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Introduction

A Banach space is, by its nature, also a metric space. When we identify a Banach
space with its underlying metric space, we choose to forget its linear structure. The
fundamental question of nonlinear geometry is to determine to what extent the metric
structure of a Banach space already determines its linear structure. This question,
as stated, is somewhat ambiguous: we need to specify what information we are given
about the metric space. Thus there are several variants of this problem and we
will discuss them in turn. Of course this problem is not the only interest of the
nonlinear theory. Many similar questions have been considered concerning nonlinear
embeddings of one Banach space into another, and more generally of metric spaces
into Banach spaces.

The subject is an old one, dating back almost to the origins of Banach space
theory. Perhaps the first result in the area is the celebrated Mazur-Ulam theorem on
isometries from 1932 [100]. Later the work of Lindenstrauss [94] and Enflo [46–48]
in the 1960’s gave a tremendous impetus to the study of Banach spaces as metric
spaces. The explosion of interest in the linear theory of Banach spaces between
1960 and 2000, spurred some significant advances in nonlinear theory, but still the
nonlinear theory seems to have played a junior role. However since about 2000, there
seems to have been quite marked increase in activity in this area. There are several
reasons for this. First there is the appearance of the authoritative book of Benyamini
and Lindenstrauss, [16]. This book finally gave a definitive form to the subject and
highlighted both what we know and what we do not know. Then there has been an
upsurge of interest from other areas of mathematics in the problem of determining
how well a metric space (M, d) can be embedded in a particular type of Banach space.
This sort of problem is of interest to theoretical computer scientists (see, e.g., [26]) in
connection with data-mining and to specialists in C∗-algebras in connection with the
Novikov conjecture (see, e.g., [87]). Problems of this type are very much in the spirit
of nonlinear Banach space theory as we have already observed.

Thus this seems to be the beginning of a golden era for nonlinear Banach space
theory. My aim in this survey is to both present some aspects of the theory which are
of special interest to me and to emphasize new developments since the appearance
of [16].

We have divided this survey into four sections. The first section is concerned with
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the preliminaries. We describe the background Banach space theory we will need in
§1.1. In §1.2 we discuss some earlier work on homeomorphisms and isometries, which
may be regarded as the two extremes for the type of problem we are interested in. In
§1.3 we describe the general nature of embeddings and isomorphisms between metric
spaces which are of interest to us.

In the second section (§2.1 to §2.4) we discuss the main problems: when are
two Lipschitz-isomorphic or uniformly homeomorphic Banach spaces linearly isomor-
phic? In §2.1 we discuss the classical approach to the Lipschitz isomorphism problem
(and Lipschitz embedding problems) for Banach spaces via differentiability theorems.
These results are now almost classical and very well covered in [16]; nevertheless
these ideas are so central that we feel that it is important for the reader to appreciate
what can be done through this approach. In §2.2 and §2.3 we discuss the Lipschitz
isomorphism problem; we place some degree of emphasis on the approach through
Arens-Eells spaces [53] which we feel gives some new insights. In §2.4 we discuss the
uniform homeomorphism problem for Banach spaces; here the methods employed lean
heavily on the theory of Lipschitz maps.

In the third section, (§3.1 to §3.4) the theme is to consider Lipschitz properties
of metric spaces which provide nonlinear analogues of well-known (linear) properties
of Banach spaces. It seems to the author that it is, in fact, quite remarkable that
the linear theory can be extended so successfully. There have been many spectacular
advances in this area, particularly associated with the work of Naor and his collabora-
tors. In §3.1 the problem is to extend the definitions of Rademacher type and cotype
to an arbitrary metric space. In the case this was done by Enflo 35 years ago, and
several other variants have been proposed; however the right definition for cotype is
a very recent advance by Mendel and Naor [104]. We then discuss the structure of
the Arens-Eells space associated to a metric space and consider the how this refelcts
the properties of the metric space. In §3.3 we discuss some recent results on absolute
Lipschitz retracts and related problems. In §3.4 we consider a remarkable circle ideas
about the generalization of the Maurey extension property to metric spaces; this is
another area where some great advances have recently been recorded.

In the fourth section, (§4.1 to §4.2), we consider some very different problems
concerning coarse and uniform embeddings of metric spaces and uniform homeomor-
phisms between the unit balls of Banach spaces. Here the techniques are very different
and Lipschitz maps no longer play such a prominent role. In §4.1 we discuss uniform
and coarse embeddings into Lp-spaces, and the problem of when the unit ball of a Ba-
nach space is uniformly homeomorphic to the unit ball of a Hilbert space. In §4.2 we
discuss some other recent results on embeddings of metric spaces into certain Banach
spaces.

Throughout the paper, we will state open Problems which we feel are especially
important and whose solution would represent a significant advance in the field.
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1. Preliminaries

In this section, we will gather together some of the necessary preliminary information
on Banach spaces and metric spaces which we will use later in the paper.

1.1. Basic Banach space theory

In this section we collect together some of the definitions which we will employ later
in the paper. For reasons which we discuss in §1.2 all Banach spaces will in general be
real unless otherwise stated. (There will be occasional exceptions.) If X is a Banach
space we write BX for the closed unit ball BX = {x : ‖x‖ ≤ 1} and ∂BX for the unit
sphere {x : ‖x‖ = 1}. We also use [A] for the closed linear span of a subset A of a
Banach space. The Banach-Mazur distance between two isomorphic Banach spaces
X and Y is defined by

d(X, Y ) = inf{‖T‖‖T−1‖ : T : X → Y is an isomorphism}.
We recall that a separable Banach space X has the Bounded Approximation Prop-

erty (BAP) if there is a sequence of finite-rank operators Tn : X → X so that
x = limn→∞ Tnx for each x ∈ X. The space X is said to have the Metric Approxi-
mation Property (MAP) if we can take ‖Tn‖ = 1 for all n. We refer to [31] for a full
discussion of approximation properties.

We next recall the definition of the Radon-Nikodym Property. One definition of
the Radon-Nikodym Property (RNP) is as follows: Y has the (RNP) if and only if
every Lipschitz map f : [0, 1] → Y is differentiable a.e. The Radon-Nikodym Property
was the center of much research in the 1970’s (see [41] for example) and is now almost
completely understood. In particular a reflexive Banach space has (RNP) and every
separable dual space has (RNP). The most elementary non-RNP spaces are c0 and L1.

A Banach space X is said to be finitely representable in a Banach space Y if there
is a constant λ ≥ 1 such that for every finite-dimensional subspace E of X there is a
linear map T : E → Y with

‖x‖ ≤ ‖Tx‖ ≤ λ‖x‖, x ∈ E.

Equivalently, X is finitely representable in Y if, for some λ ≥ 1, and for every finite-
dimensional subspace E of X there is a finite-dimensional subspace F of Y with
d(E,F ) ≤ λ. Let us recall that if X is a Banach space and U is a non-principal
ultrafilter on N then the ultraproduct XU is the quotient of �∞(X) by the subspace
c0,U (X) of all sequences (xn)∞n=1 such that limn∈U‖xn‖ = 0. This can be thought as
the space �∞(X) equipped with the semi-norm ‖(xn)∞n=1‖U = limn∈U‖xn‖. It is then
easy to see that a separable Banach space X is finitely representable in Y if and only
if X is linearly isomorphic to a subspace of the ultraproduct YU .

A Banach space X is said to be uniformly convex if given ε > 0 there exists
δ(ε) > 0 such that if x, y ∈ ∂BX then

‖x + y‖ > 2(1 − δ) =⇒ ‖x − y‖ < ε.
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X is uniformly smooth if given ε > 0 there exists δ > 0 so that if ‖x‖ = 1 and ‖y‖ < δ
then

1
2
(‖x + y‖ + ‖x − y‖) < 1 + ε‖y‖.

A Banach space X is called super-reflexive if every space finitely representable in X
is reflexive, or equivalently, if every ultraproduct of X is reflexive. It is a classical
result of Enflo [49] and Pisier [111] that a space is super-reflexive if and only if it has
an equivalent uniformly convex or (respectively, and) uniformly smooth norm.

A Banach space X is called a Schur space if every weakly null sequence in X
converges to 0 in norm. �1 is a Schur space and every infinite-dimensional closed
subspace of a Schur space contains an isomorphic copy of �1.

We now discuss Lp-spaces. We recall that a Banach space X is called a Lp-space
where 1 ≤ p ≤ ∞ if there is a constant λ > 1 so that if E is a finite-dimensional
subspace of X there is a finite-dimensional subspace F with E ⊂ F ⊂ X so that
d(E, �m

p ) ≤ λ where m = dim F . The spaces �p and Lp = Lp(0, 1) provide the
fundamental examples of Lp-spaces when 1 ≤ p < ∞. If p = ∞ then c0 and C(K)-
spaces (spaces of continuous functions) are the fundamental examples of L∞-spaces.

A L2-space is isomorphic to a Hilbert space. If p 
= 2 and 1 < p < ∞ then a
separable Banach space X is a Lp-space if it is not isomorphic to a Hilbert space and
is isomorphic to a complemented subspace of Lp. The cases p = 1,∞ are slightly
different. A separable L1-space is isomorphic to a subspace of L1 which need not be
complemented; in fact X is a separable L1−space if and only if X∗ is isomorphic to
�∞. Similarly X is a L∞-space if and only if X∗∗ is isomorphic to a C(K)-space. The
basic theory of Lp-spaces was developed in the classic paper of Lindenstrauss and
Pe�lczyński [96].

We also recall the notions of Rademacher type and Rademacher cotype. We let
(εj)∞j=1 denote a sequence of independent Rademachers (i.e., independent random
variables with P(εj = 1) = P(εj = −1) = 1

2 ). A Banach space X is said to have
(Rademacher) type p where 1 < p ≤ 2 if there is a constant C so that if x1, . . . , xn ∈ X
we have (

E

∥∥∥
n∑

j=1

εjxj

∥∥∥p)1/p

≤ C
( n∑

j=1

‖xj‖p
)1/p

.

X is said to have (Rademacher) cotype q where 2 ≤ q < ∞ if there is a constant C
so that if x1, . . . , xn ∈ X we have

( n∑
j=1

‖xj‖q
)1/q

≤ C
(
E

∥∥∥
n∑

j=1

εjxj

∥∥∥q)1/q

.

It is well-known that the spaces Lp and �p have type min(p, 2) and cotype max(p, 2).
See [5] for example.

A Banach space with nontrivial type (i.e., type p > 1) always has nontrivial cotype
(i.e., cotype q < ∞) but the converse is false (take X = �1). A super-reflexive space
always has nontrivial type but the converse is false [65] and [113].
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We next consider UMD-spaces ([30]). A Banach space is said to be (UMD) (for
unconditional martingale sequences) if given 1 < p < ∞ there is a constant C so that
(ξ0, ξ1, . . . , ξn) is an X-valued martingale and dξj = ξj − ξj−1 then

(
E

∥∥∥
n∑

j=1

θjdξj

∥∥∥p)1/p

≤ C(E‖ξn‖p)1/p

whenever |θj | ≤ 1 for 1 ≤ j ≤ n. UMD-spaces are always super-reflexive (but the
converse is false [18]) and the spaces Lp are (UMD) if 1 < p < ∞.

A good concise reference for the basics of Banach space theory is [67] or we refer
to the appendices of [16].

1.2. Homeomorphisms and isometries between Banach spaces

In this section we consider two extreme situations. In one case we are given only
minimal information about the metric structure of a Banach and in the other case we
have maximal information.

How much can we determine about a Banach space X if all we know is the home-
omorphism class of X considered as a metric space? Thus we consider the following
problem:

Problem 1 (Fréchet, 1928). When are two separable Banach spaces homeomorphic
as metric spaces?

This question was the subject of intensive research in the years after the Second
World War and was resolved beautifully by Kadets (announced in 1965) [76]:

Theorem 1.1. Any two separable infinite-dimensional Banach spaces are homeomor-
phic.

A result of Anderson [8] shows that all separable locally convex Fréchet spaces
are also homeomorphic. Some years later, Toruńczyk completed Kadets’s result by
showing that any two Banach spaces (or locally convex Fréchet spaces) of the same
density character are homeomorphic [123].

This is essentially the end of the story in the study of the homeomorphic theory
of Banach spaces, but there is still something else to mention. If we leave the realm
of locally convex spaces things get a lot mysterious. There is a very remarkable but
perhaps not so well-known result of Cauty that there is a separable F-space (complete
metric linear space) which is not homeomorphic to a separable Banach space [33]!
Perhaps one should contrast this result of Cauty with another more recent result.
In 2001, Cauty [34] showed that every compact convex subset of an F-space (even
without local convexity!) has the (Schauder) fixed point property. This problem had
been open since 1930, when Schauder proved the original fixed point theorem. It does
not seem to be known if an infinite-dimensional compact convex set is necessarily
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homemorphic to the Hilbert cube (for subsets of a Baanch space this is essentially a
result of Keller [88]). The homeomorphic theory of non-locally convex F-spaces seems
to be a very rich and interesting area for future research.

The opposite end of the spectrum is to assume that we have complete information
about the metric space associated to a Banach space X. In this situation it was shown
in 1932 by Mazur and Ulam that one can recapture the real linear structure:

Theorem 1.2 (Mazur and Ulam [100]). Let X and Y be real Banach spaces and
suppose that U : X → Y is an isometry with U(0) = 0. Then U is linear. In
particular if two real Banach spaces X and Y are isometric as Banach spaces then
they are also linearly isometric.

This, of course, raises the issue of whether the complex version of the Mazur-Ulam
Theorem is valid. This question reduces to a problem in the linear theory; precisely we
are asking if two complex Banach spaces which are linearly isometric as real Banach
spaces are additionally linearly isometric (or even linearly isomorphic) in the complex
sense. This problem aroused some interest in the 1980’s. In for every complex Banach
space X we have a natural conjugate space X where complex multiplication is defined
using conjugates, i.e., we have a new complex multiplication × given by

λ × x := λx, λ ∈ C, x ∈ X.

Clearly X and X are real linearly isometric, but must they be complex isometric?
This question was answered by Bourgain [20] negatively. He showed the existence
of a space X so that X and X are not even linearly isomorphic. His methods were
probabilistic (see also [121]); the author gave an explicit non-probabilistic construction
of such a space in [78]. This space is an example of a twisted Hilbert space, i.e., a
Banach space X with a closed subspace E so that both E and X/E are isometrically
Hilbert spaces. The importance of such examples to the nonlinear theory is that they
show that we must confine ourselves to the category of real Banach spaces in order to
have a viable theory. There is no real chance of reconstructing the complex structure
of a complex Banach space from the metric structure.

