under the hypothesis and notations above, we have

yh—yo’

exists and s strictly positive,

hao‘ BZ*(R)

where yp, = 1+ v, and yo = 1 are the free surfaces corresponding respectively to the
bottoms given by y = by (x) and y = 0.

Remark 3.3. We recall that, for F' > 1, yg = 1 is the unique free surface corresponding
to the flat bottom (y = 0) but, for F' < 1, yo = 1 is not unique (see [3,5]).

Proof. We deduce from [4] that, for h small enough, there exists a C! function g
defined in a neighborhood of zero such that

yn=1+g(bp) and  yo=1+g(0), (15)
where g(0) = 0 and by, is in a neighborhood of zero.
We have
’yh—yo Hg 9(0)‘
h—»O B2 ®R) h—>0 B2 R)

Applying the mean value theorem, we can write

g'(cn)(bn)
h

= lim
R h—0

h OHyh — % H where ¢, €]0, by,

B (R)
and ¢(cp,) is a linear application from B?*(R) into itself. Because

b, — 0

lim

— . B27)\R li / — 4
Lim O(z) i B(R)  and  lim g'(ch) = g'(0)

(¢’ is continuous) we deduce that

Yn — Yo
|| = 1g'(0) - O] p2

h—»O‘ B2 (R)
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A consequence of the implicit function theorem lets us write

g'(0) =— (g:((),O))_l o (%:g(o,())).

It has been shown in [4] that T'(b,~y) is continuously differentiable with respect to b
and «y at the point (0,0) and %(0, 0) is injective from B>*(R) into B>*(R). %—%(0, 0)
is also injective from B2*(R) into B>*(R) (see [1]). Then we conclude that g’(0)
is injective. This implies that Hg’(O).@HBg,A(R) # 0 because © is nonzero. Then we
arrive to the final result:

> 0. O
B2 (R)

h—0 h

3.4. Stability of the free boundary for a small perturbation of a general
lower boundary

From the last section, for small A and hq, we can write

Yn =yo + - h+ h*R(h) (16)
and
Yn, = Yo + - b1+ hiR(h), (17)

where o # 0 and R is a bounded function of h. The following lemma gives the
regularity of the function R:

Lemma 3.4. y;, is an analytical function of h for h small enough.

Proof. We have yp, = 1+ ~y, with v, = ¢(b) (see (15)), where b, = hO(x) is an
analytical function of h . If we prove that ¢ is an analytical function of b and 7,
then T', given by (11), will be an analytical function of b and . Hence, using the
implicit function theorem, we deduce that v = ¢(b) is an analytical function of b.
Since by, is analytical with respect to h, then v, is also analytical with respect to h.

Now, we verify that ¢ is analytical with respect to b and . Indeed, v verifies the
system

Ap+Plp=0 inQf,

(x,0) = —=b(z), z€R, (18)

P(x,1) = —y(x), z€R,
where P is given by the relation (13). The system (18) can be written as
F(¢, (b,7)) =0 (19)

with
F(d';v (ba 7)) = (Fl('l/;, (b’ 7))3 FQ(QZJa (b7 7))3 F3(/(/;7 (bv 7))),
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where

F2(7/~1, (ba’}/)) = 1,[)(,0) + ba

F3(1;’ (ba 7)) = w(7 1) + .

The functions Fy, Fy, and F3 are defined from B2*(QJ) x B2*(R) x B2*(R) into
B2 (Q9), B2 (R), and B2*(R) respectively. It is easily seen that I, Fy, and Fj are
analytical with respect to 1[}, b, and ~. Applying the implicit function theorem to the
equation (19), at the point (0, (0,0)), we conclude that ¢ is an analytical function
of b and ~. O

Theorem 3.5. Let hy > 0 small enough. Then,

Ynh — Yhy
h — hy

Proof. The equations (16) and (17) imply

hlir% erists and is strictly positive.
—n1

B2 (R)

ni(R(h) = R(h1))
h—h

gy = [+ () RO +

‘yh*yhl
h—hy

B2 (R)
The mean value theorem applied to the function R lets us write

‘yh_yhl
h—h

where £ € | min(h, k1), max(h, hq)[. When h tends to h; (for small h and hq) we obtain

. [loo+ (h+ hy) - R(R) + h%R/(§)||B§=*(R)7

B2

Yh — Yh,
h—hy

lim
h—h1

ooy = ot 20 - Rlb) + RER () | g2 -

The triangular inequality gives

Ynh — Yhy
h—hy

lim
h—h1

g > 10052 @) — hal l12R(h) + by B (h) | 52 -

We can choose h; small enough such that

ol gz.r
(] - [2R(ha) + B R (h)l| g2 ey < —5— 2
Hence,
. |Yh — Y, loll 22 =)
lim || 22— —= 5. O
hinle h—hy IIB2*®) — 2 ~

Remark 3.6. The norms Hyh_yO”Bf**(R) and ||yn—yn, ||B§,A(R) are O(h) and O(h — hy)
respectively.
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