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ABSTRACT

We study the behavior of the ball measure of non-compactness under several
interpolation methods. First we deal with methods that interpolate couples of
spaces, and then we proceed to extend the results to methods that interpolate
finite families of spaces. We will need an approximation hypothesis on the target
family of spaces.
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Introduction

The study of interpolation of compact operators has its origins in the paper by Kras-
noselskii [17] in which it is proved that the compactness of an operator can be inter-
polated between Lp-spaces. Following this paper, a number of authors have studied
the interpolation properties of compact operators between abstract Banach spaces.
Among then J. L. Lions and J. Peetre [19], A. Calderón [3], A. Persson [25], S. G. Krein
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and Yu. I. Petunin [18], and K. Hayakawa [15]. The proof of the fact that real interpo-
lation preserves compactness (only one restriction of the operator being compact) was
given by Cwikel in [10], see also the paper by Cobos, Kühn, and Schonbek [7]. This
problem remains open for the complex interpolation method. Significant contribu-
tions are due to Cwikel [10], Cwikel and Kalton [11], Cobos, Kühn, and Schonbek [7],
Cobos, Fernández-Cabrera, and Mart́ınez [4] among other authors.

The measure of non-compactness of an operator is a quantity closely related to
compactness. Actually, if T : A −→ B is a bounded linear operator acting between
quasi-normed spaces, the ball measure of non-compactness β(T ) of T is given by the
infimum of all r > 0 such that there exists a finite number of elements b1, . . . , bs ∈ B
so that

T (UA) ⊆
s⋃

j=1

{bj + rUB}.

As it is easily seen 0 ≤ β(T ) ≤ ‖T‖, and the operator T is compact if and only if
β(T ) = 0. Thus the measure of non-compactness gives an estimate of the grade of
compactness of the operator. If T : (A0, A1) −→ (B0, B1) is a bounded linear operator
acting between two (quasi)-Banach couples and M is an interpolation method, it is
natural to ask what is the relation among β0(T ) = β(T : A0 −→ B0), β1(T ) =
β(T : A1 −→ B1) and β(T : M(A0, A1) −→ M(B0, B1)). The behavior of the
measure of non-compactness under real interpolation has been studied by different
authors. The first results are due to Teixeira and Edmunds in 1981, see [27]. In
that paper they studied two very different types of results: when some of the couples
degenerates in a single space, either A0 = A1 or B0 = B1, and the much more
interesting situation when no couple is degenerated. In order to prove a theorem in
this latter case they had to impose an approximation hypothesis on the target couple
B̄ = (B0, B1). The estimate obtained by Teixeira and Edmunds is the following
logarithmically convex inequality:

β(T : (A0, A1)θ,q −→ (B0, B1)θ,q) ≤ Cβ0(T )1−θβ1(T )θ.

Years later, in 1999, Cobos, Mart́ınez, and the present author proved a completely
general result removing the approximation hypothesis from Teixeira and Edmunds
result, see [5]. The technique they used to establish this result strongly depends on
the construction of the real interpolation method. This allowed to establish similar
results for interpolations methods that extend the classical real interpolation method
and that work with more than two spaces, see [6]. Unfortunately we have not been
able to use this approach to establish estimates for other methods than the real.
Nevertheless, if we impose an approximation hypothesis on the target couple, as
Teixeira and Edmunds did, we are able to give estimates of the measure of non-
compactness of the interpolated operator for a variety of interpolation methods.

This paper is developed in the context of quasi-Banach spaces. The interpolation
couples, or N -tuples, that will be handled are formed by quasi-Banach spaces. Let us
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recall the fact that if (A, ‖ ‖A) is a quasi-Banach space with constant C, ‖x + y‖ ≤
C(‖x‖ + ‖y‖), and we choose ρ > 0 such that (2C)ρ = 2, then there exists a norm
‖ ‖∗A such that

‖ ‖∗A ≤ ‖ ‖ρ
A ≤ 2‖ ‖∗A,

see [2] for more details. Given a quasi-Banach couple Ā = (A0, A1), Ai quasi-Banach
space of constant CAi , we have the quantities ρA0 and ρA1 satisfying (2CA0)

ρA0 =
(2CA1)

ρA1 = 2. The spaces A0 ∩ A1 and A0 + A1 are also quasi-Banach spaces
of constant max{CA0 , CA1}. If we take ρĀ = min{ρA0 , ρA1}, we have the equality(
2 max{CA0 , CA1}

)ρĀ = 2, and the ρĀ-powers of the norms on A0 ∩A1 or on A0 +A1

are equivalent to some norms on either space respectively.
The structure of the paper is the following: Section 1 is devoted to the study of the

behavior of the measure of non-compactness under interpolation methods for couples.
Section 2 treats the case of some multidimensional methods. Section 3 extends the
result in [5] to the quasi-Banach case.

Finally, I would like to express my gratitude to F. Cobos and A. Mart́ınez for
some very helpful discussions on this paper. I am also grateful to the referee of this
paper for his careful reading and fine advice.

1. Interpolation of the measure of non-compactness for Opera-
tors between couples.

Let us start with some basic concepts of interpolation theory, for a more complete
reading see [1,2]. We say that Ā = (A0, A1) is a quasi-Banach couple if A0 and A1 are
quasi-Banach spaces both continuously embedded in the same Hausdorff topological
space U . In this conditions we can consider the intersection

Δ(Ā) = A0 ∩ A1 with quasi-norm ‖a‖Δ(Ā) = max{‖a‖A0 , ‖a‖A1},
and the sum

Σ(Ā) = A0 + A1 with quasi-norm ‖a‖ = inf{‖a0‖A0 + ‖a1‖A1 ; a = a0 + a1}.
A quasi-Banach space A is said to be intermediate with respect to the couple Ā if

Δ(Ā) ↪→ A ↪→ Σ(Ā).

Let Ā = (A0, A1) and B̄ = (B0, B1) be two quasi-Banach couples and let
T : Σ(Ā) −→ Σ(B̄) be a bounded linear operator such that T maps A0 into B0

and A1 into B1 boundedly. In that case we say T is a bounded linear operator be-
tween the couples Ā and B̄ and we write T : Ā −→ B̄. The norm of the operator is
defined as

‖T‖Ā,B̄ = max{‖T‖0, ‖T‖1}
where ‖T‖i = ‖T : Ai −→ Bi‖ for i = 0, 1.
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An interpolation method M associates to each couple Ā an intermediate quasi-
Banach space M(Ā) with the following interpolation property: If
T : Ā −→ B̄ is a bounded linear operator between two couples then T : M(Ā) −→
M(B̄) is a bounded linear operator. Moreover

‖T‖M(Ā),M(B̄) ≤ C max{‖T‖0, ‖T‖1},

where the constant C does not depends on Ā, B̄ or T .
Let M be an interpolation method. Closely related to M there is the function

ϕM(t, s) = sup{ ‖T‖M(Ā),M(B̄) s.t. ‖T‖0 ≤ t, ‖T‖1 ≤ s }
that already appears in [20], and among whose most immediate properties must be
mentioned that ϕM is homogeneous of degree one, non-decreasing in each variable
and there is also the inequality

‖T‖M(Ā),M(B̄) ≤ ϕM(‖T‖0, ‖T‖1).