1.3. Various categories of homeomorphisms

Let (M1, d1) and (M2, d2) be metric spaces and suppose f : M1 → M2 is any mapping.
We define the modulus of continuity of f by

ωf (t) = sup{d2(f(x), f(y)) : d1(x, y) ≤ t}, t > 0.

Note that 0 ≤ ωf (t) ≤ ∞. We next recall some familiar and some perhaps unfamiliar
properties that f may enjoy.

We say that f is Lipschitz with Lipschitz constant K if

ωf (t) ≤ Kt, 0 < t < ∞.

Revista Matemática Complutense
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In this case we denote
Lip(f) = inf{ωf (t)/t : t > 0}.

We say that f is uniformly continuous if

lim
t→0

ωf (t) = 0.

On the other hand we say that f is coarsely continuous if

ωf (t) < ∞, 0 < t < ∞.

Finally we say that f is coarse Lipschitz if

lim sup
t→∞

ωf (t)/t < ∞.

In studying properties of metric spaces, we shall be studying a category whose
objects are metric spaces but where the morphisms are from one of the four categories
listed above.

Thus we may define two metric spaces M1, M2 to be Lipschitz isomorphic (or
Lipschitz homeomorphic) if there is a Lipschitz bijection f : M1 → M2 such that
f−1 is also Lipschitz. Similarly we may consider uniformly isomorphic or, more
usually uniformly homeomorphic spaces. We shall say that M1 and M2 are coarsely
isomorphic spaces (respectively, Lipschitz coarsely isomorphic spaces) if we can choose
a bijection f : M1 → M2 so that f, f−1 are both coarse homeomorphisms (respectively
Lipschitz coarse homeomorphisms).

The coarse category is a perhaps little strange because a coarsely continuous map
need not be continuous. In this case the concept of coarse isomorphism is probably
not appropriate, so we define a somewhat weaker form of equivalence in this cate-
gory, which does not require the spaces to be of the same cardinality. Note that if
f : M1 → M2, g : M1 → M2 are maps such that f is coarsely continuous and

sup
x∈M1

d2(f(x), g(x)) < ∞. (1)

then g is also coarsely continuous. It is reasonable to think that if f, g satisfy (1)
then they are in fact equivalent in some sense. This leads to the notion we call coarse
homeomorphisms (note that we distinguish this from coarse isomorphism). We say
that M1 and M2 are coarsely homeomorphic if there exists coarsely continuous maps
f : M1 → M2, g : M2 → M1 so that

sup
x∈M1

d1(x, g ◦ f(x)) < ∞, sup
y∈M2

d2(y, f ◦ g(y)) < ∞.

We can similarly define coarse Lipschitz homeomorphisms and coarse Lipschitz home-
omorphic spaces.
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A Lipschitz embedding of M1 into M2 is a Lipschitz isomorphism of M1 with
a subset of M2. (We then say that M1 Lipschitz embeds into M2.) Similarly a
uniform embedding of M1 into M2 is a uniform homeomorphism between M1 and a
subset of M2. We extend these notions to coarse (Lipschitz) embeddings using coarse
(Lipschitz) homeomorphisms (not isomorphisms!)

Let us make a few remarks on the meaning of coarse homeomorphism. A coarse
homeomorphism does not observe the fine structure of a metric space in the neigh-
borhood of a point, since it is not continuous. It can only capture the macroscopic
structure of the space where distances are large. This is in stark contrast to a uni-
form homeomorphism, which observes only the fine structure of the space. Thus if
we consider R with its standard metric and define new metrics by

ρ(x, y) = min(|x − y|, 1), σ(x, y) = |x − y| + 1, x 
= y,

then R is uniformly, but not coarsely, homeomorphic to (R, ρ) and coarsely, but not
uniformly, homeomorphic to (R, σ).

To understand the real meaning of a coarse homeomorphism, it is useful to intro-
duce the idea of a skeleton (or net). If (M,d) is a metric space we say that a subset S
is a skeleton of M if there exist 0 < a < b < ∞ such that

inf
s,t∈S
s �=t

d(s, t) ≥ a, sup
x∈M

d(x, S) ≤ b.

Then M is also coarsely homeomorphic to each of its skeletons. Further M1, M2

are coarsely homeomorphic if and only if they have coarsely homeomorphic skeletons.
It is also clear that M1 and M2 are coarse Lipschitz homeomorphic if and only if
they have skeletons S1, S2 which are Lipschitz homeomorphic. In general, while any
two skeletons of the same metric space M are coarsely homeomorphic they are not
necessarily Lipschitz homeomorphic, even if M = R

2. For infinite-dimensional Banach
spaces the situation is better:

Proposition 1.3 (Lindenstrauss, Matouskova, and Preiss (2000)). If X is an infinite-
dimensional Banach space then any two skeletons of X are Lipschitz isomorphic.

Let us recall that a metric space (M, d) is metrically convex given x, y ∈ M and
0 < λ < 1 there exists z ∈ M with d(x, z) = λd(x, y) and d(y, z) = (1 − λ)d(x, y). If
M is metrically convex and f : M → M1 is any mapping then we have subadditivity
of the function ωf , i.e.,

ωf (s + t) ≤ ωf (s) + ωf (t).

This leads to the following easy Lemma:

Lemma 1.4. Suppose M is metrically convex and f : M → M1 is any mapping,
then the following are equivalent:

(i) f is coarsely continuous.
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(ii) There exists 0 < t < ∞ so that ωf (t) < ∞.

(iii) f is a coarse Lipschitz mapping.

In particular if f is uniformly continuous then f is also coarsely continuous.

Of course a Banach space is metrically convex so we get immediately:

Proposition 1.5. Let X and Y be infinite-dimensional Banach spaces. Then the
following are equivalent:

(i) X and Y are coarsely homeomorphic.

(ii) X and Y are coarse Lipschitz homeomorphic.

(iii) Any skeleton of X is Lipschitz homeomorphic to any skeleton of Y .

Conditions (i)–(iii) are implied by (iv):

(iv) X and Y are uniformly homeomorphic.

This Proposition summarizes a principle often referred to as the Lipschitz at large
distances principle, which states that a uniform homeomorphism between Banach
spaces is coarse Lipschitz. It is a curious apparent fact that although uniform home-
omorphisms between Banach spaces have been studied for 40 years, the author is not
aware of any result which distinguishes this concept from coarse homeomorphisms
between Banach spaces.

There is an immediate application of this idea, due to Heinrich and Mankiewicz [62].

Proposition 1.6. Let X and Y be coarsely homeomorphic Banach spaces. Then
for any non-principal ultrafilter U on N, the ultraproducts XU and YU are Lipschitz
homeomorphic.

Proof. Suppose f : X → Y is a coarse Lipschitz homeomorphism. Define F : XU → YU
by

F ((xn)∞n=1) = (f(nxn)/n)∞n=1.

Then F is a Lipschitz homeomorphism.

This Proposition gives an immediate link between coarse homeomorphisms (and
uniform homeomorphisms) and problems concerning Lipschitz homeomorphisms. This
explains why much of our effort is devoted to understanding Lipschitz isomorphisms
between Banach spaces.

Let us observe that problems associated with coarse and uniform embeddings of
one Banach space into another are quite different in nature because we do not require
the image of the embedding to be metrically convex. Thus the arguments we have
given to reach Proposition 1.5 break down completely and we have no special results
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for Banach spaces. If (M1, d1), (M2, d2) are metric spaces and f : M1 → M2 is any
mapping, let

ϕf (t) = inf{d2(f(x), f(y)) : d(x, y) ≥ t}, t > 0.

Then f is uniform embedding if ϕf (t) > 0 for all t > 0 and limt→0 ωf (t) = 0 while f
is a coarse embedding if ωf (t) < ∞ for all t > 0 and limt→∞ ϕf (t) = ∞.

We also note that significant problems arise in the study of uniform homeomor-
phisms between quasi-Banach spaces. If X is a quasi-Banach space, then we can
assume that for some 0 < p < 1, d(x, y) = ‖x− y‖p is a metric, but usually the space
is not metrically convex and again there is no analogue of Proposition 1.5. Very little
is known in this context: see, however, e.g., [6, 126].

2. Lipschitz and uniform homeomorphisms between Banach
spaces

This section is devoted to the theory of Lipschitz isomorphic and uniformly homeo-
morphic Banach spaces. Much of the work is, by now, classical, but we will also stress
some new developments.

2.1. Classical differentiability results for Lipschitz maps

Most of this section is very well described in [16]. Nevertheless it is important to
understand the classical approach to Lipschitz isomorphism and embedding problems
which is based on differentiability theorems. This is a powerful approach but has
some distinct limitations as we shall see. The basic differentiability results date to
the 1970s and were independently discovered by Christensen [37], Mankiewicz [97],
and Aronszajn [10].

To understand the basic idea let us consider a Banach space X and a Lipschitz
map f : X → R. If X is finite-dimensional then a classical result of Rademacher
states that f is differentiable except on a set of (Lebesgue) measure zero. Can we
prove an analogous result in infinite-dimensions? The first problem we meet is to
decide what sets of measure zero would look like in infinite dimensions, where there
is no underlying invariant measure. One is, of course, tempted to think in terms of
Baire category to define a notion of small set, but in finite dimensions this is not the
correct idea for differentiability theorems. There are several solutions to this problem
(see [16]) but we will follow the approach of Christensen [36] by considering Haar null
sets.

We first restrict the Banach space X to be separable. We then consider a Borel
map h : X → [0,∞), and say that h is Haar-null if there is an X-valued random
variable ξ defined on some probability space (Ω, P) so that

Eh(x + ξ) = 0, x ∈ X.
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A Borel subset A of X is Haar-null if χA is Haar-null. This notion reappeared in
later work on dynamical systems [63]. It is important to note that, of course, not
every set is Haar-null since X itself is not.

Since X is separable, in this definition, for any ε > 0 we can insist that ‖ξ‖ < ε a.e.
In fact we may decompose Ω into countably many measurable sets Ωn so that for each
n there exists xn ∈ X with ‖ξ(ω) − xn‖ < ε for ω ∈ Ωn. Replace Ω by Ω′ = Ωn with
P(ωn) > 0 and define the probability measure P

′(A) = P(A)/P(Ωn) on Ωn. Finally
let ξ′ = ξ − xn on Ω′.

The key result we need is:

Lemma 2.1. If (An)∞n=1 is a sequence of Haar-null sets then A =
⋃∞

n=1 An is also
Haar-null.

Proof. Let hn = χAn
. For each n we may find a random variable ξn with ‖ξn‖ < 2−n

a.e. so that
Ehn(ξn + x) = 0, x ∈ X.

We may assume (ξn)∞n=1 is an independent sequence and let ξ =
∑∞

n=1 ξn. Then

Ehn(ξ + x) = 0, x ∈ X, n ∈ N.

Hence χA ≤ ∑
hn is also Haar-null.

Now let f : X → Y be a Lipschitz map (we will mostly interested in the scalar
case when Y = R). If X is infinite-dimensional there are two basic notions of dif-
ferentiability available. The usual definition is that of Fréchet differentiability : f is
said to be Fréchet differentiable at x0 if there is a (necessarily unique) bounded linear
operator T : X → Y such that if r(x) = f(x0 + x) − Tx then

lim
‖x‖→0

‖r(x)‖
‖x‖ = 0.

On the other hand there is a weaker notion available: f is Gâteaux differentiable
at x0, if, with the same notation,

lim
t→0

r(tx)
t

= 0, x ∈ X.

Here it is a useful fact that it suffices that the set of x with

lim
t→0

r(tx)
t

= 0

is dense in X. In finite dimensions these concepts coincide but in infinite dimensions
they can be quite different. Unfortunately in our circumstances we can only hope to
find points of Gâteaux differentiability.
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Theorem 2.2. Let X be a separable Banach space and let f : X → R be a Lipschitz
map. Then the set of points at which f fails to be Gâteaux differentiable is Haar-null.

Remark. This is not the best possible result: one can replace Haar-null by Gaussian-
null as described in [16].

Proof. Let (Vn)∞n=1 be an increasing sequence of finite-dimensional subspaces of X
whose union is dense in X. We then consider the set An ⊂ X of all points x0 such
that is a linear functional v∗ = v∗(n, x) on Fn with

lim
t→0

|f(x + tv) − tv∗(v)|
t

= 0, v ∈ Vn.

Let Bn = X \ An.
Now for fixed n let (e1, . . . , em) be a basis for Vn. Let (ηj)m

j=1 be a sequence
of independent random-variable, each uniformly distributed on [0, 1]. Then if ξ =∑m

j=1 ηjej we have
EχBn

(ξ + x) = 0, x ∈ X

by an application of Rademacher’s theorem. Thus Bn is a Haar-null set and so the
union ∪∞

n=1Bn is also Haar-null. It is not difficult to see that this is exactly the set
on which f is not Gâteaux differentiable.

This result can be extended to Lipschitz maps f : X → Y where Y is a Banach
space if we put a suitable restriction on Y . It is quite clear from the proof that we
only need the validity of Rademacher’s theorem for Lipschitz maps g : Vn → Y . This
holds when Y has the (RNP) (see §1.1).

Theorem 2.3. Let X be a separable Banach space and suppose Y is a Banach space
with (RNP). Let f : X → Y be a Lipschitz map. Then the set of points at which
f fails to be Gâteaux differentiable is Haar-null.

Now let us apply these results to Lipschitz embeddings:

Theorem 2.4 (Heinrich-Mankiewicz [62]). Let X and Y be separable Banach spaces
and suppose there is a Lipschitz embedding of X into Y . Assume Y has the Radon-
Nikodym property. Then X can be linearly embedded into Y .

Proof. The proof of this result is now almost immediate. Suppose f : X → Y is a
Lipschitz embedding so that f satisfies an estimate

c1‖x − y‖ ≤ ‖f(x) − f(y)‖ ≤ c2‖x − y‖, x, y ∈ X,

where 0 < c1 < c2 < ∞. By the preceding theorem, there exists at least one point
a ∈ X so that f is Gâteaux differentiable at a with derivative T say. We can then
check that

c1‖x‖ ≤ ‖Tx‖ ≤ c2‖x‖, x ∈ X,

so that T is a linear embedding.
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There is a slightly more delicate argument that can be applied when Y fails to
have (RNP). This is due again to Heinrich and Mankiewicz [62]:

Theorem 2.5 (Heinrich-Mankiewicz [62]). Let X and Y be separable Banach spaces
and suppose there is a Lipschitz embedding of X into Y . Then X can be linearly
embedded into Y ∗∗.

