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Introduction

The K-method of interpolation is a powerful tool for constructing spaces that lie
between a given pair of Banach spaces. The spaces so built are interpolation spaces,
they have the property that any operator bounded on both original spaces is also
bounded on them. The construction is based on a Banach lattice of real-valued
functions defined on the half line, called a parameter. A major advantage of the
K-method is that the norm in the new space is given by a simple formula expressed in
terms of the norm in the parameter lattice and the Peetre K-functional of the original
pair of spaces.

There is a natural way to define dual spaces relative to a given pair of Banach
spaces and one readily sees that the dual space of an interpolation space is itself an
interpolation space relative to the dual pair. Brudny̆ı and Krugljak give a general
construction for the norm of this dual space and also, under mild conditions, show
that the dual norm is also given by the K-method, with a parameter constructed from
the original parameter. When the parameter for the dual can be given explicitly,
this process provides a concrete formula for the dual norm. Duality theory for the
K-method, prior to the K-divisibility formula of Brudny̆ı-Krugljak, can be found
in [5].

In this paper we work out the consequences of the Brudny̆ı-Krugljak duality theory
for the K-method when the parameter is closely related to a rearrangement-invariant
Banach function space. To construct the parameter for the dual space we make use of
the recent papers [11, 12] of G. Sinnamon. The motivation for our work comes from
certain questions in Sobolev imbedding theory; see [8].

In order to state our main results we recall a few definitions. More detailed
background is given in section 1. Let X1 and X2 be Banach spaces imbedded in a
common Hausdorff topological vector space, x ∈ X1 + X2, and t > 0. The Peetre
K-functional is defined by

K(t, x; X1, X2) = inf
x=x1+x2

{‖x1‖X1 + t‖x2‖X2}.

For fixed x ∈ X1 + X2, K is a concave function of t. Hence, we may define the
k-functional by

K(t, x; X1, X2) = K(0+, x; X1, X2) +
∫ t

0

k(s, x; X1, X2) ds.

If X ⊂ X1 + X2 is a Banach space satisfying

X1 ∩ X2 ↪→ X ↪→ X1 + X2,

where X1 ∩X2 has norm max(‖x‖X1 , ‖x‖X2) and X1 + X2 has norm K(1, f ; X1, X2),
we say X is an intermediate space between X1 and X2. An intermediate space is called
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an exact interpolation space provided that for any linear operator T , T : Xi → Xi,
i = 1, 2, implies T : X → X, with ‖T‖X ≤ max(‖T‖X1 , ‖T‖X2).

When considering the class of spaces X intermediate between a fixed pair X1

and X2, the notion of the Banach dual needs to be modified so that the duals of
intermediate spaces all lie in a common Hausdorff vector space. The natural space to
take is (X1 ∩X2)∗, the usual Banach dual of the intersection. Accordingly, we define

X# := { y ∈ (X1 ∩ X2)∗ : ‖y‖X# := sup
x∈X1∩X2
‖x‖X≤1

|〈y, x〉| < ∞}.

This is the Banach dual of X1 ∩X2, viewed as a subspace of X. It is effectively equal
to the usual Banach dual of X whenever X1 ∩ X2 is dense in X, since every element
of X# has a unique bounded extension from X1 ∩ X2 to X. See [3, Lemma 2.4.4,
p. 175].

Suppose (Ω,M, μ) is a non-atomic, totally σ-finite measure space, M(Ω) is the
vector space of measurable functions on Ω and M+(Ω) is the cone of non-negative
functions in M(Ω). If ω : M+(Ω) → [0,∞], we define

Lω := { f ∈ M(Ω) : ω(|f |) < ∞},
and the Köthe dual functional

ω′(g) = sup
{∫

Ω

fg dμ : ω(f) ≤ 1
}

, g ∈ M+(Ω).

Let R+ denote the half line (0,∞) with the usual Lebesgue measure and fix a
rearrangement-invariant (r.i.) Banach function norm ρ : M+(R+) → [0,∞]. (See
section 2 for definitions.) For convenience, we will often identify a function f with its
formula f(t) in the argument of ρ and elsewhere. This will avoid the introduction of
unnecessary function names by permitting expressions such as ρ( 1

1+t ).
In addition to the Banach function norm ρ we will consider compositions of ρ with

the operators T , P , Q, R defined on M+(R+) as follows:

Tf(t) = f(t)/t, Pf(t) =
1
t

∫ t

0

f(s) ds, Qf(t) =
∫ ∞

t

f(s)
ds

s
,

and R = P + Q = P ◦ Q = Q ◦ P . We also require the operators Pd, Qd, and Rd

defined by
Pdf = Pf∗, Qdf = Qf∗, Rdf = Rf∗,

where f∗ denotes the non-increasing rearrangement of f .
Our main results concern two Banach spaces X1 and X2 imbedded in a common

Hausdorff topological vector space and an r.i. norm ρ defined on functions in M+(R+)
and satisfying

ρ( 1
1+t ) < ∞. (1)
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Let X be the set of all x ∈ X1 + X2 such that

‖x‖X := ρ(t−1K(t, x; X1, X2)) (2)

is finite. It is well known that, with this norm, X is an exact interpolation space
between X1 and X2.

Our principal result is

Theorem A. Let X1, X2, and X be as above. If, in addition to (1),

ρ′( 1
1+t ) < ∞, ρ(χ(0,a)) ↓ 0 as a ↓ 0 and

X1
# ∩ X2

# is dense in X2
#,

(3)

then
‖y‖X# ≈ (ρ ◦ Pd)′(k(t, y; X2

#, X1
#)), y ∈ X#. (4)

As we show later on, the expression equivalent to the norm of X# in (4) can be
given concrete form for a large class of spaces X1 and X2 and some r.i. norms ρ; for
example, when K(t, y; X2

#, X1
#) is known to within multiplicative constants and ρ

is a classical Lorentz norm.
Now, in general, the k-functional can be computed only in the rare cases when

the K-functional is known exactly, whereas, more often the latter is only known to
within constant multiples. The following result takes these facts into account.