The approximation hypothesis used by Teixeira and Edmunds in [27] is the fol-
lowing

Approximation Hypothesis. We say a couple B̄ = (B0, B1) satisfies the Approx-
imation Hypothesis if there are positive constants C0, C1 such that for every ε > 0
and finite sets F0 ⊂ B0 and F1 ⊂ B1 there exists an operator P ∈ L(B̄, B̄) such that

(i) P : Bk −→ Bk is compact, k = 0 or 1.

(ii) P (Bk) ⊂ Δ(B̄) for k = 0, 1.

(iii) ‖I − P‖k ≤ Ck and ‖x − Px‖Bk
< ε for all x ∈ Fk, k = 0, 1,

Using the Approximation Hypothesis we can establish the following Persson type
compactness theorem. A similar theorem, restricted to the Banach case and with a
weaker approximation hypothesis, can be found in [20].

Theorem 1.1. Let M be any interpolation method, Ā and B̄ quasi-Banach couples,
B̄ satisfying the Approximation Hypothesis. Let T : Ā −→ B̄ be a bounded linear
operator. If either

T : A0 −→ B0 is compact and ϕM(t, 1) → 0 as t → 0
or

T : A1 −→ B1 is compact and ϕM(1, t) → 0 as t → 0

then the operator T : M(Ā) −→ M(B̄) is compact

Now we are in condition to establish the main theorem of this section.
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Theorem 1.2. Let B̄ = (B0, B1) a quasi-Banach couple with the Approximation
Hypothesis, and let M be an interpolation method satisfying

ϕM(t1−k, tk) → 0 as t → 0, for k = 0, 1.

Then for any bounded linear operator T : Ā −→ B̄ the following inequality holds

β(T : M(Ā) −→ M(B̄)) ≤ CϕM(β0(T ), β1(T ))

for some constant C independent of T and Ā.

Proof. The proof uses the ideas of Teixeira and Edmunds in [27]. Given any ε > 0,
the Approximation Hypothesis guarantees there exists P ∈ L(B̄, B̄) such that:

(i) P : Bk −→ Bk is compact, k = 0 or 1.

(ii) P (Bk) ⊂ Δ(B̄) for k = 0, 1.

(iii) ‖T − PT‖k ≤ 21/ρBk Ckβk(T ) + ε, for k = 0, 1.

In fact, choose δ > 0 such that, for k = 0, 1,

21/ρBk

[(
Ck(βk(T ) + δ)

)ρBk + δρBk

]1/ρBk < 21/ρBk Ckβk(T ) + ε. (1)

By definition of measure of non-compactness there exist finite sets F0 ⊂ B0 and
F1 ⊂ B1 such that

T (UAk
) ⊆

⋃
y∈Fk

{
y + (βk(T ) + δ)UBk

}
for k = 0, 1.

By the Approximation Hypothesis there exists P ∈ L(B̄, B̄) satisfying conditions (i),
(ii), and such that ‖y − Py‖Bk

≤ δ for any y ∈ Fk and ‖I − P‖k ≤ Ck, for k = 0, 1.
Let’s check condition (iii). Given a ∈ UAk

,

‖Ta − PTa‖ρBk

Bk
= ‖(I − P )Ta‖ρBk

Bk
≤ 2[‖(I − P )(Ta − y)‖ρBk

Bk
+ ‖(I − P )y‖ρBk

Bk
]

≤ 2[
(
Ck(βk(T ) + δ)

)ρBk + δρBk ] ≤ (
21/ρBk Ckβk(T ) + ε

)ρBk ,

where the last inequality follows from equation (1). In order to estimate the measure
of non-compactness split the operator T as T = (T − PT ) + PT and thus, recalling
that M(B̄) is within the class of quasi-Banach spaces and so for some ρ > 0 ‖ ‖M(B̄)

is a ρ-norm, obtain the inequality

β(T : M(Ā) −→ M(B̄))ρ ≤ 2[β(T − PT )ρ + β(PT )ρ].

The operator PT : M(Ā) −→ M(B̄) is compact by Theorem 1.1, hence β(PT ) = 0.
The measure of non-compactness of the other term can be estimated by its norm, so

β(T − PT : M(Ā) −→ M(B̄)) ≤ ‖T − PT‖M(Ā),M(B̄)

≤ ϕM(‖T − PT‖0, ‖T − PT‖1)

≤ ϕM(21/ρB0 C0β0(T ) + ε, 21/ρB1 C1β1(T ) + ε).
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Taking infimum in ε > 0 and using the properties of ϕM

β(T : M(Ā) −→ M(B̄)) ≤ 21/ρ21/ρB̄ max{C0, C1}ϕM(β0(T ), β1(T )).

Now we show some examples where the theorem applies.

Example 1.3 (The complex method). It is also well known the complex interpolation
method is an exact interpolation method of exponent 0 < θ < 1. As a consequence

ϕ[θ](t, s) = t1−θsθ.

Then for any operator T : Ā −→ B̄ acting between Banach couples, with B̄ satisfying
the Approximation Hypothesis, the measure of non-compactness fulfills the inequality

β(T : Ā[θ] −→ B̄[θ]) ≤ C1−θ
0 Cθ

1β0(T )1−θβ1(T )θ.