Let us review what these results tell about classical spaces. If Y is a Hilbert space
then we deduce immediately that X must also be a Hilbert space, up to isomorphism.
This combined with Theorem 1.6 above gives a proof (not the original proof) of one
of the earliest results of the subject, due to Enflo (1970):

Theorem 2.6 (Enflo [48]). A Banach space X which is uniformly (or even coarsely)
homeomorphic to a Hilbert space is linearly isomorphic to a Hilbert space.

We also observe that if 1 ≤ p < ∞ and X can be Lipschitz embedded into �p then
X can be linearly embedded into �p. (In the case p = 1, �1 has the (RNP).) The same
results extend to the function spaces Lp(0, 1) but here in the case p = 1 we must use
Theorem 2.5 and the fact that every separable subspace of L∗∗

1 embeds into L1.
However these techniques give us no information about Banach spaces which Lips-

chitz embed into c0. Indeed, in this, since c0 fails (RNP), we can only use Theorem 2.5
and unfortunately c∗∗0 = �∞ contains a (linear) isometric copy of every separable Ba-
nach space. In fact there is a very good reason why c0 is a special case:

Theorem 2.7 (Aharoni (1974) [1]). Every separable metric metric space can be Lip-
schitz embedded into c0.

Aharoni’s theorem shows the limitations of differentiation techniques in studying
Lipschitz embeddings. There is a curious sideplot here concerning the best result
concerning the distortion of a Lipschitz embedding of a metric space into c0. We
define the distortion of a Lipschitz embedding f : M → M ′ to be the quantity
Lip(f) Lip(f−1). Aharoni showed that an embedding can be achieved with distortion
6 + ε for any ε > 0, i.e., with

d(x, y) ≤ ‖f(x) − f(y)‖ ≤ (6 + ε)d(x, y), x, y ∈ M.

He noted that if M = �1 we can establish a lower bound of 2 for the distortion. Shortly
afterwards Assouad improved 6 + ε to 3 + ε [11]; later still Pelant [109] improved the
constant to 3. Each of these authors actually found embeddings into the positive
cone c+

0 and for this setting 3 is indeed the optimal constant. However in the last
year, Lancien and the current author showed that 2 is the correct distortion constant
for embeddings into c0 [83].

A natural unsolved question here is:

Problem 2. If c0 Lipschitz embeds into a Banach space X, does c0 linearly embed
into X?
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This Problem is motivated by the fact (from Theorem 2.7) that a Banach space X
is Lipschitz universal for all separable metric spaces if and only if c0 Lipschitz embeds
into X.

2.2. The Lipschitz isomorphism problem, I

In this section we consider one of the central problems of this area and make some
initial observations. The problem is:

Problem 3. Let X and Y be separable Banach spaces which are Lipschitz isomorphic;
are X and Y linearly isomorphic?

To understand this problem we must first explain why it is necessary to restrict to
the separable case. If we allow non-separable spaces, then counterexamples have been
known for some time. The first example was given by Aharoni and Lindenstrauss [2].
We will describe this example, which is based on the well-known fact that the quotient
space �∞/c0 contains a non-separable c0(Γ) (which in turn shows that �∞/c0 cannot
linearly embed into �∞ and thus c0 is uncomplemented in �∞).

Let q : �∞ → �∞/c0 be the canonical quotient map. We start from the existence
of a continuum of infinite subsets (Ai)i∈I of N with the property that Ai ∩Aj is finite
when i 
= j. Let ξi(k) = 1 if k ∈ Ai and zero otherwise. Then the vectors (q(ξi))i∈I

are isometrically equivalent to the canonical basis vectors of c0(I). Let E = [q(ξi)]i∈I .
We will describe a Lipschitz map f : E → �∞ with the property that q ◦ f = IdE . If
x =

∑∞
n=1 anq(ξin

) where a1 ≥ a2 ≥ · · · ≥ 0, we let

f(x)(k) =

⎧⎪⎨
⎪⎩

a1, k ∈ Ai1

an, k ∈ Ain \ ⋃n−1
r=1 Air , n ≥ 2

0, k /∈ ⋃∞
r=1 Air

For general x (where not all the coefficients are non-negative) we split x = x+ − x−,
where x+, x− have disjoint supports and non-negative coefficients. Then we set
f(x) = f(x+) − f(x−). Of course, in this definition one must verify that f is defined
unambiguously (it is!) and that f is Lipschitz (it is with constant 2).

If x ∈ q−1(E) we define h(x) = (x − fq(x), q(x)) ∈ c0 ⊕ E and h is a Lipschitz
homeomorphism from q−1(E) onto c0 ⊕ c0(I) which is a non-separable c0(Γ)-space
and hence cannot be linearly isomorphic to a subspace of c0.

This argument was later refined by Deville, Godefroy, and Zizler [39] or [40] to show
that C(K) is Lipschitz homeomorphic to c0(Γ) provided K is a compact Hausdorff
space such that the n-derived set K(n) = ∅ for some finite n. Unfortunately in
the separable case (Γ countable) this does not give anything significant since these
conditions imply that C(K) is linearly isomorphic to c0. However in the uncountable
case there are examples (as shown above) when C(K) is not linearly isomorphic to
a c0(Γ).
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We have presented this classical example in some detail to highlight its nature.
Let X be a Banach space and let Z be a closed subspace. Denote by Y the quotient
space X/Z and let q : X → X/Z be the quotient mapping. Suppose we can find a
Lipschitz lifting of q, i.e., a Lipschitz map f : Y → X so that q ◦ f = IdY . Then
as before the map h : X → Z ⊕ Y given by h(x) = (x − fq(x), q(x)) is a Lipschitz
homeomorphism of X onto Z ⊕ Y . Of course, if there is a linear lifting T : Y → X
of q then Z is complemented and X must be linearly isomorphic to Z ⊕ Y . Thus the
Aharoni-Lindenstrauss approach requires the existence of a quotient map which has
Lipschitz lifting but no linear lifting.

Unfortunately this approach cannot work in separable Banach spaces [53]:

Theorem 2.8. Let X be a separable Banach space and let Z be a closed subspace. If
there exists a Lipschitz lifting f : X/Z → X of the quotient map q : X → X/Z then
there is also a linear lifting T : X/Z → X with ‖T‖ ≤ Lip(f).

Proof. We exploit separability to find a normalized sequence (yn)∞n=1 in Y := X/Z
whose linear span is dense in Y . Let (ξn)∞n=1 be a sequence of independent random
variables with uniform distribution on [−1, 1] and let

g(y) = E

(
f
(
y +

∞∑
n=1

2−nξnyn

))
.

Then of course Lip(g) ≤ Lip(f) and q ◦ g = q ◦ f = IdY . But g is Gâteaux differ-
entiable everywhere and letting T be the Gâteaux derivative at the origin gives the
conclusion.

This then explains why Problem 3 is open for separable spaces!
In fact this result has applications to isometric embeddings. The Mazur-Ulam

Theorem (Theorem 1.2) applies only to surjective isometries. What happens if we
have an isometric embedding? In 1968, this question was addressed by Figiel [51] who
proved the following:

Theorem 2.9. Let X and Y be Banach spaces. Suppose f : X → Y is an isometric
embedding with f(0) = 0 and that [f(X)] = Y . Then there is a linear operator
S : Y → X with ‖S‖ = 1 and S ◦ f = IdX .

This means precisely that S is a quotient map of Y onto X and that f is a Lipschitz
lifting with Lip(f) = 1. Applying Theorem 2.8 gives:

Theorem 2.10 ([53]). Let X be a separable Banach space and suppose X isometri-
cally embeds into a Banach space Y . Then X embeds linearly isometrically into Y .

We will return to the question whether an isometric embedding always implies
the existence of a linear embedding for nonseparable spaces. Let us mention here
a very recent preprint of Dutrieux and Lancien [45] who show, among other things,
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the existence of a compact subset K of C[0, 1] such that if K embeds isometrically
into a Banach space Y then C[0, 1] (and hence every separable metric space) embeds
isometrically into Y .

Separability is of course required in Theorem 2.8 and it turns out that it also
necessary in Theorem 2.10. To understand this we will introduce a canonical con-
struction of an embedding of a metric space into a Banach space. Suppose (M,d) is
a metric space. We will fix one point of M which we call 0; thus in effect we consider
a pointed metric space (M,d, 0). The selection of a special point is simply to avoid
considering seminorms and equivalence classes in what follows. If M = X is already
a Banach space, we make the natural choice of the origin as our point. We define the
space Lip0(M) to be the space of all real valued Lipschitz functions f : M → R with
f(0) = 0. The natural norm on Lip0(M) is given by

‖f‖Lip0(M) = sup
{ |f(x) − f(y)|

d(x, y)
: x 
= y

}
.

Then Lip0(M) is a Banach space.
In the case when M is a Banach space there is an important observation due to

Lindenstrauss [94]; we give a alternate proof due to Pe�lczyński.

Proposition 2.11. If X is a Banach space then there is a norm one projection P
from Lip0(X) onto its subspace X∗. Furthermore if E is any linear subspace of X
we can define P = PE with the property that if f |E is linear for some subspace E
of X then Pf |E = f |E.

Proof. Let E be a subspace of X. Treating E as a commutative group there is an
invariant mean ME on the space �∞(E; R). If f ∈ Lip0(X) we define QEf by

QEf(x) = ME((f(x + u) − f(u))u∈E).

Then QE : Lip0(X) → Lip0(X) is a contractive linear operator, QEf = f if f ∈ X∗,

QEf(x + u) = QEf(x) + QEf(u), x ∈ X, u ∈ E

and if f |E is linear
QEf(u) = f(u), u ∈ E.

Let PE = QXQE and we have the desired projection.

Now Lip0(M) has a natural predual. For each x ∈ M let δ(x) ∈ Lip0(M)∗ be
point evaluation 〈f, δ(x)〉 = f(x). Then we define Æ(M) to be the closed linear span
of {δ(x) : x ∈ M}.

The space Æ(M) was first introduced by Arens and Eells [9] in 1954 although the
basic idea was due to Kantorovich [86]. The terminology Arens-Eells space, Æ(M) is
due to Weaver [125]; a different terminology was used in [53] (the Lipschitz-free space
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of M , denoted F(M)). Æ(M) can be described as the completion of the space of all
measures on M of finite support under the norm

‖μ‖Æ(M) = inf
{ n∑

k=1

|ak|d(xk, yk) : μ =
n∑

k=1

ak(δ(xk) − δ(yk)), n ∈ N

}
.

The space Æ(M) provides a very nice framework to study Lipschitz maps. First
note that the map δ : M → Æ(M) sending each x to the point evaluation is in fact
an isometric embedding. Next observe that if f : M1 → M2 is a Lipschitz map with
f(0) = 0 then there is a naturally induced bounded linear map Tf : Æ(M1) → Æ(M2)
such that Tf (δ(x)) = δf(x) and ‖Tf‖ = Lip(f).

Notice that there is a version of the Hahn-Banach theorem for Lipschitz maps from
metric spaces into R. Precisely if M is a metric space and A ⊂ M , then a Lipschitz
map f : A → R can be extended with preservation of Lipschitz constant. This can be
done for example by the formula

f(x) = inf
a∈A

{f(a) + Kd(x, a)}, x ∈ M

where K = Lip(f). As a consequence, if M1 is a subset of M2 containing the base
point 0 then Æ(M1) can be identified naturally and isometrically as a linear subspace
of Æ(M2).

If X is a Banach space we additionally have a bounded linear operator
β : Æ(X) → X given by

β(μ) =
∫

x dμ(x)

when μ is a measure with finite support. Thus β(μ) is the barycenter of the measure
μ and we call β the barycentric map. It is clear that β : Æ(X) → X has norm one and
is, in fact, a quotient map. Furthermore β ◦ δ = IdX . Thus δ is a Lipschitz lifting of
the barycentric map, and we are exactly in the situation we had earlier in the section.
If we let ZX = ker β, then we have that Æ(X) is Lipschitz isomorphic to ZX ⊕ X.

If X is separable then Æ(X) is also separable and we are in the situation of
Theorem 2.8. Thus we have the following result:

Proposition 2.12. If X is a separable Banach space there is a norm one linear
operator L : X → Æ(X) with L ◦ β = IdX .

Notice that L∗ : Lip0(X) → X∗ is a projection and so this Proposition can be
regarded as a strengthening of Proposition 2.11 in the separable case, since it yields
a weak∗-continuous projection. However in the nonseparable setting, things are very
different:

Proposition 2.13 ([53]). Let X be a nonseparable reflexive space. Then every weakly
compact subset of Æ(X) is separable and so X is not linearly isomorphic to a subspace
of Æ(X).
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This Proposition holds for weakly compactly generated spaces in place of reflexive
spaces. Now we have many examples of Banach spaces X which can be isometrically
but not isomorphically embedded into their corresponding Arens-Eells space. From
this we can also make many new examples of pairs of non-isomorphic but Lipschitz
homeomorphic Banach spaces. For example if X is a non-separable reflexive space
then Æ(X) and ZX ⊕ X are Lipschitz isomorphic but not linearly isomorphic. We
can also see immediately that separability is required in Theorem 2.10.

Another example is also given in [53], and this has a quite simple proof:

Proposition 2.14. �∞ is not isomorphic to a subspace of Æ(�∞).

Proof. This is fairly easy to prove. In fact as shown in [53], since �∞ is injective, if it
can be embedded in any space Æ(M) then there must be a linear lift T : �∞ → Æ(�∞)
of the map β. But then T (c0) is contained in some Æ(X) ⊂ Æ(�∞) where X is
isometric to a C(K)-space for some compact metric space K. Now X is a Lipschitz
retract of �∞, so that there is a Lipschitz map r : �∞ → X with r(x) = x for x ∈ X
(see [94] or [16]). Hence Æ(X) is complemented in Æ(�∞) by some projection P .
But then, since Æ(X) is separable PT : �∞ → Æ(X) is weakly compact [59] and its
restriction to c0 is compact, which gives a contradiction since PT = T on c0.