Theorem B. Suppose X1, X2, and ρ satisfy (3) and ρ(Rχ(0,1)) < ∞ or, equivalently,

ρ

(
1 + log+(1/t)

1 + t

)
< ∞. (5)

Then, (ρ ◦ Pd)′ is equivalent to σ ◦ Pd for some r.i. norm σ on M+(R+) if and only
if

(ρ ◦ Pd)′ ≈ (ρ ◦ Rd)′ ◦ Pd. (6)

In that case, the space X defined in (2) satisfies

‖y‖X# ≈ (ρ ◦ Rd)′(t−1K(t, y; X2
#, X1

#)), y ∈ X#.

The applications we have in mind require X1 and X2 to be r.i. function spaces
in the sense of [1]. See Definition 2.1, below, for the definition of an r.i. norm.
Theorems A and B can be combined to yield in this context

Theorem C. Suppose ω1 and ω2 are r.i. norms on the class M+(Ω), where (Ω,M, μ)
is a non-atomic, totally σ-finite measure space. Assume, further,

Lω′
1
∩ Lω′

2
is dense in Lω′

2
and

ω′
2(χEn) ↓ 0 as En ↓ ∅, En ∈ M, n = 1, 2, . . .

(7)
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Then, for any r.i. norm ρ on M+(R+) such that ρ( 1
1+t ) < ∞, the functional

ω(f) := ρ(t−1K(t, f ; Lω1 , Lω2)), f ∈ M+(Ω),

is an r.i. norm.
Moreover, if, also,

ρ′( 1
1+t ) < ∞ and ρ(χ(0,a)) ↓ 0 as a ↓ 0,

then,
ω′(g) ≈ (ρ ◦ Pd)′(k(t, g; Lω′

2
, Lω′

1
)), g ∈ M+(Ω). (8)

Finally, the additional requirements (5) and (6) on ρ ensure

ω′(g) ≈ (ρ ◦ Rd)′(t−1K(t, g; Lω′
2
, Lω′

1
)), g ∈ M+(Ω).

The proofs of the above theorems ultimately depend on our next result which is
itself of independent interest. Formula (9) below, in particular, generalizes the one
obtained by Grahame Bennett in [2, (21.13)] for the dual of the so-called Cesaro norm,

ρCes(p) :=
(∫

R+

(
1
t

∫ t

0

|f(s)| ds

)p

dt

)1/p

, 1 < p < ∞, f ∈ M(R+).

Theorem D. Suppose ρ is an r.i. norm on M+(R+) satisfying ρ( 1
1+t ) < ∞. Then,

ρ ◦P is a Banach function norm on M+(R+) and ρ ◦R satisfies all axioms but (A6)
in Definition 2.1. Their Köthe duals are such that

(ρ ◦ P )′(g) ≈ (ρ ◦ Pd)′
(
sup
t≤s

g(s)
)

(9)

and

(ρ ◦ R)′(g) ≈ (ρ ◦ Pd)′
(

dĜ

dt

)
+ G(0+)γρ, g ∈ M+(R+);

here,
G(t) := sup

s∈R+

min(t, s)g(s), t ∈ R+,

is the least quasiconcave majorant of tg(t), Ĝ is the least concave majorant of G and

γρ := sup
f 	=0

f∗(0+)
ρ(Pf∗)

.

The outline of the paper is as follows. In section 1 we sketch the necessary back-
ground on the Brudny̆ı-Krugljak duality theory. Section 2 introduces Banach function
norms with special attention paid to rearrangement-invariant Banach function norms.
The proofs of Theorem D, Theorem A, Theorem B, and Theorem C are given in sec-
tions 3, 4, 5, and 6, respectively. Concrete examples involving classical Lorentz and
Orlicz norms are presented in section 7.
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1. General background

Suppose Φ is a Banach space of functions in M(R+) which is a Banach function
lattice in the sense that |f | ≤ |g| a.e. and g ∈ Φ imply f ∈ Φ, with ‖f‖Φ ≤ ‖g‖Φ.
This, of course, implies ‖f‖Φ = ‖|f |‖Φ. When min(1, t) ∈ Φ, we say Φ is a parameter
of the K-method. In this case, the class

KΦ = KΦ(X1, X2) := {x ∈ X1 + X2 : ‖x‖KΦ = ‖K(t, x; X1, X2)‖Φ < ∞}
turns out to be a Banach space with norm ‖ ‖KΦ , this space being said to be formed by
the K-method of interpolation. It is an exact interpolation space between X1 and X2.
See [3, Proposition 3.31, p. 338]. The Brudny̆ı-Krugljak description of KΦ

# involves
the construction of a new parameter which is related to Φ and is itself constructed by
interpolation methods from a pair of weighted Lebesgue spaces.

Given a non-negative (weight) function w ∈ M+(R+) and an index p, 1 ≤ p ≤ ∞,
set

Lp(w) := { f ∈ M(R+) : ‖f‖p,w := ‖fw‖p < ∞};
here, as usual,

‖g‖p =

{(∫
R+

|g(t)|p dt
)1/p

, 1 ≤ p < ∞,

ess supt∈R+
|g(t)|, p = ∞.

The Banach lattice Φ̂ is defined by

Φ̂ := KΦ(L∞(1), L∞(t−1)).

According to [3, Proposition 3.1.17, p. 298],

K(t, f ; L∞(1), L∞(t−1)) = f̂(t), f ∈ M(R+),

where f̂ is the least concave majorant of |f |, so

‖f‖Φ̂ = ‖f̂‖Φ, f ∈ M(R+). (10)

Since K(t, f ; X1, X2) is concave, we conclude, from (10), that

KΦ = KΦ̂.

The Banach lattice Φ+ associated to Φ has

‖g‖Φ+ := sup
‖f‖Φ≤1

∫
R+

|g(t)f(1/t)| dt

t
, f, g ∈ M(R+).