Example 1.4 (The Peetre and Gustavsson-Peetre methods). These methods are also
known as the ±-methods, they depend on a functional parameter and have similar
definitions. Let ρ : (0,∞) −→ (0,∞) be a quasi-concave function (ρ(t) increases from
0 to ∞ and ρ(t)

t decreases from ∞ to 0). Assume also that sρ(λ) = ◦(max{1, λ}) as
λ → 0 or ∞. Given a quasi-Banach couple Ā = (A0, A1) Peetre defined in [24] the
space 〈Ā〉ρ as the set of all those sums

∑
m∈Z

um convergent in Σ(Ā) such that for
any bounded sequence of scalars, (εm)∞−∞, the inequalities∥∥∥∥ ∞∑

−∞
εm2jm um

ρ(2jm)

∥∥∥∥
Aj

≤ C sup
m∈Z

|εm|

hold for some constant C and j = 0, 1.
A few years later Gustavsson and Peetre introduced in [14] the space 〈Ā, ρ〉 in

a very similar way as Peetre did. See also [13, 21]. This time they required the
sequences (um)m∈Z to satisfy, besides the convergence of

∑
m∈Z

um in
∑

(Ā), that for
any bounded sequence of scalars, (εm)∞−∞, the inequalities∥∥∥∑

F
εm2jm um

ρ(2jm)

∥∥∥
Aj

≤ C sup
m∈Z

|εm|

hold for some constant C, any finite set F and j = 0, 1.
Both interpolation methods are of genus sρ. That is to say, if T : Ā −→ B̄ is a

bounded linear operator between two quasi-Banach couples then

‖T : 〈Ā〉ρ −→ 〈B̄〉ρ‖ ≤ C‖T‖0 sρ

(‖T‖1

‖T‖0

)
,

‖T : 〈Ā, ρ〉 −→ 〈B̄, ρ〉‖ ≤ C‖T‖0 sρ

(‖T‖1

‖T‖0

)
,
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where the constant C is independent of T , Ā and B̄. These estimates provide upper
bounds for the corresponding ϕ functions, actually

ϕ〈·〉ρ
(t, s) ≤ Ct sρ

(s

t

)
,

ϕ〈·,ρ〉(t, s) ≤ Ct sρ

(s

t

)
.

Now let B̄ be a quasi-Banach couple with the Approximation Hypothesis, then
for any bounded linear operator T : Ā −→ B the following inequalities hold:

β(T : 〈Ā〉ρ −→ 〈B̄〉ρ) ≤ Cβ0(T ) sρ

(β1

β0

)
,

β(T : 〈Ā, ρ〉 −→ 〈B̄, ρ〉) ≤ Cβ0(T ) sρ

(β1

β0

)
.

Example 1.5 (The Ovchinnikov Method). Let ρ : (0,∞) −→ (0,∞) be as in the
previous example. Given a Banach couple Ā consider the space

H1(Ā) = Corb�1(
1

ρ(2n) )
[
1, 
1(2−n)](Ā),

that is to say the space of all elements a ∈ Σ(Ā) such that

sup
‖T‖�1,Ā≤1

{‖Ta‖�1(
1

ρ(2n) )

}
< ∞,

where 
1 = (
1, 
1(2−n)). This interpolation method defined by Ovchinnikov in 1976
can be seen as the “dual” of Gustavsson-Peetre method, see [22, 23] and also [16] for
more information.

Ovchinnikov’s method is of genus sρ. Actually, if T : Ā −→ B̄ is a bounded linear
operator then

‖T : H1(Ā) −→ H1(B̄)‖ ≤ 2‖T‖0 sρ

(‖T‖1

‖T‖0

)
.

Hereby it follows ϕH1(t, s) ≤ 2t sρ( s
t ). If in addition the couple B̄ fulfills the Approx-

imation Hypothesis, then

β(T : H1(Ā) −→ H1(B̄)) ≤ Cβ0(T ) sρ

(β1(T )
β0(T )

)
.

2. Interpolation of the measure of non-compactness for Opera-
tors between N -tuples.

This section is devoted to interpolation methods for N -tuples of spaces. In order
to establish some previous and essential compactness results we will need a K-
functional over the N -tuples of spaces we handle. Following Cobos and Peetre in [8]

483 Revista Matemática Complutense
2006: vol. 19, num. 2, pags. 477–498



Pedro Fernández-Mart́ınez Interpolation of the measure of non-compactness

we choose a convex polygon Π = P1, . . . , PN in R
2 with vertices Pj = (xj , yj). Let

Ā = {A1, . . . , AN}be a quasi-Banach N -tuple. We can imagine each space of the N -
tuple located on the corresponding vertex of the polygon Π. Now, for any a ∈ ∑

(Ā)
and t, s > 0 define

K(t, s, a; Ā) = inf
{ N∑

j=1

txj syj‖aj‖Aj
; a =

N∑
j=1

aj

}
.

Let M be an interpolation method for N -tuples of spaces. Consider the function

ϕM (t1, . . . , tN ) = sup{ ‖T : M(Ā) −→ M(B̄)‖ }
where T runs over all those operators acting between interpolation N -tuples, T :
Ā −→ B̄, satisfying that ‖T : Aj −→ Bj‖ ≤ tj for 1 ≤ j ≤ N .

Associated to the interpolation method M and the polygon Π we define the func-
tion

ϕΠ
M(t, s) = ϕM(tx1sy1 , tx2sy2 , . . . , txN syN ).

The following inequality relates the K-functional, the norm on M(Ā) and the function
ϕΠ
M: for all a ∈ M(Ā) and t, s > 0

K(t, s, a : Ā) ≤ ϕΠ
M(t, s)‖a‖M(Ā).

That is to say, the interpolation space M(Ā) is of class C(ϕΠ
M; Ā). This puts us in

conditions to establish the following Lions-Peetre compactness theorem:

Theorem 2.1. Let Ā = {A1, A2, . . . , AN} be a quasi-Banach N -tuple, B a quasi-
Banach space and T : Ā −→ B a bounded linear operator. If for some nonempty
subset I ⊆ {1, 2, . . . , N}

(i) T : Aj −→ Bj is compact for every j ∈ I and

(ii) there exist sequences (tn) and (sn) in R
+ such that ∀j /∈ I

ϕΠ
M(tn, sn)
t
xj
n s

yj
n

→ 0 as n → ∞,

then the interpolated operator T : M(Ā) −→ B is compact.

This Lions-Peetre type compactness theorem is a first step to interpolation of
measure of non-compactness. However a more general result, in which the target
N -tuple does not degenerated into a single space, will be needed. We will state a
Persson type compactness theorem using an approximation hypothesis on the target
N -tuple B̄.

Subsequently, and as in the previous theorem, I will stand for a fixed nonempty
subset of {1, 2, . . . , N}. Given T : Ā −→ B̄ a bounded linear operator, one may think
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of I as the set of indexes for which the corresponding restrictions, T : Aj −→ Bj ,
are compact. We will consider interpolations methods for which there exist sequences
(tn) and (sn) in R

+ such that for every j �∈ I

ϕΠ
M(tn, sn)
t
xj
n s

yj
n

→ 0 as n → ∞. (2)

The following approximation hypothesis will be used to establish a Persson type
compactness theorem as well as to estimate the measure of non-compactness of the
interpolated operator.