Notice the connection with Problem 2. The Banach space Æ(�∞) shows that this
problem has a negative solution if we replace c0 by �∞.

2.3. The Lipschitz isomorphism problem, II

In the previous section we saw that Problem 3 is only open for separable Banach
spaces, and in this case we can attempt to use the differentiability results of §2.1.
The problem is how to use the additional information that f : X → Y is a Lipschitz
isomorphism. If we assume that X and Y are reflexive (or, more generally, have the
(RNP)) we can at least use Theorem 2.2 to find a point x0 ∈ X so that f has a
Gâteaux derivative S : X → Y at x0. Similarly we can apply the same result to
find a point y0 ∈ Y where f−1 has a Gâteaux derivative T : Y → X at y0. If X
and Y where finite-dimensional we could arrange to have y0 = f(x0) and deduce by
the Chain Rule that ST = IdY and TS = IdX . But in infinite-dimensions this is no
longer possible. There are two problems. First, the notion of Gâteaux differentiability
is not strong enough to give a Chain Rule. The second is that there is no guarantee
that we can ensure that y0 = f(x0). The point is that if E is the set of points in X
at which f is not Gâteaux differentiable then E is Haar-null but f(E) need not be
Haar-null (see [16, p. 149])! Thus the concept of a Haar-null set is dependent on the
linear structure and not just on the metric structure.

The result of these problems is that we can obtain positive results for the Lipschitz
isomorphism problem only by using some fancy footwork. We often require deep
results from the linear theory to complete our arguments. Let us continue with
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results from the classic 1982 paper of Heinrich and Mankiewicz [62] which gave much
of the groundwork for the present theory.

Theorem 2.15. Let X and Y be reflexive Banach spaces and suppose X and Y are
Lipschitz isomorphic. Then X is isomorphic to a complemented subspace of Y and
Y is isomorphic to a complemented subspace of X.

Proof. Let f : X → Y be a Lipschitz homeomorphism, and let g = f−1. We can
assume by translations that f is Gâteaux differentiable at 0 and that f(0) = 0. Let
S : X → Y be the Gâteaux derivative of f at 0; then S is a linear isomorphism onto
a closed subspace of Y .

Now let U be a non-principal ultrafilter on N and define a Lipschitz function
h : Y → X by

h(y) = lim
n∈U

ng(y/n)

where the limit is taken in the weak topology on X; since X is reflexive it is easy to
see that h is well-defined and Lipschitz. If x ∈ X we may check that h(Sx) = x. We
use h to induce a linear operator V : X∗ → Lip0(Y ) by setting V x∗ = x∗◦h. Next use
Proposition 2.11 to define T : X∗ → Y ∗ by T = PV where P : Lip0(Y ) → Y ∗ is the
bounded projection constructed in the Proposition. Then observe that if x∗ ∈ X∗ we
have V x∗|S(E) is linear since V x∗(Sx) = x∗(x). Hence 〈Sx, Tx∗〉 = 〈x, x∗〉 for x ∈ X
and x∗ ∈ X∗, i.e., T ∗S = IdX . This means X is isomorphic to a complemented
subspace of Y .

This theorem brings us to a problem in the linear theory which was attracted a
great deal of interest in the 1980’s and 90’s. Suppose X is complemented in Y and Y
is complemented in X: is it true that X and Y must be linearly isomorphic? This was
known as the Schroeder-Bernstein Problem because of its analogy to the well-known
Schroeder-Bernstein Theorem. It was not until 1996 that Gowers [57] showed that it
is not true in general; later Gowers and Maurey [58] gave an example of a Banach
space X which is isomorphic to X3 but not to X2. On the other hand, there are
situations when a positive answer can be obtained; these date back to early work of
Pe�lczyński [110] and are known collectively as the Pe�lczyński decomposition trick.
There are two assumptions that guarantee X is isomorphic to Y :

• X is isomorphic to �p(X) (for some 1 ≤ p < ∞) or c0(X).

• X ≈ X2 and Y ≈ Y 2.

For our purposes only the first of these hypotheses is really useful and it gives us
the following result:

Theorem 2.16 (Heinrich-Mankiewicz 1982). Let X be one of the spaces �p or Lp

where 1 < p < ∞. If Y is Lipschitz isomorphic to X then Y is linearly isomorphic
to X.

27
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This Theorem is our first major positive result on Problem 3. Notice that we are
only able to get a positive result for a very small class of separable Banach spaces. In
particular, these methods do not apply to �1 or c0. The case of c0 is not covered by
our techniques because c0 fails the Radon-Nikodym Property; we will return to this
problem later. Let us discuss the case of �1. In this case the techniques we have used
almost work. The space �1 has the Radon-Nikodym property and so if Y is Lipschitz
isomorphic to �1 we can use Theorem 2.4 to deduce that Y is linearly isomorphic to
a subspace of �1 (and so it also has the (RNP)). The major obstacle is in applying
Theorem 2.15. Here reflexivity was used to define h. It turns out that we can do
without reflexivity if we have some good way of taking a limit, e.g., if X is a dual
space (so that we can use the weak∗-topology). Thus we have:

Theorem 2.17. If X is Lipschitz isomorphic to �1 and is a dual space then X is
linearly isomorphic to �1.

However the following Problem is open:

Problem 4. If X is Lipschitz isomorphic to �1, is X linearly isomorphic to �1?

More information on this problem follows from the following theorem. We refer
to §1.1 for the definition of Lp-spaces.

Theorem 2.18. Let X be a Lp-space where 1 ≤ p ≤ ∞. If Y is coarsely homeo-
morphic to X (in particular if Y is uniformly homeomorphic to X) then Y is also a
Lp-space.

This Theorem has a long history. Notice first that since Lp-spaces are stable under
ultraproducts, Proposition 1.6 implies that one only needs to prove the Theorem under
the hypothesis that X and Y are Lipschitz isomorphic.

For 1 < p < ∞, Theorem 2.18 was proved by Ribe [117]. In fact, for this case, if
X and Y are separable then in this case Theorem 2.15 implies the conclusion (and
with a little elementary theory, separability can be relaxed). The case p = ∞ is due
to Heinrich and Mankiewicz [62] and required a different argument. However the case
p = 1 has remained open until this year, when it was finally resolved by Johnson,
Maurey and Schechtman [72]. They gave an elegant approach which establishes all
cases simultaneously, as a corollary of a factorization result.

Let us now turn to the case of c0. Here differentiation techniques are quite useless.
However, it turns out that there is a positive result:

Theorem 2.19 ([54]). If X is Lipschitz isomorphic to c0 then X is linearly isomor-
phic to c0.

To prove this result we need an argument first developed by Gorelik [56] to show
that the spaces �p and Lp are not uniformly homeomorphic when 2 < p < ∞. This
is now known under the name of the Gorelik principle and it is a very remarkable
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and elegant application of the Brouwer fixed point theorem. It was primarily de-
vised for studying uniform homeomorphisms but we state it here only for Lipschitz
isomorphisms:

Proposition 2.20 (The Gorelik Principle). Let X and Y be Banach spaces and let
f : X → Y be a Lipschitz isomorphism such that

‖x1 − x2‖ ≤ ‖f(x1) − f(x2)‖
for x1, x2 ∈ X. Suppose x ∈ X and that E is a closed subspace of X of finite
codimension. Suppose δ > 0. Then for some compact set K ⊂ Y ,

f(x) + δBY ⊂ K + f(x + 10δBE).

Our statement is a variant of the original Gorelik principle from [54]. To under-
stand the Gorelik principle let us take x = 0 and assume f(0) = 0. If f was linear
then f(E) would be a subspace of Y of finite codimension. The Gorelik principle
asserts that some remnant of this fact remains when f is nonlinear; we emphasize
that a more general statement applies for uniform homeomorphisms (see [16, p. 231]).

We now turn to the application of the Gorelik principle to Theorem 2.19. In fact
we need only to prove:

Theorem 2.21 ([54]). If X is Lipschitz isomorphic to a subspace of c0 then X is
linearly isomorphic to a subspace of c0.

The reader should recall that any Banach space which can be Lipschitz embed-
ded into �p when 1 < p < ∞ must be linearly isomorphic to subspace of �p (The-
orem 2.4); however for Lipschitz embeddings into c0 this is false by Theorem 2.7.
So the above Theorem is a little surprising; the additional hypothesis is that X is
Lipschitz-isomorphic to a subspace of c0 (not merely a subset).

Once Theorem 2.21 is proved, we can invoke ideas from the linear theory to prove
Theorem 2.19. Indeed X must be isomorphic to L∞-space and a subspace of c0 and it
is a classical result of Johnson and Zippin [75] that this means X is isomorphic to c0.

We turn to the proof of Theorem 2.21. Let f : Y → X be a Lipschitz isomorphism
where Y is a subspace of c0. We use f to define a new equivalent (dual) norm on X∗:

‖x∗‖f = sup
{

x∗(f(v) − f(u))
‖v − u‖ : u, v ∈ Y, u 
= v

}
.

The Gorelik principle is then shown to yield the property for some c > 0:

lim
n→∞‖x∗ + x∗

n‖f ≥ ‖x∗‖f + c lim
n→∞‖x∗

n‖f

whenever x∗ ∈ X∗, and (x∗
n)∞n=1 is a weak∗-null sequence in X∗ such that both limits

exist. The existence of such an estimate implies that X is isomorphic to a subspace
of c0; such a result was first proved in almost isometric form in [85] and then in this
form in [54]; an alternative proof was given in [68].

Let us also note a recent theorem of Dutrieux, related to Theorem 2.21, [43]:
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Theorem 2.22. Suppose X is a Banach space such that X∗ has the (MAP). Suppose
X is Lipschitz isomorphic to a quotient of c0. Then X is isomorphic to a quotient
of c0.

Note that any quotient of c0 is already isomorphic to a subspace of c0 [7]. It would
be nice to remove the approximation assumption in this result.

To conclude this section, let us consider properties which are stable under Lipschitz
isomorphism. Many of the results quoted above imply stability for certain Banach
space properties (e.g. reflexivity, super-reflexivity and the Radon-Nikodym property).
The following is another example of such a result. For the definition of (BAP) see §1.1.

Theorem 2.23. Let X and Y be Lipschitz isomorphic separable Banach spaces. If
X has the (BAP) then Y also has the (BAP).

This Theorem is proved in [53] (it also holds for non-separable spaces). The proof
depends on the fact that if X is a separable Banach space with (BAP) then Æ(X) also
has (BAP). If X and Y are Lipschitz isomorphic then Æ(X) and Æ(Y ) are linearly
isomorphic so that Æ(Y ) has (BAP) and hence, since Y is complemented in Æ(Y ) it
follows that Y has (BAP).

2.4. Uniformly and coarsely homeomorphic Banach spaces

We now consider the problem of uniform homeomorphisms between Banach spaces.
We have already seen in Proposition 1.5 that if X and Y are uniformly homeomorphic
or coarsely homeomorphic then they are coarse Lipschitz homeomorphic. Indeed, as
we have already remarked, there is little in the theory of uniform homeomorphisms
to distinguish between the cases of uniform and coarse homeomorphisms.

A deduction from Proposition 1.5 was that uniformly homeomorphic Banach
spaces have Lipschitz-isomorphic ultraproducts (Proposition 1.6). This provides a
link between the theory of uniform homeomorphisms and the theory of Lipschitz
isomorphisms. In particular it gives us the following result of Ribe [116]:

Proposition 2.24. If X and Y are uniformly homeomorphic (or coarsely homeo-
morphic) Banach spaces then X is finitely representable in Y (and vice versa).

The immediate consequence of this Proposition is that, in general, local properties
of a Banach space are preserved under uniform homeomorphism. By a local property
we mean a property preserved under finite representability. For global properties this
is no longer true. We now discuss examples of separable uniformly homeomorphic
Banach spaces which are not linearly isomorphic. The first such example was given in
1984 by Ribe [118] and his method was extended by Aharoni and Lindenstrauss [3].

Theorem 2.25. Suppose 1 ≤ p < ∞ and 1 < pn < ∞ with limn→∞ pn = p and
pn 
= p for all n. Then �2(�pn

) is uniformly homeomorphic, but not linearly isomor-
phic, to �2(�pn

) ⊕ �p.
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This is an intricate construction and we refer to [16, p. 244] for the details. In
particular if we take p = 1 but each pn > 1 then we see that reflexivity is not preserved
under uniform homeomorphisms. So this category is quite different from the Lipschitz
category.

An alternative construction was given in [79] based on the Arens-Eells space
(see §2.2). Fix 0 < θ < 1. If X is a separable Banach space we consider X with
metric dθ given by

dθ(x, y) = max(‖x − y‖θ, ‖x − y‖).
Then the barycentric map β defines a quotient map of Æ(X, dθ) onto X. The map
x → δ(x) is then Hölder continuous and βδ(x) = x. From this it follows easily that
Æ(X, dθ) is uniformly homeomorphic to kerβ ⊕ X. However it is shown in [79] that
Æ(X, dθ) is a Schur space. Hence taking, for example, X = c0 we have that Æ(c0) is
Lipschitz isomorphic to kerβ ⊕ c0:

Theorem 2.26. There is a separable Schur space Y which is uniformly homeomor-
phic to a Banach space containing c0.

Notice the contrast with Problem 2. There is a separable Schur space Y so that
every separable metric space can be uniformly embedded into Y .

Further examples were given by Johnson, Lindenstrauss, and Schechtman [71].
Indeed they showed the existence of spaces X (variants of the Tsirelson space [32])
which are uniformly homeomorphic to exactly two distinct Banach spaces.

Let us now turn to positive results. The most natural place to start is in the study
of the �p-spaces and Lp-spaces.

Theorem 2.27 (Enflo, Lindenstrauss). If 1 ≤ p, q < ∞ and the spaces Lp(μ)
and Lq(μ) are uniformly homeomorphic then they are either of the same finite di-
mension or p = q.

Here the case max(p, q) > 2 was proved in 1964 by Lindenstrauss [94] and the
case max(p, q) ≤ 2 was done in 1969 by Enflo [46]. With the benefit of hindsight
these results may be proved by using Theorem 2.18 which was proved in 1978 for
1 < p < ∞ by Ribe [117]. However, the techniques used to prove Theorem 2.27 are
still of considerable importance.

After this the key question is whether �p and Lp are uniformly homeomorphic
when 1 ≤ p < ∞. This was also established piecemeal.