We observe that min(1, t) ∈ Φ implies L∞(1) ∩ L∞(t−1) ↪→ Φ̂, which, in turn, gives

Φ̂+ ↪→ [L∞(1) ∩ L∞(t−1)]+ = L1(t−1) + L1(t−2).

The fundamental result concerning KΦ
# is given in terms of the so-called J func-

tional.
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Theorem 1.1 ([3, Theorem 3.7.6, pp. 426–427]). If Φ is a parameter of the K-method,
then

KΦ(X1, X2)
# ≈ JΦ̂+(X1

#, X2
#)

if and only if
Φ̂ \ (L∞(1) ∪ L∞(t−1)) �= ∅.

The norm of JΦ̂+ is not easy to work with. Thus, one seeks an equivalent norm
given in terms of the more tractable K-functional.

Theorem 1.2 ([3, Theorem 3.5.5, pp. 389–390]). Suppose Φ \ (L1(t−1)∪L1(t−2)) is
not empty and let Ψ = JΦ(L∞(1), L∞(t−1)). Then,

JΦ(X1, X2) ≈ KΨ(X1, X2).

Putting Theorems 1.1 and 1.2 together, we obtain

Theorem 1.3. Assume the Banach lattice Φ satisfies

Φ̂ \ (L∞(1) ∪ L∞(t−1)) �= ∅

and
Φ̂+ \ (L1(t−1) ∪ L1(t−2)) �= ∅.

Then,
KΦ(X1, X2)# ≈ KΨ(X1

#, X2
#),

where Ψ = JΦ̂+(L∞(1), L∞(t−1)).

2. Specific background

We now focus on a special class of Banach lattice norms.

Definition 2.1. Suppose (Ω,M, μ) is a totally σ-finite measure space. Let M(Ω)
be the set of μ-measurable functions on Ω and M+(Ω) the non-negative functions
in M(Ω). A Banach function norm is a functional ω : M+(Ω) → [0,∞] satisfying

ω(f) = 0 if and only if f = 0 μ-a.e., (A1)
ω(cf) = cω(f), c ≥ 0, (A2)
ω(f + g) ≤ ω(f) + ω(g), (A3)

0 ≤ fn ↑ f implies ω(fn) ↑ ω(f), (A4)
μ(E) < ∞ implies ω(χE) < ∞, (A5)

μ(E) < ∞ implies
∫

E

f dμ ≤ cE(ω)ω(f) (A6)
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for some constant cE(ω) depending on E and ω but not on f ∈ M+(Ω). (Notice that
(A4) implies ω(f) ≤ ω(g) whenever 0 ≤ f ≤ g.)

Further, such a Banach function norm is said to be a rearrangement-invariant (r.i.)
Banach function norm if

ω(f) = ω(g)

whenever f and g are equimeasurable; that is, whenever

μf (t) = μg(t), t ∈ R+,

where
μh(t) := μ({x ∈ Ω : |h(x)| > t }), h ∈ M(Ω), t ∈ R+.

Luxemburg has shown that if (Ω,M, μ) is non-atomic, then corresponding to any
r.i. norm ω on M+(Ω) there is an r.i. norm, ω̄, on M+(R+) for which

ω(f) = ω̄(f∗), f ∈ M+(Ω). (11)

Here, f∗ is the nonincreasing rearrangement of f on R+ given by f∗ := μ−1
f . We

observe that although the operation f �→ f∗ is not subadditive, the operation f �→
t−1

∫ t

0
f∗ is; explicitly,

t−1

∫ t

0

(f + g)∗(s) ds ≤ t−1

∫ t

0

f∗(s) ds + t−1

∫ t

0

g∗(s) ds,

for all f, g ∈ M(Ω) and t ∈ R+.
The Köthe dual of a Banach function norm ω is another such norm, ω′, with

ω′(g) := sup
ω(f)≤1

∫
Ω

gf dμ, f, g ∈ M+(Ω).

(Indeed, one readily shows

ω′(g) = sup
ω(f)≤1

∣∣∣∣
∫

Ω

gf dμ

∣∣∣∣, g ∈ M(Ω), f ∈ S(Ω, μ),

S(Ω, μ) being the set of simple (μ-integrable) functions in M(Ω).) It obeys the Prin-
ciple of Duality; that is,

ω′′ := (ω′)′ = ω.

Moreover, the Hölder inequality∫
Ω

fg dμ ≤ ω(f)ω′(g)
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holds for all f, g ∈ M+(Ω) and this inequality is saturated, in the sense that, given
f ∈ M+(Ω) and ε > 0, there exists a g0 ∈ M+(Ω), ω′(g0) ≤ 1, such that∫

Ω

fg dμ > (1 − ε)ω(f).

The Hardy-Littlewood-Pólya inequality∫
Ω

fg dμ ≤
∫
R+

f∗g∗, f, g ∈ M+(Ω),

holds for any σ-finite μ and ensures the Köthe dual of an r.i. norm is also an r.i. norm
when μ is non-atomic.

The space Lω = Lω(Ω, μ) is the vector space

{f ∈ M(Ω) : ω(|f |) < ∞},
together with the norm

‖f‖Lω
:= ω(|f |).

The normed space Lω is called a Banach function space provided ω is a Banach
function norm and is called an r.i. space provided ω is an r.i. Banach function norm.

If ω′ is the Köthe dual of the Banach function norm ω, then Lω′ is referred to as
the Köthe dual space of Lω. Sections 3 and 4 in chapter 1 of [1] yield

Theorem 2.2. Let (Ω,M, μ) be a non-atomic, totally σ-finite measure space. Sup-
pose ω is an r.i. norm on M+(Ω), as in (11). Assume a closed linear subspace, X,
of Lω is a Banach lattice containing the class S(Ω, μ). Then, the Banach dual, X∗,
of X is isometrically isomorphic to the Köthe dual space Lω′ if and only if

ω(χEn
) ↓ 0 whenever En ↓ ∅, En ∈ M, n = 1, 2, . . .