Approximation Hypothesis. We say that a quasi-Banach N -tuple B̄ = {B1, B2,
. . . , BN} satisfies the Approximation Hypothesis if there exist positive constants C1,
C2, . . . , CN such that for every ε > 0 and finite sets F1 ⊂ B1, F2 ⊂ B2, . . . , FN ⊂ BN ,
there exists an operator P ∈ L(B̄, B̄) such that:

(i) P : Bj −→ Bj is compact for every j ∈ I.

(ii) P (Bk) ⊂ Δ(B̄) for k = 1, 2, . . . , N .

(iii) ‖I − P‖k ≤ Ck and ‖x − Px‖Bk
< ε for all x ∈ Fk, k = 1, 2, . . . , N .

As an example of a N -tuple that satisfies the Approximation Hypothesis we may
mention that if X is a locally compact space endowed with a positive measure μ and
1 ≤ p1, p2, . . . , pN < ∞, then the N -tuple

{Lp1(X, μ), Lp2(X, μ), . . . , LpN
(X, μ)}

satisfies the Approximation Hypothesis. In order to check this statement just follow
the ideas of Persson in [25] and those of Teixeira and Edmunds in [27].

Our next compactness theorem concerns interpolation methods that not only sat-
isfy condition (2) but whose function ϕM also satisfies

ϕM(ε̄) → 0 as ε → 0 (3)

where ε̄ = (ε1, ε2, . . . , εN ) with

εj =

{
ε if j ∈ I,

1 otherwise.

Theorem 2.2. Let Ā = {A1, . . . , AN} and B̄ = {B1, . . . , BN} be quasi-Banach N -
tuples, B̄ satisfying the Approximation Hypothesis. Let T : Ā −→ B̄ be a bounded
linear operator such that for every j ∈ I, T : Aj −→ Bj is compact. Then, if the
interpolation method M fulfills conditions (2) and (3), the operator T : M(Ā) −→
M(B̄) is compact.
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Once established these compactness theorem we focus on interpolation of measure
of non-compactness.

Theorem 2.3. Let M be an interpolation method that fulfills conditions (2) and (3).
Let T : Ā −→ B̄ be a bounded linear operator between quasi-Banach N -tuples, B̄ satis-
fying the Approximation Hypothesis. Then

β(T : M(Ā) −→ M(B̄)) ≤ CϕM(β1(T ), . . . , βN (T ))

for some constant C independent of T and Ā.

Proof. Given any ε > 0, use the ideas of Theorem 1.2 to choose an operator P ∈
L(B̄, B̄) such that

(i) P : Bj −→ Bj is compact for every j ∈ I.

(ii) P (Bk) ⊂ Δ(B̄) for k = 1, 2, . . . , N .

(iii) ‖T − TP‖k ≤ 21/ρBk Ckβk(T ) + ε for k = 1, 2, . . . , N .

Decompose T : M(Ā) −→ M(B̄) as T = (T − PT ) + PT . Since M(B̄) is within the
class of quasi-Banach spaces its norm, ‖ ‖M(B̄), is a ρ-norm for some ρ > 0. Then

β(T )ρ ≤ 2(β(T − PT )ρ + β(PT )ρ).

The operator PT : M(Ā) −→ M(B̄) is compact by Theorem 2.2. So β(PT ) = 0,
which leads us to the inequalities

β(T ) ≤ 21/ρβ(T − PT ) ≤ 21/ρ‖T − PT‖M
≤ 21/ρϕM(‖T − PT‖1, ‖T − PT‖2, . . . , ‖T − PT‖N )

≤ 21/ρϕM
(
21/ρB1 C1β1(T ) + ε, 21/ρB2 C2β2(T ) + ε, . . . , 21/ρBN CNβN (T ) + ε

)
.

Taking infimum on ε > 0, and using the facts that ϕM is homogeneous and non-
decreasing in each variable, we get that

β(T ) ≤ 21/ρϕM
(
21/ρB1 C1β1(T ), 21/ρB2 C2β2(T ), . . . , 21/ρBN CNβN (T )

)
≤ 21/ρ21/ρB̄ max{C1, C2, . . . , CN}ϕM(β1(T ), . . . , βN (T )).

Remark 2.4. In case we treat with interpolation methods associated to polygons, such
as J and K interpolation methods, see [8], or the Gustavsson-Peetre methods for N -
tuples, see [12], the hypotheses on the function ϕM, conditions (2) and (3), can be
easily verified.

These methods use a convex polygon Π = P1, . . . , PN and an interior point (α, β).
The known estimates for the norm of the interpolated operator establish the inequality

ϕM(t1, . . . , tN ) ≤ C max
P(α,β)

{
tci
i t

cj

j tck

k

}
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where P(α,β) stand for the set of all those triangles PiPjPk that contain the point (α, β)
and (ci, cj , ck) are the barycentric coordinates of (α, β) with respect to the vertices
Pi,Pj , and Pk. So, in order to satisfy hypothesis (2) we need all restrictions of the
operator, but at most two consecutive ones, to be compact. In fact, suppose the
non-compact restrictions of the operator are T : Ak −→ Bk and T : Ak+1 −→ Bk+1.
By [26, Lemma 1.4, chapter 4] there exist sequences (tn) and (sn) in R such that

lim
n

txj−xk
n syj−yk

n = 0 = lim
n

txj−xk+1
n syj−yk+1

n

and
txk−xk+1
n syk−yk+1

n = 1 ∀n ∈ N.

In particular

ϕΠ
M(tn, sn)
txk
n syk

n
=

ϕΠ
M(tx1

n sy1
n , . . . , txN

n syN
n )

txk
n syk

n

≤ C max
P(α,β)

{
(txi−xk

n syi−yk
n )ci(txj−xk

n syj−yk
n )cj (txl−xk

n syl−yk
n )cl

} → 0

as n → ∞. So, for these methods it suffices to ask all restrictions, except two consec-
utive ones, to be compact.

3. Interpolation of the Measure of Noncompactness by the real
method. The quasi-Banach case.

The real interpolation method does not depend heavily on all properties of the norms
involved. In fact, in most cases the triangle inequality can be replace by the more
general quasi-triangle inequality, ‖x+y‖ ≤ C(‖x‖+‖y‖). One can think that regarding
the real interpolation method those results that hold for Banach spaces must also
hold in the quasi-Banach spaces context. As an example we may recall that the well
known result of interpolation of compact operators between Banach couples by the
real method also holds for operators acting between quasi-Banach couples, see [9].
This is also the case of interpolation of measure of non-compactness, whose behavior
under interpolation by the real method was studied by Cobos, Mart́ınez, and the
present author in [5], see [6] for the polygon methods. The former mentioned paper
is developed in the Banach spaces context, however the result can be extended to the
quasi-Banach space framework.