Theorem 2.28 (Bourgain, Enflo, Gorelik). For 1 ≤ p < ∞ with p 
= 2 the spaces �p

and Lp are not uniformly homeomorphic.

Here the case p = 1 is due to Enflo (unpublished) in the 1970’s; the case 1 < p < 2
was established in 1987 by Bourgain [22] and the case 2 < p < ∞ was not settled
until 1994 by Gorelik [56].

It is worth mentioning that the case when p < 1 is of interest in both Theorems 2.27
and 2.28. The analogue of Theorem 2.28 was established by Weston [126]. However
the following problem is still open:
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Problem 5. If 0 < p, q ≤ 1 are the spaces Lp(0, 1) and Lq(0, 1) uniformly homeo-
morphic?

The difference in the case p < 1 as we have already remarked, is that the standard
reduction to the Lipschitz case is not possible. However the spaces Lp are metrically
convex with the metric dp(f, g) = ‖f − g‖p

p and so we can make a reduction to a
Lipschitz problem:

Problem 6. If 0 < p, q ≤ 1 are the spaces (Lp, dp) and (Lq, dq) Lipschitz homeo-
morphic?

Let us return to the case p ≥ 1. In 1996, Johnson, Lindenstrauss and Schecht-
man [71] achieved a major breakthrough by showing that if 1 < p < ∞ the spaces �p

have unique uniform structure:

Theorem 2.29 (Johnson, Lindenstrauss, and Schechtman). If 1 < p < ∞ and X is
uniformly homeomorphic to �p then X is linearly isomorphic to �p.

Notice that if p = 1 we do not even know this theorem for Lipschitz isomorphisms!
In each of the preceding theorems (Theorems 2.27, 2.28, and 2.29) we can replace

uniform homeomorphisms by coarse homeomorphisms. This will be clear after our
discussion below.

We will now sketch the ideas involved in Theorem 2.29 by highlighting various
techniques that were developed to distinguish the uniform (or more properly, the
coarse) structure of Banach spaces. The starting point is of course Ribe’s theorem 2.18
which asserts that if 1 < p < ∞ and X is uniformly or coarsely homeomorphic to �p

then X must be a Lp-space. Now it follows by appealing to the linear theory and
a theorem of Johnson and Odell [73] that all we need to do is show that X cannot
contain an isomorphic copy of �2. Now X is coarse Lipschitz isomorphic to �p and so
we must show there is no coarse Lipschitz embedding of �2 into �p when p 
= 2.

This leads us to the general problem of what we can say about coarse Lipschitz
maps f : �p → �q when p 
= q. At the very least we want to conclude that f cannot be
a coarse Lipschitz embedding. Recall from the linear theory that the cases q < p and
q > p are quite different. If q < p then every bounded linear operator T : �p → �q is
compact (Pitt’s theorem) while if q > p we can only deduce that T is strictly singular.
This difference persists in the analysis of nonlinear maps. We will discuss four basic
techniques that can be used here.

First we discuss the approximate midpoint method. This approach was developed
by Enflo to show that �1 and L1 are not uniformly homeomorphic. The basic idea is
simple and goes back to the proof of the Mazur-Ulam Theorem. If (M,d) is a metric
space and x, y ∈ M then a metric mid-point is a point u so that

d(u, x) = d(u, y) =
1
2
d(x, y).
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If f : (M1, d1) → (M2, d2) is a Lipschitz map with Lipschitz constant K and x, y ∈ M1

are such that d2(f(x), f(y)) = Kd1(x, y) then f maps metric midpoints of x and y to
metric midpoints of f(x) and f(y). In general such points x, y may not exist so we
resort to the definition of an approximate midpoint:

Mid(x, y, δ) =
{

z ∈ X : max{d(x, z), d(y, z)} ≤ (1 + δ)
d(x, y)

2

}
.

Now suppose X, Y are Banach spaces and f : X → Y is a coarse Lipschitz map.
Define Lip∞(f) as the asymptotic Lipschitz constant of f , i.e.,

Lip∞(f) = lim
r→∞ sup

‖x1−x2‖>r

‖f(x1) − f(x2)‖
‖x1 − x2‖ .

Then we have:

Proposition 2.30. Let X, Y be Banach spaces and suppose f : X → M is a coarse
Lipschitz map. If Lip∞(f) > 0 then for any t, ε > 0 and any 0 < δ < 1 there exist
x, y ∈ X with ‖x − y‖ > t and

f(Mid(x, y, δ)) ⊂ Mid(f(x), f(y), (1 + ε)δ).

Now the key fact is that we have some fairly precise information about approximate
midpoint sets in �p, i.e.,

Proposition 2.31. Suppose x, y ∈ �p where 1 ≤ p < ∞. Let u = 1
2 (x + y) and

v = 1
2 (x − y). Then there is a compact subset K of �p and a closed subspace E of

finite codimension so that

u + δ1/pBE ⊂ Mid(x, y, δ) ⊂ K + 2δ1/pB�p
.

Given Propositions 2.30 and 2.31 it is easy to see that there is no coarse Lipschitz
embedding of �p into �q when q < p. In particular �2 cannot be coarse Lipschitz
embedded into �p if p < 2. In views of our remarks above this proves Theorem 2.29
in the case when p < 2.

The case p > 2 requires something different. In fact, Johnson, Lindenstrauss, and
Schechtman used the Gorelik principle which we have already introduced (Proposi-
tion 2.20). However we will give an alternative approach based on a recent paper [84].

Let us fix r ∈ N and for any subset A of N let Gr(A) be the collection of all
r−subsets of A. We consider Gr(N) as a metric space under the metric

d((m1, . . . , mr), (n1, . . . , nr)) = |{j : mj 
= nj}|,

when m1 < m2 < · · · < mr and n1 < n2 < · · · < nr. The crucial and quite easy
Lemma we require is
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Lemma 2.32. Let f : Gr(N) → �p be a Lipschitz map. Then given ε > 0 there is an
infinite subset M of N so that

diam(Gr(M)) < 2r1/p Lip(f) + ε.

This Lemma can be regarded as an asymptotic smoothness condition; it has gen-
eralizations to spaces with asymptotic smoothness [84]. It follows very easily from
this Lemma that there is no coarse Lipschitz embedding of �p into �q when q > p and
this takes care of the other case of Theorem 2.29.

It turns out the combination of Lemma 2.32 and the approximate midpoint method
gives other information about direct sums:

Proposition 2.33 ([84]). Suppose 1 ≤ p < q < ∞: then there is a coarse Lipschitz
embedding of �r into �p ⊕ �q if and only if r = p or r = q.

Theorem 2.34. If 1 < p, q < ∞ and p, q 
= 2 and Banach space X is uniformly (or
coarsely) homeomorphic to �p ⊕ �q then X is linearly isomorphic to �p ⊕ �q.

This Theorem is due to [71] when p, q < 2 or p, q > 2 and in the case p < 2 < q is
due to [84]. The argument is an extension of the arguments for the �p−case. X must
be linearly isomorphic to a complemented subspace of Lp ⊕Lq and X cannot contain
a copy of �2 by Proposition 2.33. These facts combined with classical techniques in
the linear theory enable us to show X is isomorphic to �p ⊕ �q. Theorem 2.34 extends
without problem to direct sums of more than two spaces.

Problem 7. If X is a Banach space which is uniformly homeomorphic to Lp (where
1 < p < ∞ and p 
= 2) is X linearly isomorphic to Lp?

The classification of spaces uniformly homeomorphic to Lp remains open. Clearly
if X is uniformly homeomorphic to Lp then X must be a Lp−space and hence a
complemented subspace of Lp. The simplest Lp-space after �p itself is �p ⊕ �2. If
p < 2 then for any p < r < 2 we have that �r embeds linearly into Lp and so
Proposition 2.33 already gives the case p < 2 of:

Theorem 2.35 ([84]). If 1 < p < ∞ and p 
= 2 then Lp is not uniformly (or
coarsely) homeomorphic to �p ⊕ �2.

The case p > 2 is a consequence of the following Theorem, again from [84] and
using again the approximate mid-point technique combined with Lemma 2.32 but in
a more subtle manner:

Theorem 2.36. If 1 < p < ∞ with p 
= 2 then if X is uniformly homeomorphic
to �p ⊕ �2 then X cannot contain a subspace isomorphic to �p(�2).

Unfortunately these results fall a little short of establishing that �p⊕�2 has a unique
uniform structure. This is best illustrated in the case p > 2 where the Rosenthal
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space Xp ([119]) is a Lp-space which embeds into �p ⊕ �2 and is not eliminated by this
result. However a result result of Haydon, Odell, and Schlumprecht [60] shows that
in this case Theorem 2.36 shows that X must be linearly isomorphic to a subspace
of �p ⊕ �2.

We now turn to the case of c0 which we have seen has a unique Lipschitz structure
(Theorem 2.21).

Problem 8. If X is a Banach space which is uniformly homeomorphic to c0 is X
linearly isomorphic to c0?

Unfortunately the techniques used to prove Theorem 2.21 fail (but only just!)
to give the same result in the uniform category. In [55] these techniques were used
to show that certain asymptotic smoothness properties are preserved under uniform
homeomorphisms. The following theorem is the main result about uniform homeo-
morphisms and c0:

Theorem 2.37. A Banach space which is uniformly homeomorphic to a subspace
of c0 has summable Szlenk index.

Rather than define summable Szlenk index let us state an equivalent form. X has
summable Szlenk index if and only if for every continuous function f : (0, 1) → (0, 1)
satisfying limτ→0 f(τ)/τ = 0 there is a constant c > 0 and an equivalent norm ‖·‖f

on X whose dual norm satisfies the condition

lim inf
n→∞ ‖x∗ + x∗

n‖f ≥ 1 + cf(τ)

whenever ‖x∗‖f = 1, (x∗
n) is weak∗-null and ‖x∗

n‖ = τ for all n.
Comparing this result with the proof of Theorem 2.21 the reader will observe that

it is our inability to take f(τ) = τ which prevents us from completing the argument.
However there is some very significant information in Theorem 2.37: for example it
follows that if X is uniformly homeomorphic to c0 then X∗ is isomorphic to �1. It
remains open whether �1 has any predual, other than c0, with summable Szlenk index.

3. Properties of metric spaces and extension of Lipschitz maps

In this section we consider the Lipschitz theory of metric spaces with particular em-
phasis on extension problems for Lipschitz maps.

3.1. Nonlinear type and cotype

In the following sections we will look at how concepts from the linear theory have
been modified and adjusted to define corresponding nonlinear properties of metric
spaces. It has proved a very fertile source of ideas that one can try to obtain Lipschitz
analogues of deep results from (linear) Banach space theory. In many cases, it seems
almost miraculous that such analogues do exist!
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We first discuss the notions of type and cotype for metric spaces. The idea is that
we would like to describe properties of a Banach space in purely metric terms so that
they are preserved under Lipschitz maps.

In the preceding sections we have seen three basic techniques which are used to
study uniform and Lipschitz homeomorphism problems. These are the Gorelik prin-
ciple, the approximate mid-point technique and the asymptotic smoothness principle.
There is one more very elegant idea due to Enflo [46] which also has important ap-
plications. Enflo discovered that the notion of Rademacher type (see §1.1) has a
nonlinear analogue. In effect, it is possible to talk of the type of a metric space.

To understand this let us define the maps σj : {−1, 1}n → {−1, 1}n by
σj(ε1, . . . , εn) = (ε1, . . . ,−εj , . . . , εn). Let σ = σ1 · · ·σn. We thus say that a met-
ric space (M, d) is of Enflo type p if there is a constant C such that whenever
f : {−1, 1}n → M is any map we have the estimate

(Ed(f ◦ σ, f)p)1/p ≤ C

( n∑
j=1

Ed(f ◦ σj , f)p

)1/p

.

If X is a Banach space and we consider the function

f(ε1, . . . , εn) =
n∑

j=1

εjxj

it is easy to see that Enflo type p implies Rademacher type p. The remarkable fact
that Enflo discovered is:

Theorem 3.1. The Banach space Lp has Enflo type p (with constant one) if
1 < p ≤ 2.

From this it follows quickly that any Banach space uniformly homeomorphic to
Lp has type p and this gave a proof of Theorem 2.27 in the cases when p, q ≤ 2.

The natural question is whether Enflo type p is actually equivalent to Rademacher
type p for a general Banach space; this was specifically raised by Enflo in [50] and
remains open. As a partial answer to this, Pisier [112] proved a Poincaré-type inequal-
ity. To see this we define “partial derivatives”’ by ∂jf = f ◦ σj − f . We also use E

′

for expectation with respect to an independent sequence of Rademachers (ε′1, . . . , ε
′
n).

Theorem 3.2. Let X be a Banach space and suppose f : {−1, 1}n → X is any map
such that Ef = 0. Then

(E‖f‖p)1/p ≤ (2e log n)
(

EE
′
∥∥∥∥

n∑
j=1

ε′j∂jf(ε1, . . . , εn)
∥∥∥∥

p)1/p

.
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If X has type p with constant C this inequality yields

(E‖f‖p)1/p ≤ (2Ce log n)
(

E

n∑
j=1

‖∂jf(ε1, . . . , εn)‖p

)1/p

,

and hence for general f (without the condition Ef = 0),

(E‖f − f ◦ σ‖p)1/p ≤ (4Ce log n)
(

E

n∑
j=1

‖∂jf(ε1, . . . , εn)‖p

)1/p

.

This does not quite give Enflo type p because of the logarithmic factor. However we
have

Theorem 3.3 (Pisier [112]). If X has type p > 1 then X has Enflo type q for any
1 < q < p.

Unfortunately the log n cannot be removed in Theorem 3.2 (see [122]). However
there was a recent advance in the subject due to Naor and Schechtman in 2002:

Theorem 3.4 (Naor and Schechtman [106]). Let X be a UMD Banach space. Then
there is a constant C so that if f : {−1, 1}n → X is any map such that Ef = 0, then

(E‖f‖p)1/p ≤ C

(
EE

′
∥∥∥∥

n∑
j=1

ε′j∂jf(ε1, . . . , εn)
∥∥∥∥

p)1/p

.

In particular for UMD-spaces, Rademacher type p is equivalent to Enflo type p.

The Naor-Schechtman result showed for the first time that the spaces Lp for p > 2
have Enflo type 2.