The basic example of an r.i. space is Lp, 1 ≤ p ≤ ∞, where, given f ∈ M+(Ω),

ωp(f) :=
(∫

Ω

fp dμ

)1/p

=
(∫ ∞

0

f∗(t)p dt

)1/p

, 1 ≤ p < ∞,

and
ω∞(f) := ess supx∈Ω f(x) = f∗(0+), p = ∞.

One readily shows the smallest r.i. space is L1 ∩L∞, while the largest is L1 +L∞.
Further, there is the following characterization of the r.i. spaces due to Calderón; see
[1, Theorem 2.12, p. 116].

Theorem 2.3. Let (Ω,M, μ) be a non-atomic, totally σ-finite measure space and
suppose ω is a Banach function norm on M+(Ω). Then, ω is an r.i. norm if and
only if Lω is an exact interpolation space between L1 and L∞.
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Let (Ω,M, μ), ω and ω̄ be as in Theorem 2.2. The dilation operator Es, s ∈ R+,
given at f ∈ M+(R+) by

(Esf)(t) := f(t/s), 0 < t < ∞,

is bounded on Lω̄. With the norm of Es on Lω̄ denoted by hω(s), we define the lower
and upper Boyd indices of Lω as

iω := lim
s→0+

log(1/s)
log(hω(s))

and Iω := lim
s→∞

log(1/s)
log(hω(s))

,

respectively. They satisfy
1 ≤ iω ≤ Iω ≤ ∞;

moreover,

iω′ =
Iω

Iω − 1
and Iω′ =

iω
iω − 1

.

See [9, V.II, pp. 131–132].
A generalization of Lp, due to Lorentz, is the space Lp q. For 1 < p < ∞, 1 ≤ q ≤

∞ and f∗∗(t) := t−1
∫ t

0
f∗(s) ds,

ωp q(f) :=
(∫ ∞

0

(f∗∗(t)t1/p−1/q)q dt

)1/q

,

when q < ∞, and
ωp∞(f) := sup

0<t<∞
t1/pf∗∗(t).

It follows from a well-known inequality of Hardy that

ωp p(f) ≈ ωp(f), f ∈ M+(Ω).

We conclude this section with an example of pairs of spaces for which the K-func-
tional is known, but only up to equivalence. In this situation Theorem B gives a
computable result but Theorem A need not.

Theorem 2.4 (Holmstedt’s formulas, [7, Theorem 4.1]). Let (Ω,M, μ) be a nonatom-
ic, totally σ-finite measure space. Fix p1, p2, q1, q2, 1 < p1 < p2 < ∞, 1 ≤ q1, q2 < ∞
and set 1

α = 1
p1

− 1
p2

. Then, with f ∈ M+(Ω), t ∈ R+,

K(t, f ; Lp1 q1 , Lp2 q2)

≈
(∫ tα

0

(f∗(s)s1/p1−1/q1)q1 ds

)1/q1

+ t

(∫ ∞

tα

(f∗(s)s1/p2−1/q2)q2 ds

)1/q2
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Further, for 1 < p1 < ∞, 1 ≤ q1 ≤ ∞,

K(t, f ; Lp1 q1 , L∞) ≈
(∫ tp1

0

(f∗(s)s1/p1−1/q1)q1 ds

)1/q1

, q1 < ∞

and
K(t, f ; Lp1 ∞, L∞) ≈ sup

0<s<tp1
f∗(s)s1/p1 , q1 = ∞.

3. Proof of Theorem D

It is a straightforward exercise to verify the ρ◦T and ρ◦P are Banach function norms,
given the conditions on ρ. It is also routine to check that ρ ◦ R satisfies conditions
(A1)–(A5) and satisfies (A6), provided the set E is required to have compact support
in R+.

Since the kernel of P , namely, k(t, s) = t−1χ(0,t)(s) is nonincreasing in s for each
t, we obtain, from [12, Theorem 3.3],

(ρ ◦ P )′(g) = sup
f≥0

∫
R+

f(t)g(t) dt

(ρ ◦ P )(f)
= sup

f≥0

∫
R+

f(t) supt≤s g(s) dt

(ρ ◦ P )(f)
. (12)

Also, according to [11, Proposition 2.1 and Lemma 3.2], the level function, fo := dF̂
dt ,

of f ≥ 0 (F (t) =
∫ t

0
f(s) ds) is nonincreasing and satisfies∫
R+

f(t)h(t) dt ≤
∫
R+

fo(t)h(t) dt, 0 ≤ h ↓,

and
(ρ ◦ P )(fo) ≤ 3(ρ ◦ P )(f), ρ an r.i. norm.

Therefore,

sup
f≥0

∫
R+

f(t) supt≤s g(s) dt

(ρ ◦ P )(f)
≤ 3 sup

f≥0

∫
R+

fo(t) supt≤s g(s) dt

(ρ ◦ P )(fo)

≤ 3 sup
0≤f↓

∫
R+

f(t) supt≤s g(s) dt

(ρ ◦ P )(f)

≤ 3 sup
f≥0

∫
R+

f(t) supt≤s g(s) dt

(ρ ◦ P )(f)
. (13)

We conclude from (12) and (13) that

(ρ ◦ P )′(g) ≈ (ρ ◦ Pd)′(sup
t≤s

g(s)), g ∈ M+(R+).
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Next, if h(s) = f(s)/s, then,

(Rf)(t) =
∫
R+

min(1/t, 1/s)f(s) ds =
∫
R+

min(s/t, 1)h(s) ds := (R1h)(t).

But the kernel k(t, s) = min(s/t, 1) of R1 is a quasiconcave function of s for each t,
so, by [12, Theorem 4.1],

(ρ ◦ R)′(g) = sup
f≥0

∫
R+

f(t)g(t) dt

(ρ ◦ R)(f)

= sup
h≥0

∫
R+

h(t)tg(t) dt

(ρ ◦ R1)(h)

= sup
h≥0

∫
R+

h(t)G(t) dt

(ρ ◦ R1)(h)

= sup
f≥0

∫
R+

f(t)G(t)/t dt

(ρ ◦ R)(f)
.