For 0 < ρĀ < ∞ consider the spaces 
ρĀ
(Gm) and 
ρĀ

(2−mGm) as the collection
of all those sequences, (um)m∈Z in A0 ∩ A1, for which the respective quasi-norms

‖(um)‖�ρĀ
(Gm)=

(∑
m∈Z

J(2m, um; Ā)ρĀ

)1/ρĀ

or

‖(um)‖�ρĀ
(2−mGm) =

(∑
m∈Z

(2−mJ(2m, um; Ā))ρĀ

)1/ρĀ
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are finite. We will also deal with the spaces 
∞(Fm) and 
∞(2−mFm) defined as
usually.

Our next result will need the real interpolation spaces (A0, A1)θ,q;J and
(B0, B1)θ,q;K endowed with the corresponding discrete quasi-norms:

‖a‖θ,q;J = inf
a=

P
um

{(∑
m∈Z

(2−θmJ(2m, um; Ā))q
)1/q}

‖a‖θ,q;K =
(∑

m∈Z

(2−θmK(2m, a; B̄))q
)1/q

.

Now we are in conditions to formulate the following result:

Theorem 3.1. Let Ā = (A0, A1) and B̄ = (B0, B1) be quasi-Banach couples and let
T : Ā −→ B̄ be a bounded linear operator. Then for any 0 < q ≤ ∞ and 0 < θ < 1
we have

β(T : Āθ,q;J −→ B̄θ,q;K) ≤ Cβ(T : A0 −→ B0)1−θβ(T : A1 −→ B1)θ

Proof. The operator j, that associates to each element b in B0 + B1 the constant
sequence (. . . , b, b, b, . . . ), acts boundedly into 
∞(Fm) when it is restricted to B0, and
into 
∞(2−θmFm) when it is restricted to B1. Actually ‖j : B0 −→ 
∞(Fm)‖ ≤ 1,
‖j : B1 −→ 
∞(2−mFm)‖ ≤ 1 and

j : (B0, B1)θ,q;K −→ 
q(2−θmFm)

is a metric injection.
The operator π, that associates every sequence (um)m∈Z ⊂ A0 ∩ A1 with the el-

ement π
(
(um)

)
=

∑
m∈Z

um, is bounded from 
ρĀ
(Gm) + 
ρĀ

(2−mGm) into A0 +
A1. It is easy to check that ‖π : 
ρĀ

(Gm) −→ A0‖ ≤ 2 max{CA0 , CA1}, ‖π :

ρĀ

(2−mGm) −→ A1‖ ≤ 2 max{CA0 , CA1} and that

π : 
q(2−θmGm) −→ (A0, A1)θ,q;J

is a metric surjection. We have the following diagram of bounded operators:


ρĀ
(Gm) π �� A0

T �� B0
j �� 
q(2−θmFm)


ρĀ
(2−mGm) π �� A1

T �� B1
j �� 
∞(2−mFm)


q(2−θmGm) π �� (A0, A1)θ,q
T �� B0, B1)θ,q

j �� 
∞(Fm)

Put T̂ = jTπ. Properties of π and j yield that

β0(T̂ ) = β
(
T̂ : 
ρĀ

(Gm) −→ 
∞(Fm)
)

≤ ∥∥π : 
ρĀ
(Gm) −→ A0

∥∥β
(
T : A0 −→ B0

) ∥∥j : B0 −→ 
∞(Fm)
∥∥

≤ 2 max{CA0 , CA1}β
(
T : A0 −→ B0

)
.
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Similarly

β1(T̂ ) = β(T̂ 
ρĀ
(2−mGm) −→ 
∞(2−mFm)) ≤ 2 max{CA0 , CA1}β(T : A1 −→ B1),

and finally, since max{1, 2
1−q

q }max{CB0 , CB1} is a valid constant for the quasinorm
of (B0, B1)θ,q;K ,

βθ,q(T ) = β(T : (A0, A1)θ,q;J −→ (B0, B1)θ,q;K)

= β(Tπ : 
q(2−θmGm) −→ (B0, B1)θ,q;K)

≤ 2 max
{
1, 2

1−q
q

}
max{CB0 , CB1}β(T̂ ). (4)

So, in order to establish the theorem it suffices to estimate the measure of non-
compactness β(T̂ : 
q(2−θmGm) −→ 
q(2−θmFm)). Let’s start by introducing a family
of operators on the sequence space 
ρĀ

(Gm) + 
ρĀ
(2−mGm). Define

Pn, P−
n , P+

n : 
ρĀ
(Gm) + 
ρĀ

(2−mGm) −→ 
ρĀ
(Gm) + 
ρĀ

(2−mGm)

as

Pn(u) = (. . . , 0, 0, 0, u−n, u−n+1, . . . , un−1, un, 0, 0, 0, . . . )

P+
n (u) = (. . . , u−n−3, u−n−2, u−n−1, 0, 0, 0, . . . , 0, 0, 0, . . . )

P−
n (u) = (. . . , 0, 0, 0, . . . , 0, 0, 0, un+1, un+2, un+3, . . . ).

Clearly these operators satisfy the following properties:

(I) The identity operator on 
1(Gm) + 
1(2−mGm) can be decomposed as I =
Pn + P+

n + P−
n for all n ∈ N.

(II) The operators are uniformly bounded, in fact:

‖Pn : 
ρĀ
(Gm) −→ 
ρĀ

(Gm)‖ = ‖Pn : 
ρĀ
(2−mGm) −→ 
ρĀ

(2−mGm)‖ = 1

‖P+
n : 
ρĀ

(Gm) −→ 
ρĀ
(Gm)‖ = ‖P+

n : 
ρĀ
(2−mGm) −→ 
ρĀ

(2−mGm)‖ = 1

‖P−
n : 
ρĀ

(Gm) −→ 
ρĀ
(Gm)‖ = ‖P−

n : 
ρĀ
(2−mGm) −→ 
ρĀ

(2−mGm)‖ = 1

(III) The norms of the operators acting from 
ρĀ
(Gm) into 
ρĀ

(2−mGm) or viceversa
are small, precisely

‖P+
n : 
ρĀ

(Gm) −→ 
ρĀ
(2−mGm)‖

= ‖P−
n : 
ρĀ

(2−mGm) −→ 
ρĀ
(Gm)‖ = 2−(n+1).