A variant of the Enflo approach was investigated by Bourgain, Milman, and Wolf-
son [23]. A metric space is said to have nonlinear type p if there is a constant C so
that whenever f : {−1, 1}n → M is any map we have the estimate

(Ed(f ◦ σ, f)2)1/2 ≤ Cn1/p−1/2

( n∑
j=1

Ed(f ◦ σj , f)2
)1/2

.

The relationship between this property and Enflo type is not absolutely clear; however
we have:

Theorem 3.5 (Bourgain, Milman, and Wolfson [23]). If a Banach space has nonlinear
type p > 1 then it has Rademacher type q for every 1 < q < p.

The results of Naor and Schechtman show that for UMD-spaces we have the
following implication:
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Theorem 3.6 (Naor and Schechtman [106]). Let X be a UMD Banach space. If X
has Rademacher type p then X has nonlinear type p.

One of the main results of [23] concerns embeddings of the Hamming cube into a
metric space with bounded distortion. The Hamming cube Hn of order n is the set
{−1, 1}n with the metric

d(ε, ε′) =
n∑

j=1

|εj − ε′j |.

Theorem 3.7. In order that a metric space (M, d) fail to have any nonlinear type
p > 1 it is necessary and sufficient that there exists K < ∞ and a sequence of
Lipschitz embeddings fn : Hn → M satisfying Lip(fn) Lip(f−1

n ) ≤ K.
Thus a Banach space X has non-trivial type if and only if the Hamming cubes Hn

can be Lipschitz embedded into X with uniformly bounded distortion.

In particular if X is a Banach space we thus have a nonlinear description of non-
trivial Rademacher type.

There is a corresponding metric description of super-reflexivity, which is due to
Bourgain [21]. For with this we need to define the dyadic tree Tn of order n. Tn is
defined to be the union of the sets {−1, 1}j for 1 ≤ j ≤ n with the metric

d((ε1, . . . , εj), (ε′1, . . . , ε
′
k)) = j + k − 2r + 2

where r is the first index such that εr 
= ε′r.

Theorem 3.8. A Banach space X fails to be super-reflexive if and only the dyadic
trees Tn can be Lipschitz embedded into X with uniformly bounded distortion.

The problem of finding a suitable nonlinear analogue for cotype was only recently
solved by Mendel and Naor [104]. For this we must consider a variant of the set
{−1, 1}n. Let m be an integer and let Γm be the set of 2m-th. roots of unit. Let
ω = eπi/m. Consider the set Γn

m which we consider as a probability space with
normalized counting measure. It is also a group under multiplication (and, of course,
normalized counting measure is its Haar measure). We define a random variable
ξ = (ξ1, . . . , ξn) with values in Γn

m such that ξ1, . . . , ξn are independent and

P(ξj = ω) = P(ξj = 1) = P(ξj = ω−1) = 1/3.

Let σj(θ) = (θ1, . . . ,−θj , . . . , θn).
A metric space (M,d) is said to have metric cotype q if there is a constant C such

that if n ∈ N, there exists m ∈ N so that if f : Γn
m → M is any map, then

( n∑
j=1

Eθd(f(θ), f ◦ σj(θ))q

)1/q

≤ Cm(EξEθd(f(θ), f(ξθ))q)1/q.

This rather complicated definition works very well, however:
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Theorem 3.9 (Mendel and Naor [104]). Suppose q ≥ 2. A Banach space has
Rademacher cotype q if and only if it has metric cotype q.

Later Mendel and Naor [103] showed that a modification of the definition of Enflo
type on similar lines gives a nice equivalence with Rademacher type. A metric space
M is said to have scaled Enflo type p if there is a constant C such that if n ∈ N,
there exists m ∈ N so that if f : Γn

m → M is any map, then

(EεEθd(f(εθ), f(θ))p)1/p ≤ Cm

( n∑
j=1

Eθd(f(θ), f(αjθ))p

)1/p

,

where αj = (1, . . . , ω, . . . , 1) (with ω in the jth position).

Theorem 3.10 (Mendel and Naor, [103]). Suppose 1 < p ≤ 2. A Banach space has
scaled Enflo type p if and only if it has type p.

This section, however, does not totally exhaust the subject of type and cotype in
metric spaces. Yet another concept is that of Markov type and Markov cotype due
to Ball [13]. We will discuss these ideas later in connection with extension problems.

3.2. The structure of the Arens-Eells space of a metric space

Another natural way to study the structure of a pointed metric space M is to attempt
to understand the Arens-Eells space Æ(M) as a Banach space. To motivate our
considerations note that Æ(R) is isometric to L1 while Æ(N) (where N has the natural
metric) is isometric to �1. These considerations suggest that the Arens-Eells space
will often behave like �1. However we have seen that if X is a separable Banach space
then Æ(X) contains a complemented copy of X and so our hopes in this direction
should be limited. We also note that Bourgain [21] proved that:

Theorem 3.11. The space Æ(�1) fails to have any non-trivial (Rademacher) cotype.

Thus (since �1 has cotype two) there is no realistic hope of defining a concept of co-
type for a metric space using the Arens-Eells space. More recently Naor and Schecht-
man [107] showed:

Theorem 3.12. If X is a Banach space with dim X > 1 then Æ(X) cannot be
linearly embedded into L1.

Naor and Schechtman use the term earthmover for the metric on Æ(X); this
terminology is popular in theoretical computer science.

In the other direction, Godard [52] has recently given an elegant characterization
of finite metric spaces M such that Æ(M) is isometric to a subspace of L1. For this
we need the definition of a metric tree. We consider a connected graph M with no
cycles (a tree) where each edge e is assigned a postive weight w(e); consider the path
metric d induced by the weights w(e). Then (M, d) is called a metric tree. Godard’s
theorem is then:
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Theorem 3.13. Let M be a finite pointed metric space. Then Æ(M) is isometric to
a subspace of L1 if and only if M isometrically embeds in a finite metric tree.

This result depends on a result of Buneman [29] which characterizes those finite
metric spaces which embed into a finite metric tree via the four point condition:

d(x, y) + d(z, w) ≤ max(d(x, z) + d(y, w), d(x, w) + d(y, z)), x, y, z, w ∈ M.

In particular, for any metric space, Æ(M) embeds isometrically into L1 if and only if
Æ(F ) embeds isometrically into L1 for every subset F of M with |F | = 4. As pointed
out by Godard [52] every ultrametric space satisfies the four point condition. Here a
metric d is an ultrametric if

d(x, y) ≤ max(d(x, z), d(y, z)), x, y, z ∈ M.

For recent related work on metric trees we also refer to [42].
The above results suggest the following problem:

Problem 9. Characterize those (pointed) metric spaces M so that Æ(M) isomor-
phically embeds into L1.

We conclude this section by discussing some special examples where Æ(M) is
actually isomorphic to �1.

Suppose (M,d) is a compact metric space and for 0 < θ < 1 we consider the
metric dθ(x, y) = d(x, y)θ on M . We will denote (M, dθ) by Mθ; of course, Lipschitz
functions on Mθ are simply θ-Hölder functions on M . In this case we can define a
subspace lip0(Mθ) to be the set of functions f ∈ Lip0(Mθ) so that

lim
τ→0

sup
{ |f(y) − f(x)|

dθ(x, y)
: 0 < dθ(x, y) < τ

}
= 0.

It then follows that (see [79,125]):

Proposition 3.14. Æ(Mθ) = lip0(Mθ)∗ and lip0(Mθ) is linearly isomorphic to a
subspace of c0.

For the special case when M is a compact subset of a finite-dimensional normed
space, it is a classical result of Bonic, Frampton, and Tromba [17] (corrected in [125])
that:

Theorem 3.15. If 0 < θ < 1 and M is a compact subset of a finite-dimensional
normed space we have that lip0(Mθ) is isomorphic to c0 and Æ(Mθ) is isomorphic
to �1.

Weaver [125] asked whether this result would hold for any compact metric space M .
The current author showed that this was false (Theorem 8.3 of [79]):
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Theorem 3.16. Let M be a compact convex subset of a Hilbert space containing the
origin. Then Æ(Mθ) is isomorphic to �1 if and only if M is finite-dimensional.

In fact this statement holds true for any Banach space in place of a Hilbert space
if θ ≤ 1

2 and for almost any Banach space in general. Probably it holds in full
generality for all Banach spaces (see [79]). However, it is not clear whether these
counterexamples have the property that Æ(Mθ) embeds into �1 (or equivalently) that
lip0(Mθ) is a quotient of c0. This, of course, relates to Problem 9.

3.3. Extension of Lipschitz maps: absolute Lipschitz retracts

We now turn to another topic which has seen some recent advances. We will consider
questions about extension of Lipschitz maps between metric spaces or Banach spaces.

Suppose M1, M2 are metric spaces and that G ⊂ M1. We write e(G, M1, M2) for
the infimum of all constants K so that every Lipschitz function f : M1 → M3 has
an extension f̃ : G → M2 with Lip(f̃) ≤ K Lip(f). If no such K exists we write
e(M1, M2, M3) = ∞.

It is easy to see that if G ⊂ M are fixed then e(G, M, M ′) < ∞ for every metric
space M ′ if and only if there is a Lipschitz retraction r : M → G if a Lipschitz
map such that r : M → G with r(a) = a if a ∈ G. A metric space M is called
an absolute Lipschitz retract (ALR) if whenever M ⊂ M ′ then there is a Lipschitz
retraction of M ′ onto M . This is equivalent to the statement that e(G, M1, M) < ∞
for every pair (G, M1) with G ⊂ M1. In this case M is said to have ALR-constant K
if whenever M ⊂ M ′ there is a Lipschitz retraction r : M ′ → M with Lip(r) ≤ K.

It is clear that R is an absolute Lipschitz retract; indeed e(G, M, R) = 1 for all
G, M , as we observed in §2.2. Hence the Banach space �∞(Γ) is also an absolute
Lipschitz retract for any set Γ and from this it follows that every injective Banach
space is an absolute Lipschitz retract. However there are other Banach spaces which
are absolute Lipschitz retracts; this was shown by Lindenstrauss in 1964.

Theorem 3.17 (Lindenstrauss [94]). The spaces c0 and C(K) where K is compact
and metrizable are absolute Lipschitz retracts.

Lindenstrauss showed that c0 is an absolute Lipschitz retract with ALR-constant 2,
i.e., if c0 is embedded in any metric space M there is a Lipschitz retraction onto c0

with Lipschitz constant 2 (and this is best possible). This is proved by showing that
there a retraction of �∞ onto c0 with Lipschitz constant 2. The estimate for the
constant for a general C(K) was larger, but recently the author showed that in this
case 2 is again the correct answer:

Theorem 3.18 ([82]). If K is a compact metric space then C(K) is an absolute
Lipschitz retract with ALR-constant 2.

We mention that since C(K) Lipschitz embeds into c0 (Theorem 2.7) and is an
absolute Lipschitz retract we get that the corresponding Arens-Eells space Æ(C(K))
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is isomorphic to a complemented subspace of Æ(c0). Dutrieux, and Ferenczi [44]
recently used this fact and some additional arguments to show:

Theorem 3.19. If K is a compact metric space Æ(C(K)) is isomorphic to Æ(c0).

This is first known example where the Arens-Eells spaces of two non-Lipschitz
isomorphic infinite-dimensional Banach spaces are known to be linearly isomorphic.
For metric spaces note that Theorem 3.15 gives many examples where non-Lipschitz
isomorphic metric spaces have �1 as their Arens-Eells space.

Recently Lancien and Randrianantoanina [92] and the author [82] considered the
following problem. For which metric spaces M is it true that given any Lipschitz map
f : G → C(K) for some compact Hausdorff space K and some G ⊂ M , there exists
an extension f̃ : M → C(K) with Lip(f̃) = Lip(f)? In [92] it was shown that this is
never true for an infinite-dimensional Banach space.

Theorem 3.20. Let X be a finite-dimensional Banach space. Then given any Lip-
schitz map f : G → C(K) for some compact Hausdorff space K and some G ⊂ M ,
there exists an extension f̃ : M → C(K) with Lip(f̃) = Lip(f) provided:

(i) X is polyhedral (i.e., X embeds isometrically in some �N
∞) [92].

(ii) X has a Gâteaux smooth norm [82].

(iii) dimX = 2 [82].

On the other hand there is a 3-dimensional Banach space which fails this condi-
tion [82]. There is a close connection with the study of similar problems for extending
linear operators into C(K)-spaces; see [81,95] for more information.

3.4. Extending Lipschitz maps into Banach spaces

Let us now consider pairs (G, M) such that e(G, M, X) < ∞ for every Banach
space X. We fix a base point 0 ∈ G ⊂ M . It is easy to see that this formally
reduces to the statement that e(G, M, Æ(G)) < ∞ and hence to the fact that Æ(G)
is linearly complemented in Æ(M). This concept was apparently first studied by
Johnson, Lindenstrauss, and Schechtman [69,70].

On the other hand we may also consider the condition that there is a bounded
linear extension operator L : Lip0(G) → Lip0(M). This viewpoint was recently taken
by A. Brudnyi and Y. Brudnyi [28]. As noted in [28] this is equivalent to the fact that
e(G, M, X) < ∞ for every dual space X. In fact it is again quite easy to see that this
condition is equivalent to the fact that Æ(G)∗∗ is complemented in Æ(M)∗∗.

At this point we mention an important open problem (see [16, p. 183]):

Problem 10. Is every Banach space X a Lipschitz retract of its bidual X∗∗?

Of course by the discussion above every C(K) for K compact metric is a Lipschitz
retract of its bidual. If this problem has an affirmative answer then the conditions
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e(G, M, X) < ∞ for every Banach space X and e(G, M, X) < ∞ for every dual
Banach space are equivalent. The problem is also equivalent to asking if Æ(X) is
complemented in Æ(X∗∗) for every Banach space X.

If X is a Banach space and E is a subspace of X then E is said to be locally
complemented in X if E⊥ is complemented in X∗. Let us make the observation that:

Proposition 3.21. If a subspace E of a Banach space X is a Lipschitz retract of X
then E is locally complemented in X.

Proof. Let r : X → E be a Lipschitz retract. Then consider the map Φ : E∗ →
Lip0(X) given by e∗ → e∗ ◦ r. Let PE : Lip0(X) → X∗ be the projection given by
Proposition 2.11, so that PEf |E = f |E whenever f |E ∈ E∗. Then PE ◦ Φ : E∗ → X∗

is a linear extension operator and if j : E → X is the inclusion map we have that
PE ◦ Φ ◦ j∗ is a projection whose kernel coincides with E⊥.