Since G is quasiconcave, we have G ≤ Ĝ ≤ 2G and Ĝ(0+) = G(0+). Therefore, the
last expression is equivalent to

sup
f≥0

∫
R+

f(t)((P dĜ
dt )(t) + G(0+)/t) dt

(ρ ◦ R)(f)

≈ sup
f≥0

∫
R+

f(t)(P dĜ
dt )(t) dt

(ρ ◦ R)(f)
+ G(0+) sup

f≥0

∫
R+

f(t)/t dt

(ρ ◦ R)(f)

= sup
f≥0

∫
R+

(Qf)(t)dĜ
dt (t) dt

(ρ ◦ P )(Qf)
+ G(0+) sup

f≥0

∫
R+

f(t)/t dt

(ρ ◦ P )(Qf)
, by Fubini’s Theorem,

= sup
0≤F↓

∫
R+

F (t)dĜ
dt (t) dt

(ρ ◦ P )(F )
+ G(0+) sup

0≤F↓

F (0)
(ρ ◦ P )(F )

≈(ρ ◦ Pd)′
(

dĜ

dt

)
+ G(0+)γρ.

The last line follows from (12), 0 ≤ dĜ
dt ↓, and (Pf∗)(0+) = f∗(0+).

4. Proof of Theorem A

We will need two preliminary results.
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Lemma 4.1. Let ρ be an r.i. norm on M+(R+) for which ρ( 1
1+t ) < ∞ and

ρ(χ(0,a)) ↓ 0 as a ↓ 0. If Φ = Lρ◦T then Φ̂ \ (L∞(1) ∪ L∞(t−1)) �= ∅.
Proof. We construct a function g on R+ satisfying g(t) ↑ ∞, g(t)/t ↓, ρ(g(t)/(1+t)) <
∞, and ρ(g(t−1)χ(0,1)(t)) < ∞. This yields the quasiconcave function

f(t) := tg(t−1)χ(0,1)(t) + g(t)χ(1,∞)(t)

in Φ̂ \ (L∞(1) ∪ L∞(t−1)).
Using the hypothesis ρ(χ(0,a)) ↓ 0 as a ↓ 0, it is a simple matter to construct an

unbounded function h ∈ Lρ, with h∗(1) = 1. Let t0 = 0 and define tn, inductively, to
be the least t > 2tn−1 + 1 such that

ρ

(
χ(tn,∞)(t)

1 + t

)
<

1
22n

ρ( 1
1+t ) and h∗(t−1

n ) ≥ 2n.

Set

g(t) :=

{
2n−1, 2tn−1 < t < tn,

2n−1t/tn, tn < t < 2tn, n = 1, 2, . . .

Then, g(t) ↑ ∞, g(t)/t ↓, g(t) ≤ h∗(t−1) on (1,∞) (since, on tn < t < 2tn, 2n−1t/tn ≤
2n ≤ h∗(t−1

n ) ≤ h∗(t−1)) and

ρ

(
g(t)
1 + t

)
≤

∞∑
n=1

ρ

(
g(t)χ(tn−1,tn)(t)

1 + t

)

≤
∞∑

n=1

ρ

(
2nχ(tn−1,tn)(t)

1 + t

)

≤
∞∑

n=1

2nρ

(
χ(tn−1,∞)(t)

1 + t

)

≤
∞∑

n=1

2n 1
22(n−1)

ρ

(
1

1 + t

)

≤ 4ρ( 1
1+t ) < ∞.

Finally,
ρ(g(t−1)χ(0,1)(t)) ≤ ρ(h∗(t)χ(0,1)(t)) ≤ ρ(h∗) < ∞.

Lemma 4.2. Suppose ρ is an r.i. norm on M+(R+) for which ρ′( 1
1+t ) < ∞. If

Φ = Lρ◦T then Φ̂+ \ (L1(t−1) ∪ L1(t−2)) �= ∅.
Proof. Set f(t) = min(1, t). Then, f /∈ L1(t−1) ∪ L1(t−2). But

‖f‖Φ̂+ = sup
g≥0,‖g‖Φ̂≤1

∫
R+

g(t−1)f(t)
dt

t
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and ∫
R+

g(t−1)f(t)
dt

t
=

∫
R+

g(t)f(t−1)
dt

t

≤
∫
R+

ĝ(t)
t

min(1, t−1) dt

≤ ρ

(
ĝ(t)
t

)
ρ′(min(1, t−1))

≤ 2ρ′( 1
1+t ).

We are now ready to prove Theorem A. Set Φ = Lρ◦T . The space X is KΦ(X1, X2)
and, since ρ ◦ T (min(1, t)) ≤ 2ρ( 1

1+t ) < ∞, it is an exact interpolation space be-
tween X1 and X2.

Now, Lemmas 4.1 and 4.2 ensure the hypotheses of Theorem 1.3 hold for our
Banach lattice Φ, so we have

X# ≈ KΨ(X1
#, X2

#),

where Ψ = JΦ̂+(L∞(1), L∞(t−1)).
The discussion following Definition 3.7.1 on page 422 of [3] identifies elements of

(L1(t−1) ∩ L1(t−2))∗ with functions in such a way that

L1(t−1)# = L1(t−1)+ = L∞(1),

L1(t−2)# = L1(t−2)+ = L∞(t−1),

and

KΦ(L1(t−1), L1(t−2))
#

= KΦ(L1(t−1), L1(t−2))+.

Using these identifications, and applying Theorem 2.1 with X1 and X2 replaced by
L1(t−1) and L1(t−2), respectively, we obtain

Ψ ≈ KΦ(L1(t−1), L1(t−2))+.

According to [3, Proposition 3.1.17, pp. 298 ff.] (note the misprints in the state-
ment and the proof)

K(s, f ; L1(t−1), L1(t−2)) =
∫
R+

|f(t)|min(1, s/t)
dt

t
= sR ◦ T (|f |)(s).