On the sequence space 
∞(Fm) + 
∞(2−mFm) we can defined analogous operators,
Qn, Q+

n and Q−
n , satisfying the corresponding versions of (I), (II), and (III).

489 Revista Matemática Complutense
2006: vol. 19, num. 2, pags. 477–498



Pedro Fernández-Mart́ınez Interpolation of the measure of non-compactness


q(2−θmGm)
Q+

n
bTP−

n ��

i

��


q(2−θmFm)

(

ρĀ

(Gm), 
ρĀ
(2−mGm)

)
θ,q;J

Q+
n

bTP−
n ��

(

∞(Fm), 
∞(2−mFm)

)
θ,q;K

i

��

Figure 1

Use these families of operators to decompose T̂ : 
q(2−θmGm) −→ 
q(2−θmFm) as

T̂ = T̂ (Pn + P+
n + P−

n ) = T̂Pn + (Qn + Q+
n + Q−

n )T̂ (P+
n + P−

n )

= T̂Pn + QnT̂ (P+
n + P−

n ) + Q+
n T̂P−

n + Q−
n T̂P+

n + Q+
n T̂P+

n + Q−
n T̂P−

n .

Recall that max{1, 2
1−q

q }max{CB0 , CB1} is a valid constant for the quasinorm
of 
q(2−θmFm), and so ‖·‖�q(2−θmFm) fulfills the inequality

‖·‖∗ ≤ ‖·‖ρ
�q(2−θm)Fm

≤ 2‖·‖∗

where ‖·‖∗ is a norm on 
q(2−θmFm) and ρ satisfies(
max

{
1, 2

1−q
q

}
max{CB0 , CB1}

)ρ = 2. (5)

Using the previous considerations it is easy to establish the estimate

β(T̂ )ρ ≤ 2
[
β(T̂Pn)ρ + β(QnT̂ (P+

n + P−
n ))ρ + β(Q+

n T̂P−
n )ρ

+ β(Q−
n T̂P+

n )ρ + β(Q+
n T̂P+

n )ρ + β(Q−
n T̂P−

n )ρ
]
. (6)

Now we proceed to estimate each one of these terms. Let’s start with the term
β(Q+

n T̂P−
n ) = β(Q+

n T̂P−
n : 
q(2−θmGm) −→ 
q(2−θmFm)). Factorize the operator

according to the diagram in figure 1.
It is easily checked that∥∥
q(2−θmGm) −→ (


ρĀ
(Gm), 
ρĀ

(2−mGm)
)
θ,q;J

∥∥ = 1

and ∥∥(

∞(Fm), 
∞(2−mFm)

)
θ,q;K

−→ 
q(2−θmFm)
∥∥ = max{CB0 , CB1}.

We will also need the norm of the inclusion from a J-space into a K-space, ‖i :
(·, ·)θ,q;J ↪→ (·, ·)θ,q;K‖ = δ, where δ = 1

3−2θ−21−θ in the Banach case and δ =

21/η
[

1−2−η

1−2−θη−2(θ−1)η+2−η

]1/η with η < min{ρĀ, q} in the quasi-Banach case.
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Estimating β(Q+
n T̂P−

n ) through the factorization we have that

β(Q+
n T̂P−

n )

≤ max{CB0 , CB1}βθ,q(Q+
n T̂P−

n ) ≤ max{CB0 , CB1}
× ∥∥Q+

n T̂P−
n :

(

ρĀ

(Gm), 
ρĀ
(2−mGm)

)
θ,q;J

−→ (

∞(Fm), 
∞(2−mFm)

)
θ,q;K

∥∥
≤ max{CB0 , CB1}δ‖Q+

n T̂P−
n ‖θ,q;K

≤ 2θ max{CB0 , CB1}δ‖Q+
n T̂P−

n ‖1−θ
0 ‖Q+

n T̂P−
n ‖θ

1.

The norm ‖Q+
n T̂P−

n ‖0 is upper bounded by ‖T̂‖0 while for the norm ‖Q+
n T̂P−

n ‖1

the factorization


ρĀ
(Gm)

bT �� 
∞(Fm)

Q+
n

��

ρĀ

(2−mGm)

P−
n

��


∞(2−mFm)

can be used to establish the following inequalities:

‖Q+
n T̂P−

n ‖1 = ‖Q+
n T̂P−

n : 
ρĀ
(2−mGm) −→ 
∞(2−mFm)‖

≤ ‖P−
n : 
ρĀ

(2−mGm) −→ 
ρĀ
(Gm)‖‖T̂ : 
ρĀ

(Gm) −→ 
∞(Fm)‖
× ‖Q+

n : 
∞(Fm) −→ 
∞(2−mFm)‖ ≤ 2−(n+1)‖T̂‖02−(n+1) → 0

as n → ∞. Then,
lim
n

β(Q+
n T̂P−

n ) = 0. (7)

Similarly
lim
n

β(Q−
n T̂P+

n ) = 0. (8)

Next we estimate the term

β(Q+
n T̂P+

n ) = β
(
Q+

n T̂P+
n : 
q(2−θmGm) −→ 
q(2−θmFm)

)
.

As it was done before we factorize the operator Q+
n T̂P+

n as we did with Q+
n T̂P−

n

according to figure 1.

β(Q+
n T̂P+

n )

≤ max{CB0 , CB1}
× βθ,q

(
Q+

n T̂P+
n

(

ρĀ

(Gm), 
ρĀ
(2−mGm)

)
θ,q;J

−→ (

∞(Fm), 
∞(2−mFm)

)
θ,q;K

)
≤ 2θ max{CB0 , CB1}δ‖Q+

n T̂P+
n ‖1−θ

0 ‖Q+
n T̂P+

n ‖θ
1.
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Since ‖Q+
n T̂P+

n ‖0 ≤ ‖T̂P+
n ‖0 and

(‖T̂P+
n ‖0

)
n

is a monotone decreasing sequence,
lower bounded by zero, we can put λ = limn‖T̂P+

n ‖0. Choose a sequence (un)n∈N ⊂
U�ρĀ

(Gm) such that ‖T̂P+
n un‖�∞(Fm) → λ.

Given ε > 0, choose a finite collection of elements of B0, say b1, b2, . . . , bs, such
that

Tπ(U�ρĀ
(Gm)) ⊆

s⋃
r=1

{br + (β0(T ) + ε)UB0}.