Proposition 3.22. The following are equivalent:

(i) Problem 10 has an affirmative answer.

(ii) A subspace E of a Banach space X is locally complemented if and only if it is
a Lipschitz retract of X.

Proof. (ii) =⇒ (i). The fact that X is locally complemented in X∗∗ is trivial since
X∗∗∗ = X⊥ ⊕ X∗.

(i) =⇒ (ii). If E is locally complemented in X then E∗∗ is complemented in X∗∗.
Hence under assumption (i) there is a Lipschitz retract of X∗∗ onto E.

We mention also that if X is Lipschitz isomorphic to �1 then X must be a Lipschitz
retract of its bidual, and so Problem 10 has a connection with Problem 4. More
precisely, we may ask:

Problem 11. If X is an L1-space which is a Lipschitz retract of its bidual, must X
be complemented in its bidual?

Note also that if Problem 3.22 has a positive solution then every separable L∞-
space is an absolute retract.

Let us now define (following Lee and Naor [93]) the absolute extendability constant
of a metric space M to be the

ae(M) = sup{e(M,M ′, X) : M ⊂ M ′, X a Banach space}.
Here ae(M) = ∞ if no such constant exists. Clearly ae(M) < ∞ if and only if Æ(M)
is linearly complemented in Æ(M ′) whenever M ′ ⊃ M .

In this language Johnson, Lindenstrauss, and Schechtman ([69, 70]) proved the
following estimates:

Theorem 3.23. (i) If M is a finite metric space and |M | = n ≥ 2 then ae(M) ≤
C log n for some absolute constant C.

43
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(ii) If G is a subset of a finite dimensional normed space X with dim X = n then
e(G, X, Y ) ≤ Cn for any Banach space Y where C is an absolute constant.

We remark that (ii) gives an estimate ae(G) ≤ Cn3/2 since X is an absolute retract
of constant at most n1/2 (a consequence of the Kadets-Snobar theorem [77]).

However, recently, Lee, and Naor [93] have proved some dramatic improvements of
these results. To understand these we introduce the notion of the doubling constant of
a metric space. If M is a metric space the doubling constant λ(M)(≤ ∞) is the least
integer N so that for every r > 0, every ball of radius r can be covered by at most
N balls of radius r/2. This concept is a measure of finite-dimensionality — Roughly
speaking log λ(M) can be regarded as a measure of dimension; indeed if X is an n-
dimensional normed space it is clear that log λ(X) ∼ n. It is not, however, precisely
true that a metric space with finite doubling constant embeds in a finite-dimensional
normed space (see [61, chapter 12]). On the other hand, Assouad [12] showed that
a metric space with finite doubling constant has the property that Mθ = (M, dθ)
Lipschitz embeds in a finite-dimensional normed space whenever θ < 1.

Theorem 3.24 (Lee and Naor [93]). If M is a metric space with more than one
point and with finite doubling constant then ae(M) ≤ C log λ(M) where C is an
absolute constant. In particular if M is a subset of a n-dimensional normed space
then ae(M) ≤ C ′n, for absolute constant C ′.

This theorem gives (i) of Theorem 3.23 (since obviously λ(M) ≤ n for any n-point
metric space) and improves (ii) of Theorem 3.23 since log λ(M) ∼ n for any sub-
set M of an n-dimensional normed space. However Lee and Naor improved on Theo-
rem 3.23 (i) as follows:

Theorem 3.25. If M is a finite metric space with |M | = n ≥ 3 then

ae(M) ≤ C
log n

log log n

for an absolute constant C.

The proofs of these results use techniques which go back to Whitney’s work on
extension of differentiable functions on subsets of R

n [127]; however there is very novel
ingredient of considering random partitions introduced in [93]. Let us note that the
following Problem is unsolved (see [93]):

Problem 12. What is the correct asymptotic estimate for ae(M) when |M | = n?

Lee and Naor point out that
√

log n is the best lower estimate known.
The next obvious step is to restrict the Banach space X in the range. The most

obvious case to consider is when X is a Hilbert space. In this case there is an old
result of Kirszbraun from 1934 [89]:
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Theorem 3.26. Let H1, H2 be Hilbert spaces and suppose G ⊂ H1. If f : G → H2

is a Lipschitz map then there is an extension f̃ : H1 → H2 with Lip(f̃) = Lip(f).
Thus e(G, H1, H2) = 1.

In 1984, Marcus and Pisier proved that if G is an n-point subset of Lp where
1 < p < 2 then e(G, Lp, L2) ≤ C(log n)1/p−1/2 for some constant C = C(p). This led
Johnson and Lindenstrauss to prove:

Theorem 3.27 (Johnson and Lindenstrauss [66]). Let M be any metric space and
let G be an n-point subset of M ; then e(G, M, L2) ≤ C

√
log n for some absolute

constant C.

The method of proof of this result is interesting. The key is to prove by proba-
bilistic arguments a dimension-reduction theorem:

Theorem 3.28 (Johnson and Lindenstrauss [66]). Given ε > 0 there exists c = c(ε)
with the following property. Let G be an n-point subset of a Hilbert space H. Then
there is a bounded linear map T : H → H of rank k ≤ c log n such that

‖Tx − Ty‖ ≤ ‖x − y‖ ≤ (1 + ε)‖Tx − Ty‖, x, y ∈ G.

The proof of Theorem 3.27 then goes as follows. Suppose G ⊂ M is an n-point
set, and f : G → L2 is any map. Select a bounded linear map T : L2 → L2 with rank
k less than C log n and such that

‖Tx − Ty‖ ≤ ‖x − y‖ ≤ 2‖Tx − Ty‖, x, y ∈ G.

Then by Theorem 3.26 there is a Lipschitz map h : P (L2) → L2 with Lip(h) ≤ 2
and so that h(Tx) = x for x ∈ G. Now T (H) is an absolute Lipschitz retract with
constant at most

√
k. Hence we can extend T ◦ f to a Lipschitz map g : M → T (L2)

with Lip(g) ≤ √
k Lip(f). Then h ◦ g : M → L2 is our extension.

However, the dimension reduction technique of Theorem 3.28 has proved of great
importance in its own right, because of applications to theoretical computer science. A
companion result is that of Bourgain [19] that every n-point metric space is Lipschitz-
isomorphic to a subset of Hilbert space (which may by Theorem 3.28 be taken of
dimension C ′ log n) with distortion C log n.

In their paper [66], Johnson and Lindenstrauss raised the question of whether
Kirszbraun’s theorem (Theorem 3.26) has an extension to Lp when p > 2. They
asked if for fixed p > 2 the quantity e(G, Lp, L2) is always finite (and hence uniformly
bounded) whenever G is any subset of Lp. The motivation for this question comes
from a very beautiful result in the linear theory, due to Maurey [98]:

Theorem 3.29. Let X be a Banach space of type 2 and let E be a closed subspace.
Suppose T : E → H is a bounded operator (where H is a Hilbert space). Then T has
a bounded linear extension extension T̃ : X → H.

More generally if Y is a Banach space of cotype 2 and T : E → Y is a bounded
operator then T has a bounded linear extension T̃ : X → Y .
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It seems almost too good to be true that such a theorem could have a nonlinear
analogue. However Ball [13] introduced some remarkable ideas in an attempt to prove
just such a result. He introduced concepts of Markov type 2 and Markov cotype 2 in
order to provide a corresponding a nonlinear result.

Let us define the concept of Markov type 2. We require the notion of a stationary
reversible Markov chain on {1, 2, . . . , n}. This is a Markov chain (Zt)∞t=0 with station-
ary distribution P(Zt = i) = πi and transition probabilities P(Zt+1 = j|Zt = i) = aij

satisfying the reversibility condition πiaij = πjaji for all 1 ≤ i, j ≤ n. A metric space
M is said to have Markov type 2 with constant K if given any stationary reversible
Markov chain on {1, 2, . . . , n} and any map f : {1, 2, . . . , n} we have the estimate:

(Ed(f(Zn), f(Z0))2)1/2 ≤ Kn1/2(Ed(f(Z1), f(Z0))2)1/2.

We will not formally define Markov cotype 2, since Ball [13] proved that this condition
holds for 2-uniformly convex Banach spaces (see below).

Let us say that a Banach space X is 2-uniformly convex if there is a constant
a = a(X) so that

1
2
(‖x + y‖2 + ‖x − y‖2) ≥ ‖x‖2 + a−2‖y‖2, x, y ∈ X

and is 2-uniformly smooth if there is a constant b = b2(X) so that

1
2
(‖x + y‖2 + ‖x − y‖2) ≤ ‖x‖2 + b2‖y‖2, x, y ∈ X.

The condition of being 2-uniformly convex is stronger than simply being cotype 2;
indeed X must be uniformly convex and hence super-reflexive, so that L1 fails to
be 2-uniformly convex. Similarly being 2-uniformly smooth is stronger than being
simply type 2. The space Lp for 1 < p ≤ 2 are 2-uniformly convex and for 2 ≤ p < ∞
are 2-uniformly smooth.

Ball’s theorem was then:

Theorem 3.30. Let M be a metric space of Markov type 2 with constant K and
suppose Y is a 2-uniformly convex Banach space. Then e(G, M, Y ) ≤ 6Ka(Y ).

Ball further showed that a Hilbert space has Markov cotype 2 and so obtained:

Theorem 3.31. If 1 < p < 2 then e(G, L2, Lp) ≤ C(p) for any subset G of L2.

This paper represented a fundamental advance in the subject, but the concept of
Markov type 2 remained elusive and so the problem of Johnson and Lindenstrauss
was still open. This problem was settled by Tsarkov in 1999 [124] by quite different
techniques:

Theorem 3.32. Let X be a 2-uniformly smooth Banach space. Then there is a
constant C so that e(G, X, L2) ≤ C for every subset G of X.
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The works of Ball and Tsarkov apply to essentially dual cases. Finally, however,
the situation was cleaned up by Naor, Peres, Schramm, and Sheffield [105]. They
showed

Theorem 3.33. Let X be a 2-uniformly smooth Banach space. Then X has Markov
type 2 with constant K ≤ 4b(X).

Referring back to Theorem 3.30 we have

Theorem 3.34. Let X be 2-uniformly smooth Banach space and let Y is a 2-
uniformly convex Banach space. Then e(G, X, Y ) ≤ 24a(Y )b(X) for every subset G
of X.

In particular if 1 < q < 2 < p < ∞ we have

e(G, Lp, Lq) ≤ 24
√

p − 1
q − 1

for every subset G of Lp.

These are not full analogues of Maurey’s theorem because we require our spaces
to have stronger conditions than type 2 and cotype 2. The following question is thus
open:

Problem 13. Is there a constant C such that e(G, L2, L1) ≤ C for all subsets G
of L2?

To finish the section, let us return to the Johnson-Lindenstrauss theorem (The-
orem 3.27). This can now be obtained as a Corollary of Theorem 3.34. In fact a
stronger statement is true:

Theorem 3.35. [102] Let M be any metric space and let Y be a 2-uniformly convex
space. Then for any subset G of M with n ≥ 2 points, we have e(G, M, Y ) ≤
Ca(Y )

√
log n, where C is an absolute constant.

Proof. Suppose f : G → Y is a map with Lip(f) ≤ 1. Let G = {a1, . . . , an} and
consider the map h : M → �n

∞ given by

g(x) = (d(x, a1), . . . , d(x, an)).

Then g is an isometry on G. For 2 < p < ∞, let us consider the inclusion jp : �n
p → �n

∞.
Let ϕ : j−1

p (g(G)) → Y be defined by ϕ(ξ) = f(g−1jpξ). Then Lip(ϕ) ≤ Lip(f) = 1.
Thus there is an extension ϕ̃ : �n

p → Y with

Lip(ϕ̃) ≤ 24
√

pa(Y ).

Consider finally the map f̃ = ϕ̃ ◦ j−1
p ◦ g. Then f̃ extends f and

Lip(f̃) ≤ 24
√

pn1/pa(Y ).

Finally we optimize by taking p ∼ log n.
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4. Uniform and coarse embeddings

This final short section is devoted to recent developments in the subject of coarse and
uniform embeddings of metric spaces into Banach spaces.

4.1. Uniform and coarse embeddings in Lp-spaces

Let us now switch gear to study problems concerning coarse and uniform embeddings.
There are several types of problem which are of interest here. Let X and Y be Banach
spaces. We are interested in these general questions:

(i) When does X uniformly embed into Y ?

(ii) When does X coarsely embed into Y ?

(iii) When does BX uniformly embed into Y (and hence into BY )?

(iv) When is BX uniformly homeomorphic to BY ?

It is, of course, possible to have an embedding f of X into Y which is simultaneously
a uniform embedding and a coarse embedding; in this case we will say that f is a
strong uniform embedding. Notice that in these problems we can no longer reduce to
the coarse Lipschitz case and use the Lipschitz theory. The techniques available to us
are now much more restricted.

Let us consider first the classical Lp−spaces. It is well-known that Lq is linearly
isomorphic to a subspace of Lp if and only if p ≤ q ≤ 2 (see, e.g., [5]). In view of this
the following result is quite surprising:

Theorem 4.1. There is a strong uniform embedding of Lq into Lp if q ≤ p. In fact
there is a map ϕ : Lq → Lp such that ‖ϕ(f) − ϕ(g)‖p = ‖f − g‖q/p

q .

This result goes back to a classic paper of Bretagnolle, Dacunha-Castelle, and
Krivine [25] or [24] in the case p = 2. The general case was recently observed by
Mendel and Naor [101] who gave a simple explicit embedding. It is enough, for q < p,
to embed Lq(R) into the complex space Lp(R × R; C), since the complex space Lp

embeds isometrically as a real space into real Lp. We then define

ϕ(f)(s, t) = a
1 − e2itf(s)

|t|(q+1)/p

where

a−p =
∫ ∞

−∞

(1 − cos t)p/2

tq+1
dt.
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A routine calculation gives

‖ϕ(f) − ϕ(g)‖p
p = a−p

∫ ∞

−∞

∫ ∞

−∞

(1 − cos(t(f(s) − g(s)))p/2

|t|q+1
dt ds

=
∫ ∞

−∞
|f(s) − g(s)|qds.