Hence, from (2),
‖f‖KΦ(L1(t−1),L1(t−2)) = ρ ◦ R(T (|f |)).
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Combining these to eliminate Ψ, and applying Theorem D, yields

‖y‖X# ≈ ‖K(t, y,X1
#, X2

#)‖Ψ

= sup
ρ◦R(T (|f |))≤1

∫
R+

K(t, y; X1
#, X2

#)|f(1/t)| dt

t

= sup
ρ◦R(T (|f |))≤1

∫
R+

K(t−1, y; X1
#, X2

#)(T |f |)(t) dt

≈ (ρ ◦ Pd)′
(

dĜ

dt

)
+ G(0+)γp.

Here,

Ĝ(t) = sup
s>0

min(t, s)K(s−1, y; X1
#, X2

#)

= K(t, y; X2
#, X1

#), [1, Proposition 1.2, p. 294]

so, from (3), G(0+) = 0 and dĜ
dt (t) = k(t, y; X2

#, X1
#). Therefore,

‖y‖X# ≈ (ρ ◦ Pd)′(k(t, y; X2
#, X1

#)), y ∈ X#.

This completes the proof.

5. Proof of Theorem B

One readily verifies that ρ ◦Pd and ρ ◦Rd are r.i. norms, condition (5) ensuring both
satisfy (A5). Also, (ρ ◦ Rd)′ ◦ Pd is seen to be an r.i. norm, since

(ρ ◦ Rd)′ ◦ Pd(χ(0,1)) = sup
g≥0

∫ 1

0
Qg

ρ ◦ Rd(g)
≤ sup

g≥0

∫ 1

0
Rdg

ρ(Rdg)
≤ ρ′(χ(0,1)) < ∞.

If f ≥ 0,

(ρ ◦ Rd)′(Pdf) ≤ sup
g≥0

∫
(Pf∗)g∗

ρ ◦ R(g∗)
= sup

g≥0

∫
f∗(Qg∗)

ρ ◦ Pd(Qg∗)
≤ (ρ ◦ Pd)′(f∗) = (ρ ◦ Pd)′(f).

For the reverse inequality we observe that for all g ≥ 0,

ρ ◦ Rd(g) = ρ ◦ Pd(Qg∗) ≤ sup
h≥0

∫
(Qg∗)h∗

(ρ ◦ Pd)′(h)
≈ sup

h≥0

∫
g∗(Ph∗)

σ ◦ Pd(h)
≤ σ′(g∗) = σ′(g)

and, therefore,

(ρ ◦ Pd)′(f) ≈ σ(Pf∗) = sup
g≥0

∫
(Pf∗)g
σ′(g)

� sup
g≥0

∫
(Pf∗)g

ρ ◦ Rd(g)
= (ρ ◦ Rd)′(Pf∗) = (ρ ◦ Rd)′(Pdf).
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When, in (4), (ρ ◦ Pd)′ can be replaced by (ρ ◦ Rd)′ ◦ Pd, we have,

‖y‖X# ≈ (ρ ◦ Rd)′(Pd(k(t, y; X2
#, X1

#))) = (ρ ◦ Rd)′(t−1K(t, y; X2
#, X1

#)),

for all y ∈ X#.

Corollary 5.1. Let X1, X2, ρ, and X be as in Theorem B. Assume, in addition,
the upper Boyd index, Iρ, of Lρ is finite. Then,

‖y‖X# ≈ (ρ ◦ Rd)′(t−1K(t, y; X2
#, X1

#)), y ∈ X#.

Proof. We have (ρ ◦ Rd)′ ◦ Pd(f) ≤ (ρ ◦ Pd)′(f) just as in the proof of Theorem B.
According to [9], Iρ < ∞ if and only if Q : Lρ → Lρ. Thus,

(ρ ◦ Pd)′(f) ≤ sup
g≥0

∫
f∗g∗

ρ(Pg∗)
� sup

g≥0

∫
f∗g∗

ρ(Q(Pg∗))
≤ sup

g≥0

∫
(Pdf)g∗

ρ ◦ Rd(g∗)
≤ (ρ ◦ Rd)′(Pdf).

6. Proof of Theorem C

As a special case of [3, Proposition 3.3.1, p. 338] we obtain that Lω is an exact inter-
polation space between Lω1 and Lω2 . In particular, ω satisfies (A1), (A2), and (A3)
in Definition 2.1.

Consider E ⊂ Ω, μ(E) < ∞. We have

K(t, χE ; Lω1 , Lω2) ≤ min(ω1(χE), tω2(χE)),

so
ω(χE) ≤ 2 max(ω1(χE), ω2(χE))ρ( 1

1+t ) < ∞.

For f ∈ M+(Ω), with f = f1 + f2, 0 ≤ fi ∈ Lωi , i = 1, 2,

ω(f) = ρ(t−1 inf
f=f1+f2

ω1(f1) + tω2(f2))

≥ ρ

(
t−1 inf

f=f1+f2
cE(ω1)−1

∫
E

f1 dμ + tcE(ω2)−1

∫
E

f2 dμ

)

≥ ρ(t−1 min(cE(ω1)−1, tcE(ω2)−1))
∫

E

f dμ.

This gives us (A5) and (A6) for ω.
As for (A4), [1, Exercise 5, p. 175] and (7) guarantee K(t, f ; Lω1 , Lω2) is a Banach

function norm for each t > 0, so for each t > 0, f, fn ∈ M+(Ω), n = 1, 2, . . .,
0 ≤ fn ↑ f implies

t−1K(t, fn; Lω1 , Lω2) ↑ t−1K(t, f ; Lω1 , Lω2)
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and hence
ω(fn) ↑ ω(f).

Thus, ω is a Banach function norm.
Now, Theorem 2.3 tells us that Lω1 and Lω2 are exact interpolation spaces be-

tween L1 and L∞. Since we know Lω is an exact interpolation space between Lω1

and Lω2 it follows that Lω is an exact interpolation space between L1 and L∞. We
conclude, from Theorem 2.3 again, that ω is an r.i. norm on M+(Ω).