Hence, for some subsequence (n′) of N and some 1 ≤ r ≤ s, say r = 1,

TπP+
n′un′ ∈ {b1 + (β0(T ) + ε)UB0}

for all n′. Let’s compute ‖j(b1)‖�∞ ,

K(2m, b1; B̄) ≤ ‖b1 − TπQ+
n′un′‖0 + 2m‖TπQn′un′‖1

≤ (β0(T ) + ε) + 2m‖T‖1 ‖π‖1 ‖Q+
n′ : 
∞(Fm) −→ 
∞(2−mFm)‖

≤ (β0(T ) + ε) + 2m‖T‖1 ‖π‖1 2−(n′+1) → β0(T ) + ε

as n′ → ∞. So we have the following estimate for λ:

λ = lim
n′

‖T̂P+
n′un′‖�∞(Fm) ≤ lim

n′
sup
m

‖TπP+
n′un′‖Fm

≤ lim
n′

sup
m

max{CB0 , CB1}
(‖TπP+

n′un′ − b1‖Fm
+ ‖b1‖Fm

)
≤ 2 max{CB0 , CB1}(β0(T ) + ε).

Taking infimum in ε > 0 establish that

λ = lim
n
‖T̂P+

n ‖0 ≤ 2 max{CB0 , CB1}β0(T ).

Now we estimate the term

‖Q+
n T̂P+

n ‖1 = ‖Q+
n T̂P+

n : 
ρĀ
(2−mGm) −→ 
∞(2−mFm)‖.

First of all choose an arbitrary ε > 0. Sequences having finitely many non-zero terms
are dense in 
ρĀ

(2−mGm), and since β1(T̂ ) ≤ 2 max{CA0 , CA1}β1(T ), for every ε′ > 0
we can find a cover of T̂ (U�ρĀ

(2−mGm)) of the form

T̂ (U�ρĀ
(2−mGm))

⊆
s⋃

j=1

{
T̂ xj +

(
2 max{CB0 , CB1}2 max{CA0 , CA1}β1(T ) + ε′

)U�∞(2−mFm)

}
,
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where, for every j, T̂ xj ∈ 
∞(Fm)
⋂


∞(2−mFm). Use (III) to find n0 ∈ N such that
for n ≥ n0, and any 1 ≤ j ≤ s, ‖Q+

n T̂ xj‖�∞(2−mFm) < ε′. Then, if u ∈ U�ρĀ
(2−mGm)

‖Q+
n T̂P+

n u‖�∞(2−mFm)

≤ max{CB0 , CB1}
(‖Q+

n T̂P+
n u − Q+

n T̂ xj‖�∞(2−mFm)+‖Q+
n T̂ xj‖�∞(2−mFm)

)
≤ max{CB0 , CB1}

(
2 max{CB0 , CB1}2 max{CA0 , CA1}β1(T ) + ε′

)
+ ε′.

That is to say, if n is large enough and ε′ sufficiently small

‖Q+
n T̂P+

n ‖1 ≤ 2 max{CB0 , CB1}22 max{CA0 , CA1}β1(T ) + ε.

From the estimates of λ and ‖Q+
n T̂P+

n ‖1 we conclude that for n large enough

β(Q+
n T̂P+

n ) ≤ 21+2θ max{CB0 , CB1}2+θ max{CA0 , CA1}θδβ0(T )1−θβ1(T )θ + ε. (9)

The same estimate is obtained for the term β(Q−
n T̂P−

n ), namely

β(Q−
n T̂P−

n ) ≤ 21+2θ max{CB0 , CB1}2+θ max{CA0 , CA1}θδβ0(T )1−θβ1(T )θ + ε. (10)

The estimates of the two remaining terms are based on the construction of the
real interpolation method. Let’s start with the term β(T̂Pn).

The closed unit ball, U�2n+1
q

, of 
2n+1
q (R2n+1 with the 
q-norm) is compact. So

given ε > 0 there exists a finite cover of U�2n+1
q

by balls of radius ε, say

U�2n+1
q

⊆
s⋃

r=1

{μr + εU�2n+1
q

}.

Given any u ∈ U�q
(2−θmGm)

‖(2−θmJ(2m, um))n
−n‖�2n+1

q
≤

(∑
m∈Z

(2−θmJ(2m, um))q
)1/q

≤ 1.

So, (2−θmJ(2m, um))n
−n ∈ {μr + εU�2n+1

q
} for some 1 ≤ r ≤ s. That is to say(∑

m∈Z
|2−θmJ(2m, um) − μr(m)|q)1/q ≤ ε, which implies that for −n ≤ m ≤ n

2−θmJ(2m, um) ≤ |μr(m)| + ε.

In particular, by taking any ki > βi(T ), for i = 0, 1 and ν ∈ Z such that 2ν−1 ≤ k1
k0

≤
2ν we obtain that

2−θ
(
2m−ν k1

k0

)−θ

J
(
2m−ν k1

k0
, um

)
≤ 2−θmJ(2m, um) ≤ |μr(m)| + ε
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which is equivalent to

‖um‖A0≤ 2θ
(
2m−ν k1

k0

)θ

(|μr(m)| + ε) = Ψ0
r(m)

and

‖um‖A1≤ 2θ
(
2m−ν k1

k0

)θ−1

(|μr(m)| + ε) = Ψ1
r(m).

Recall that ki > βi(T ). So we can cover T (UA0) and T (UA1) by finitely many balls of
radius k0 and k1 respectively, say

T (UA0) ⊆
n0⋃

j=1

{b0
j + k0UB0} and T (UA1) ⊆

n1⋃
j=1

{b1
j + k1UB1}

Hence, for any −n ≤ m ≤ n there exists 1 ≤ r ≤ s such that

Tum ∈ Ψ0
r(m){b0

j + k0UB0} and Tum ∈ Ψ1
r(m){b1

l + k1UB1}
for some 1 ≤ j ≤ n0 and 1 ≤ l ≤ n1. Here r depends only on u while j and l depend
on m.

Choose elements, dp(m), in all possible intersections of these sets, say

dp(m) ∈ Ψ0
r(m){b0

j + k0UB0}
⋂

Ψ1
r(m){b1

l + k1UB1}
where the index p = p(j, l, r) depends on j, l and r. The number of elements dp(m)’s
is always finite although it may change with m. These elements belongs to B0 ∩ B1

and by construction, given any (um) ∈ U�q(2−θmGm) we can find some 1 ≤ r ≤ s and
{dp(m)}n

−n such that

J(2m−ν , Tum − dp(m); B̄) = max{‖Tum − dp(m)‖B0 , 2
m−ν‖Tum − dp(m)‖B1}

≤ max{2CB0Ψ
0
r(m)k0, 2m−ν2CB1Ψ

1
r(m)k1}

= max{CB0 , CB1}2θ+12(m−ν)θk1−θ
0 kθ

1(|μr(m)| + ε)

and so we can estimate the norm ‖TπPnu − ∑n
−n dp(m)‖(B0,B1)θ,q;J , actually( n∑

−n

(
2−θ(m−ν)J(2m−ν , Tum − dp(m))

)q
) 1

q

≤ max{CB0 , CB1}21+θk1−θ
0 kθ

1 max
{
1, 2

1−q
q

}(
1 + (2n + 1)1/qε

)
.