The approach of Bretagnolle et al. was via an old result of Schoenberg [120]. If
K is any set we say that a map f : K × K → C is positive definite if

n∑
j=1

n∑
k=1

f(sj , sk)ξjξk ≥ 0

for all n ∈ N, s1, . . . , sn ∈ K and ξ1, . . . , ξn ∈ C.

Theorem 4.2 (Schoenberg). A metric space (M,d) isometrically embeds into a
Hilbert space if and only if Kt(x, y) = e−td(x,y)2 defines a positive-definite kernel
on M whenever t > 0.

Now the fact that for 0 < p < 2, e−|x|p is the Fourier transform of a probability
measure on R (the distribution of a p-stable random variable leads immediately to
the conclusion that e−|x−y|p is positive definite on R and hence to the fact that
Kt(f, g) = e−t‖f−g‖p

p is positive definite on Lp for all t > 0. Theorem 4.2 completes
the proof.

Recent results of Mendel and Naor [104] complete the picture:

Theorem 4.3. In order that Lq uniformly or coarsely embeds into Lp it is necessary
and sufficient that either p ≤ q ≤ 2 or q ≤ p.

The key ingredient here is metric cotype; see §3.1. Mendel and Naor show that
the following general result:

Theorem 4.4. Let X be a Banach space with non-trivial type and cotype p. If Y is
a Banach space which coarsely or uniformly embeds into X then Y has cotype p + ε
for every ε > 0.

If q > 2 then �q cannot be either or coarsely embedded in a space with metric
cotype r < q. Thus metric cotype (in contrast to the various forms of nonlinear type)
is (somewhat) inherited by spaces which are uniformly or coarsely embedded.

We have not distinguished the case p < 1 and the above results apply equally to
these spaces. Let dp(f, g) = ‖f − g‖p

p when 0 < p ≤ 1. We remark that it is not
known if the metric spaces (Lp, dp) and (Lq, dq) could even be Lipschitz isomorphic
when 0 < q ≤ p ≤ 1.

In 1985, Aharoni, Maurey, and Mityagin [4] completely classified those Banach
spaces which uniformly embed into a Hilbert space; in 2006, a similar characterization
was obtained for coarse embeddings by Randrianarivony [114] (see also [74]). In both
proofs, positive-definite functions play a key role. We combine the statements:
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Theorem 4.5. In order that a Banach space X (or even a quasi-Banach space)
uniformly (or coarsely) embeds into a Hilbert space, it is necessary and sufficient that
X linearly embed into a space Lp(μ) when p < 1.

If we consider uniform homeomorphisms between unit balls, then it has long been
known that the unit balls of the Lp(0, 1)-spaces and �p-spaces are uniformly home-
omorphic to B�2 . This is achieved by the so-called Mazur map first used by Mazur
in 1929 [99]. We define ϕ : Lp → L2 by

ϕ(f)(s) = ‖f‖1−p/2|f(s)|p/2−1f(s), 0 < s < 1

(with ϕ(f(s)) = 0 whenever f(s) = 0). Then ϕ is a uniform homeomorphism of BLp

onto BL2 . In 1994, as a by-product of their work on the distortion problem Odell and
Schlumprecht [108] discovered that it is possible to find an analogue of the Mazur
map in a much more general setting. Their method was generalized in [35] and gives:

Theorem 4.6. Let X be a separable Banach lattice with nontrivial cotype. Then BX

is uniformly homeomorphic to B�2 .

It was already known that the cotype assumption here is necessary by a result of
Raynaud [115]: see Theorem 4.12 below.

The argument for Theorem 4.6 can also be interpreted in terms of complex inter-
polation of Banach spaces and this leads to some generalizations (see [38]). At the
time the author noticed (see [16]) that one can prove more:

Theorem 4.7. Let E be an infinite-dimensional subspace of a separable super-reflexive
Banach lattice. Then BE is uniformly homeomorphic to B�2 .

A key step in the argument for Theorem 4.7 is the following.

Proposition 4.8. Assume E is a closed subspace of a super-reflexive Banach space
and consider the quotient map Q : X → X/E. Then it is possible to find a uniformly
continuous map ϕ : BX/E → X such that Q ◦ ϕ(y) = y for y ∈ X/E.

The proof of this Proposition is quite elementary, for we may assume that X is
uniformly convex and then the selection ϕ(y) is the element x of minimal norm such
that Qx = y works just fine. However once one has this one can deduce easily that
BX is uniformly homeomorphic to BE × BX/E . Theorem 4.7 then follows by some
classical Pe�lczyński decomposition technique tricks (see [16, p. 202] for full details).

Problem 14. If X is a separable super-reflexive space is it true that BX is uniformly
homeomorphic to B�2?

Problem 15. Let X be a closed subspace of L1. Is BX uniformly homeomorphic
to B�2?
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The question of whether one can find a uniformly continuous selection of a quotient
map on the unit ball as in Proposition 4.8 seems to be of interest and was studied
by the author in [79]. One can show for example that there is such a selection of
a quotient map of �1 onto L1. The results are, unfortunately, a little technical to
describe here. We will mention one concept that arises in this connection that seems
to have some special importance. Let us say that X (or more properly BX) has (ucap)
if there is an equi-uniformly continuous sequence of maps fn : BX → BX such that
fn(BX) is compact for each n and limn→∞ fn(x) = x for every x ∈ BX . This is a
nonlinear approximation property and we do not know if there is any Banach space
which fails this condition! Every super-reflexive space has (ucap) (see [79]).

4.2. Uniform and coarse embeddings of metric spaces

In this section, we consider the question of whether a given metric space can be
coarsely or uniformly embedded in a super-reflexive or reflexive space. It is appropri-
ate here to consider external motivations for these questions. Let us suppose (M, d)
is a metric space. We say that M is locally finite (respectively locally compact) if for
every x ∈ M and r > 0 the set {y : d(x, y) < r} is a finite set (respectively relatively
compact). Notice that these terms are not being used in a standard way (in [80]
locally compact is used in this sense, unfortunately without explanation). M is said
to have bounded geometry if given r there exists s = s(r) so that for every x ∈ M
and r > 0 the set {y : d(x, y) < r} has cardinality at most s. If G is a group with a
finite set of generators F we can make G into a graph by setting x, y to be adjacent
if either xy−1 or yx−1 is in F . This then induces a metric d on G so that (G, d) has
bounded geometry. The metric d is independent on the choice of generators up to a
Lipschitz isomorphism.

Recently Kasparov and Yu [87] showed that a metric space (M, d) satisfies the
coarse Novikov conjecture if M coarsely embeds into a super-reflexive space; this
improved an earlier result of Yu [128] who proved the same result for coarse embed-
dings into a Hilbert space. It would take us too far away from our subject to explain
the meanings of these results, but it provides a motivation for understanding coarse
embeddings of metric spaces into super-reflexive spaces.

Let us start by observing that not every separable metric space can be uniformly
or coarsely embedded in a super-reflexive space. In fact Theorem 4.4 shows that any
Banach space which can be uniformly or coarsely embedded in a super-reflexive space
already has non-trivial cotype. However, recently V. Lafforgue has shown:

Theorem 4.9 (Lafforgue [91]). There is a metric space with bounded geometry which
does not coarsely embed in a super-reflexive space.

We now turn to the question of embeddings into a reflexive Banach space (rather
than a super-reflexive Banach space). In 2005, Brown and Guentner [27] showed that
every metric space with bounded geometry can be coarsely embedded into a reflexive

51
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Banach space. However, this result can be improved significantly, as shown in a recent
preprint of Baudier and Lancien [15]:

Theorem 4.10. Let X be any Banach space failing to have nontrivial cotype. Then
any locally finite metric space can be Lipschitz embedded into X.

Thus one can take for example the reflexive space X = �2(�n
∞). Baudier has re-

cently also shown that every locally compact metric space strongly unifromly embeds
into any space failing cotype [14].

On the other hand, it is not completely clear at this point whether every separa-
ble metric space coarsely embeds into a reflexive space. Of course this reduces, via
Aharoni’s theorem (Theorem 2.7) to asking whether c0 can be coarsely embedded in a
reflexive Banach space. The same problem for uniform embeddings had been around
in Banach space theory for at least thirty years. Recall that we have seen (Theo-
rem 2.26) that c0 can be strongly uniformly embedded into a Schur space, while it is
an open problem whether c0 can be Lipschitz embedded into any Banach space not
containing c0.

Some results in this direction have been known for some time. We say that a
metric space (M, d) is stable if we have

lim
m→∞ lim

n→∞ d(xm, yn) = lim
n→∞ lim

m→∞ d(xm, yn)

whenever all limits exist. Stable Banach spaces were introduced by Krivine and
Maurey in 1981 [90] and were exploited in the linear theory to obtain �p-subspaces.
The key fact is that the spaces Lp for 1 ≤ p < ∞ are stable,and that every stable
Banach space contains an almost isometric copy of some �p where 1 ≤ p < ∞. In
particular c0 cannot be renormed to be stable.

In 1983, Raynaud [115] discovered that stability was also a powerful tool in non-
linear theory. We will describe the underlying idea below. He showed that:

Theorem 4.11 (Raynaud [115]). Bc0 cannot be uniformly embedded in any stable
metric space. Hence Bc0 cannot be uniformly embedded in �2.

It follows quite simply from this result that:

Theorem 4.12. If X is a Banach space failing cotype then BX cannot be uniformly
embedded into B�2 .

Recently the author found that Raynaud’s techniques can be used to attack the
problem of embedding into reflexive spaces. To explain the basic idea we introduce an
infinite graph. Suppose r ∈ N. We consider again the set Gr(N) of all r-subsets of N.
We declare that (m1, . . . , mr) and (n1, . . . , nr) (both written in increasing order) are
adjacent if they are unequal and interlace, i.e., either m1 ≤ n1 ≤ m2 ≤ n2 ≤ · · · ≤ nr

or n1 ≤ m1 ≤ · · · ≤ mr. Then let dp be the least path metric. We then have
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Proposition 4.13. Let (M,d) be a stable metric space. Let f : (Gr(N), dp) → (M,d)
be a Lipschitz map. Then given ε > 0 there exist m1 < · · · < mr < n1 < · · · < nr so
that

d(f(m1, . . . , mr), f(n1, . . . , nr)) ≤ Lip(f) + ε.

It turns out that something similar happens when the range of f is a reflexive
Banach space [80]:

Proposition 4.14. Let X be a reflexive Banach space. Let f : (Gr(N), dp) → M be
a Lipschitz map. Then given ε > 0 there exist m1 < · · · < mr < n1 < · · · < nr so
that

d(f(m1, . . . , mr), f(n1, . . . , nr)) ≤ 2 Lip(f) + ε.

To see that c0 behaves in a very different manner define the map

f(n1, . . . , nr) =
r∑

j=1

nj∑
k=1

ek

where (ek)∞k=1 is the canonical basis. Then Lip(f) = 1 but

‖f(m1, . . . , mr) − f(n1, . . . , nr)‖ = r

whenever m1 < m2 < · · · < mr < n1 < · · · < nr. Thus we conclude:

Theorem 4.15 ([80]). c0 cannot be coarsely embedded in a reflexive Banach space
and Bc0 cannot be uniformly embedded in a reflexive Banach space.

This argument can be taken further:

Theorem 4.16. Let X be a Banach space so that X, X∗, X∗∗, . . . are all separable
(e.g., X is quasi-reflexive). Then c0 cannot be coarsely embedded in X and Bc0

cannot be uniformly embedded in X.

Of course �1 can be strongly uniformly embedded in a reflexive space (e.g., �2).
On the other hand there are significant restrictions on non-reflexive spaces if we ask
that either X coarsely embeds into a reflexive space or that BX uniformly embeds
into a reflexive space. Suppose X contains a weakly Cauchy basic sequence (xn)∞n=1.
Then we can consider the map

f(n1, . . . , nr) = xn1 + · · · + xnr

and use somewhat similar arguments to get information. The results are:

Theorem 4.17. The following spaces have the property that X cannot be coarsely
embedded into a reflexive space and BX cannot be uniformly embedded into a reflexive
space.
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(i) X is non-reflexive space of non-trivial type.

(ii) X is the James space [64].

The existence of non-reflexive spaces of type 2 was shown by James [65]; see
also [113].

Problem 16. Suppose X is a Banach space which coarsely embeds into a reflexive
Banach space (or suppose BX uniformly embeds into a reflexive Banach space). Is X
weakly sequentially complete?

We also have a connection between reflexivity and stability:

Theorem 4.18 ([80]). Every stable metric space strongly uniformly embeds into a
reflexive Banach space.

This applies to locally compact metric spaces (in the sense defined above!) but
for locally finite spaces the Baudier-Lancien theorem (Theorem 4.10) is stronger.

Problem 17. Does every reflexive Banach space X coarsely embed in a stable metric
space? Does BX uniformly embed in a stable metric space when X is reflexive?

Acknowledgements. We would like to thank a number of mathematicians whose
comments have helped us to reduce the number of errors and improve the presenta-
tion of the paper; in particular we thank Fernando Cobos, Simon Cowell, Dan Fre-
sen, Gilles Godefroy, Francisco Hernández, Bill Johnson, Gilles Lancien, and Mietek
Masty�lo for their comments.

References

[1] I. Aharoni, Every separable metric space is Lipschitz equivalent to a subset of c+0 , Israel J.
Math. 19 (1974), 284–291.

[2] I. Aharoni and J. Lindenstrauss, Uniform equivalence between Banach spaces, Bull. Amer.
Math. Soc. 84 (1978), 281–283.

[3] , An extension of a result of Ribe, Israel J. Math. 52 (1985), 59–64.

[4] I. Aharoni, B. Maurey, and B. S. Mityagin, Uniform embeddings of metric spaces and of
Banach spaces into Hilbert spaces, Israel J. Math. 52 (1985), no. 3, 251–265.

[5] F. Albiac and N. J. Kalton, Topics in Banach space theory, Graduate Texts in Mathematics,
vol. 233, Springer, New York, 2006.

[6] , Lipschitz structure of quasi-Banach spaces, Israel J. Math., to appear.

[7] D. E. Alspach, Quotients of c0 are almost isometric to subspaces of c0, Proc. Amer. Math.
Soc. 76 (1979), 285–288.

[8] R. D. Anderson, Hilbert space is homeomorphic to the countable infinite product of lines, Bull.
Amer. Math. Soc. 72 (1966), 515–519.
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