Next, ω2(En) ↓ 0 as the measurable sets En ↓ ∅ and so

0 ≤ ω(En) ≤ tω2(En) ↓ 0 as En ↓ ∅.

Since Lω1 ∩Lω2 contains the simple functions, [1, Theorem 4.1, p. 20] shows that L#
ω2

and L#
ω are isometrically isomorphic to Lω′

2
and Lω′ respectively. Fix a functional

y ∈ L#
ω and its corresponding function g ∈ Lω′ . If g = g1 + g2 with g1 ∈ Lω′

1
and

g2 ∈ Lω′
2

then g1 and g2 determine functionals y1 ∈ L#
ω1

and y2 ∈ L#
ω2

that have the
same norms as g1 and g2 and satisfy y = y1 + y2. On the other hand, if y = y1 + y2

with y1 ∈ L#
ω1

and y2 ∈ L#
ω2

then y2 corresponds to a function g2 ∈ Lω′
2

with the
same norm as y2. A calculation shows that the functional corresponding to g − g2

coincides with y1. Since the decompositions y = y1 + y2 and g = g1 + g2 correspond
isometrically, we readily obtain

K(t, y; L#
ω2

, L#
ω1

) = K(t, g; Lω′
2
, Lω′

1
)

for all t > 0. Differentiation shows that the same relationship holds for the k-
functional.

Theorems A and B yield

ω′(g) = ‖y‖Lω
# ≈ (ρ ◦ Pd)′(k(t, y; L#

ω2
, L#

ω1
)) = (ρ ◦ Pd)′(k(t, g; Lω′

2
, Lω′

1
))

and, under the additional assumptions,

ω′(g) = ‖y‖Lω
# ≈ (ρ ◦ Rd)′(t−1K(t, y; L#

ω2
, L#

ω1
))

= (ρ ◦ Rd)′(t−1K(t, g; Lω′
2
, Lω′

1
)).

7. Examples

7.1. Classical Lorentz spaces

Fix p, 1 ≤ p < ∞ and let ϕ be a non-negative, locally integrable (weight) function
on R+. At f ∈ M+(R+), the classical Lorentz functional ρ = ρϕ,p is given by

ρ(f) :=
(∫

R+

f∗(t)pϕ(t) dt

)1/p

.
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This functional is equivalent to an r.i. norm on M+(R+) if and only if there exists a
C > 0 such that

t−1

∫ t

0

ϕ(y) dy ≤ Cs−1

∫ s

0

ϕ(y) dy, 0 < s ≤ t, when p = 1, (14)

tp
∫ ∞

t

s−pϕ(s) ds ≤ C

∫ t

0

ϕ(s) ds, t ∈ R+, when 1 < p < ∞. (15)

See [4, Theorem 2.3] for p = 1 and [10, Theorem 4] for 1 < p < ∞. By [10, Theorem 4],
the condition in (15) is equivalent to

ρ(f) = ρ(f∗) ≈ ρ(Pf∗) = ρ ◦ Pd(f), f ∈ M+(R+).

So, given g ∈ M+(R+),

(ρ ◦ Pd)′(g) ≈ sup
t∈R+

(Pg∗)(t)
(Rϕ)(t)

,

when p = 1 by [4, Theorem 2.3], and

(ρ ◦ Pd)′(g) ≈ ρ′(g) ≈
(∫

R+

(
(Pg∗)(t)
(Pϕ)(t)

)p′

ϕ(t) dt

)1/p′

,

when 1 < p < ∞, p′ = p/(p − 1) and
∫
R+

ϕ(t) dt = ∞ by [10, Theorem 4].
Accordingly, Theorem C becomes

Theorem 7.1. Suppose ω1 and ω2 are r.i. norms on M+(Ω), where (Ω,M, μ) is a
non-atomic, totally σ-finite measure space. Assume, further,

Lω′
1
∩ Lω′

2
is dense in Lω′

2

and
ω′

2(χEn
) ↓ 0 as En ↓ ∅, En ∈ M, n = 1, 2, . . .

Fix p, 1 ≤ p < ∞, and let ϕ be a locally integrable function in M+(R+) satisfying

ρϕ,1( 1
1+t ) =

∫
R+

ϕ(t)
1 + t

dt < ∞

and (14), or, when 1 < p < ∞,

ρϕ,p( 1
1+t )

p =
∫
R+

ϕ(t)
(1 + t)p

dt < ∞

and (15). Then, the functional

ω(f) := ρϕ,p(t−1K(t, f ; Lω1 , Lω2)), f ∈ Lω1 + Lω2 ,
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is an r.i. norm on M+(Ω).
Moreover, if, in addition,

ρ′ϕ,1(
1

1+t ) = sup
t∈R+

log(1 + t)
t(Rϕ)(t)

< ∞,

or, when 1 < p < ∞

ρ′ϕ,p(
1

1+t )
p′

=
∫
R+

(
log(1 + t)
t(Pϕ)(t)

)p′

ϕ(t) dt < ∞,

then, for g ∈ M+(Ω),

ω′(g) ≈ sup
t∈R+

K(t, g; Lω′
2
, Lω′

1
)

t(Rϕ)(t)
,

when p = 1, and

ω′(g) ≈
(∫

R+

(
K(t, g; Lω′

2
, Lω′

1
)

t(Pϕ)(t)

)p′

ϕ(t) dt

)1/p′

,

when 1 < p < ∞, p′ = p/(p − 1) and
∫
R+

ϕ(t) dt = ∞.

7.2. Orlicz spaces

Consider a Young function given by

A(t) =
∫ t

0

a(s) ds, t ∈ R+,

in which a(t) is increasing on R+, a(0+) = 0, and limt→∞ a(t) = ∞. One defines the
Luxemburg-Orlicz norm, ρA, of f ∈ M+(R+) by

ρA(f) := inf
{

λ > 0 :
∫
R+

A

(
f(t)
λ

)
dt ≤ 1

}
.