Hence∥∥∥∥TπPnu −
n∑
−n

dp(m)
∥∥∥∥

(B0,B1)θ,q;K

≤ δ21+θ max{CB0 , CB1}k1−θ
0 kθ

1 max
{
1, 2

1−q
q

}(
1 + (2n + 1)1/qε

)
,
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establishing that∥∥∥∥T̂Pnu − j

( n∑
−n

dp(m)
)∥∥∥∥

�q(2−θmFm)

≤ δ21+θ max{CB0 , CB1}k1−θ
0 kθ

1 max
{
1, 2

1−q
q

}(
1 + (2n + 1)1/qε

)
.

Since there are finitely many elements of the form j
(∑n

−n dp(m)
)
, this shows, after

taking infimum on ε > 0 and on ki > βi(T ), that

β(T̂Pn) ≤ 21+θδ max{CB0 , CB1}max{1, 2
1−q

q }β0(T )1−θβ1(T )θ. (11)

Finally, in order to estimate the term β(QnT̂ (P+
n + P−

n )), note that

β(QnT̂ (P+
n + P−

n )) = β(QnjTπ(P+
n + P−

n ))

≤ β(QnjT : (A0, A1)θ,q;J −→ 
q(2−θmFm)).

Given any ε > 0, find {μr}s
r=1 ⊂ U�2n+1

q
such that for any λ ∈ U�2n+1

q

min
1≤r≤s

{‖λ − μr‖�2n+1
q

} ≤ ε.

Choose also ki > βi(T ) (i = 0, 1) and find ν ∈ Z such that 2ν−1 ≤ k1
k0

≤ 2ν . Then for
a ∈ U(A0,A1)θ,q;J ( n∑

m=−n

(2−θ(m+ν)K(2m+ν , a))q

)1/q

≤ ‖a‖θ,q;K ≤ δ

and so there exists 1 ≤ r ≤ s such that∥∥∥1
δ

(
2−θ(m+ν)K(2m+ν , a)

)n

−n
− μr

∥∥∥
�2n+1

q

< ε.

In particular, for m = −n, . . . , 0 . . . , n,

2−θ(m+ν)K(2m+ν , a) ≤ δ(μr(m) + ε)

and it is easily deduced that

K
(
2m k1

k0
, a

) ≤ K(2m+ν , a) ≤ 2θδ
(
2m k1

k0

)θ(μr(m) + ε).

Choose decompositions of a = a0,m + a1,m such that for −n ≤ m ≤ n

‖a0,m‖A0 + 2m k1

k0
‖a1,m‖A1 ≤ 2θδ

(
2m k1

k0

)θ

(μr(m) + ε).
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Then, by our choice of ki > βi(T ), there are finite sets {bi
m,j}h

j=1 ⊂ Bi such that for
i = 0, 1

min
1≤j≤h

{‖Tai,m − bi
m,j‖Bi} ≤ 2θδ2m(θ−i)k1−θ

0 kθ
1(μr(m) + ε).

Let W stand for the collection of all vector-valued sequences
(
zw(m)

)
defined by

zw(m) =

{
0 if m �∈ [−n, n],
b0
m,j + b1

m,l if − n ≤ m ≤ n.

(j and l run freely on their respective domains.) W is a finite subset of 
q(2−θmFm)
and, given any a ∈ U(A0,A1)θ,q;J we can find zw ∈ W such that for, −n ≤ m ≤ n,
zw(m) = b0

m,j + b1
m,l satisfying

‖Ta0,m
− b0

m,j‖B0≤ 2θδ2mθk1−θ
0 kθ

1(μr(m) + ε)

and

‖Ta1,m
− b1

m,l‖B1≤ 2θδ2m(θ−1)k1−θ
0 kθ

1(μr(m) + ε)

where a = a0,m + a1,m is the previously described decomposition of a. It follows that

‖QnjTa − zw‖�q(2−θmFm) =
( n∑

−n

(
2−θmK(2m, Ta0,m − b0

m,j + Ta1,m − b1
m,l

)q
)1/q

≤
( n∑

−n

(
21+θδk1−θ

0 kθ
1(μr(m) + ε)

)q
)1/q

≤ 21+θδk1−θ
0 kθ

1 max{1, 2
1−q

q }(1 + (2n + 1)1/qε
)
.

Therefore

β
(
QnjT : (A0, A1)θ,q;J −→ 
q(2−θmFm)

) ≤ 21+θδ max
{
1, 2

1−q
q

}
β0(T )1−θβ1(T )θ,

and so
β
(
QnT̂ (P+

n + P−
n )

) ≤ 21+θδ max
{
1, 2

1−q
q

}
β0(T )1−θβ1(T )θ. (12)

Now, combine estimates (6), (7), (8), (9), (10), (11), (12), and take infimum in ε > 0,
to obtain the inequality

β(T̂ ) ≤ 21+ 1
ρ +θδCβ0(T )1−θβ1(T )θ,

where here the constant

C =
[
2 + max{1, 2

1−q
q }ρ + 2

(
2θ max{CB0 , CB1}2+θ max{CA0 , CA1}θ

)ρ)]1/ρ
.

Equation (4), along with equation (5), establishes that

βθ,q(T ) ≤ 22+ 2
ρ +θδCβ0(T )1−θβ1(T )θ.
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497 Revista Matemática Complutense
2006: vol. 19, num. 2, pags. 477–498



Pedro Fernández-Mart́ınez Interpolation of the measure of non-compactness

[24] J. Peetre, Sur l’utilisation des suites inconditionellement sommables dans la théorie des espaces
d’interpolation, Rend. Sem. Mat. Univ. Padova 46 (1971), 173–190.

[25] A. Persson, Compact linear mappings between interpolation spaces, Ark. Mat. 5 (1964), 215–219
(1964).

[26] R. Romero, Métodos de interpolación para más de dos espacios de Banach, Ph.D. thesis, Uni-
versidad Complutense de Madrid, 2005.

[27] M. F. Teixeira and D. E. Edmunds, Interpolation theory and measures of noncompactness,
Math. Nachr. 104 (1981), 129–135.
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