The Köthe dual of ρA is equivalent to the Orlicz norm ρÃ, where

Ã(t) :=
∫ t

0

a−1(s) ds, t ∈ R+,

is called the Young function complementary to A. Indeed,

ρÃ(g) ≤ ρ′A(g) ≤ 2ρÃ(g), g ∈ M+(R+). (16)

It is shown by A. Gogatishvili and the first author in [6] that, given 1 < p < ∞, and
A(t) = tp/p when 0 < t < 1, one has

ρA ◦ Pd(f) ≈ ρA(f), f ∈ M+(R+), (17)
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with A a Young function satisfying

A(t) = t

∫ t

1

A(s)
ds

s2
, t � 1.

(The result in [6] is essentially one for large values of t, so the requirement A(t) = tp/p
is made only for convenience.)

Observing that for any Young function A,

ρA(χ(0,t)) =
1

A−1(1/t)
↓ 0 as t ↓ 0,

we obtain two theorems from Theorem C. The first one is

Theorem 7.2. Let ω1 and ω2 be as in Theorem 7.1. Assume, further, A is a Young
function, with ρA( 1

1+t ) < ∞. Then, the functional

ω(f) := inf
{

λ > 0 :
∫
R+

A((λt)−1K(t, f ; Lω1 , Lω2)) dt ≤ 1
}

, (18)

for f ∈ Lω1 + Lω2 , is an r.i. norm on M+(Ω).
Moreover, if, also, A(t) = tp/p, where p is fixed, 1 < p < ∞, and 0 < t < 1, (so

Ã(t) = tp
′
/p′, p′ = p/(p − 1), 0 < t < 1), then, for g ∈ M+(Ω),

ω′(g) ≈ inf
{

λ > 0 :
∫
R+

Ã(λ−1k(t, g; Lω′
2
, L′

ω1
)) dt ≤ 1

}
,

in which the Young function Ã has

(Ã′)−1(t) ≈
{

tp−1, 0 < t < 1,∫ t

1
a(s) ds

s , t � 1.

To prove the second theorem we will need

Lemma 7.3. Suppose C is a twice continuously differentiable Young function equal
to tp/p for some fixed p > 1 and 0 < t < 1, with limt→∞ sup1<s≤t sC ′′(s) = ∞.
Assume, in addition, that

C ′(t) ≈
∫ t

1

sup
1<y≤s

yC ′′(y)
ds

s
, t � 1, (19)

which holds, in particular, if tC ′′(t) increases for t � 1. Then,

ρC ≈ ρB ◦ Pd,
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where

B(t) :=

{
tp/p, 0 < t < 1,∫ t

1
sup1<y≤s yC ′′(y) ds, t � 1,

(20)

and, in particular,
B(t) = tC ′(t) − C(t), t � 1,

in case tC ′′(t) increases when t � 1.

Proof. According to the result from [6] quoted above, we need only show

C ′(t) ≈
∫ t

1

B(s)
ds

s2
+

B(t)
t

, t � 1.

But, ∫ t

1

B(s)
ds

s2
= −B(s)

s

∣∣∣∣
t

1

+
∫ t

1

B′(s)
ds

s
= −B(t)

t
+ B(1) +

∫ t

1

B′(s)
ds

s
,

so, for t � 1,∫ t

1

B(s)
ds

s2
+

B(t)
t

≈
∫ t

1

B′(s)
ds

s

=
∫ t

1

sup
1<y≤s

yC ′′(y)
ds

s
, by (20)

≈ C ′(t), by (19).

Theorem 7.4. Let ω1 and ω2 be as in Theorem 7.1. Suppose A is a twice con-
tinuously differentiable Young function with A(t) = tp/p for some fixed p > 1 and
0 < t < 1. Define the function C on R+ by

(C ′)−1(t) :=

{
tp−1, 0 < t < 1,∫ t

1
a(s) ds

s , t � 1.

Assume

(C ′)(t) ≈
∫ t

1

sup
1<y≤s

yC ′(y)
a(C ′(y))

ds

s
, t � 1. (21)

Then, the r.i. norm ω, given in (18), satisfies

ω′(g) = inf
{

λ > 0 :
∫
R+

B((λt)−1K(t, g; Lω′
2
, Lω′

1
)) dt ≤ 1

}
,

for g ∈ M+(Ω), with

B(t) :=
∫ t

1

sup
1<y≤s

yC ′(y)
a(C ′(y))

ds t � 1.
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Proof. In view of (8), (17), and (16), we must show ρÃ equivalent to ρB ◦ Pd. Now,
for 0 < y < 1, Ã′(y) = yp′−1 while, for y � 1, Ã′(y) is the inverse of

A′(y) =
∫ y

1

A(s)
ds

s2
+

A(y)
y

= −A(s)
s

∣∣∣∣
y

1

+
∫ y

1

a(s)
ds

s
+

A(y)
y

= A(1) +
∫ y

1

a(s)
ds

s

≈
∫ y

1

a(s)
ds

s
.

Thus, without loss of generality we may replace Ã by C.
But, when y � 1,

yC ′′(y) = y
dC ′

dy
(y) =

y

((C ′)−1)′(C ′(y))
=

yC ′(y)
a(C ′(y))

.

Therefore, (21) amounts to (19) and we are done.

To illustrate the above result we observe that the Young function

A(t) =

{
tp/p, 0 < t < 1
tet, t � 1,

yields the Zygmund class, exp L, of exponentially integrable functions and has its C
essentially given by

(C ′)−1(t) ≈
{

tp−1, 0 < t < 1
et, t � 1.

so,

C ′(t) = log t ≈
∫ t

1

sup
1<y≤s

y log y

y log y

ds

s
=

∫ t

1

sup
1<y≤s

yC ′(y)
a(C ′(y))

ds

s
, t � 1,

and, similarly,

B(t) =
∫ t

1

sup
1<y≤s

yC ′(y)
a(C ′(y))

ds ≈ t, t � 1.
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