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ABSTRACT

We consider the Poisson reduced space (T ∗Q)/K, where the action of the com-
pact Lie group K on the configuration manifold Q is of single orbit type and
is cotangent lifted to T ∗Q. Realizing (T ∗Q)/K as a Weinstein space we deter-
mine the induced Poisson structure and its symplectic leaves. We thus extend
the Weinstein construction for principal fiber bundles to the case of surjective
Riemannian submersions Q � Q/K which are of single orbit type.
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Introduction

The present paper deals with Poisson reduction of a cotangent bundle T ∗Q with
respect to a Hamiltonian action by a compact Lie groupK that comes as the cotangent
lifted action from the configuration manifold Q. We assume that Q is Riemannian and
K acts on Q by isometries. Further, we suppose that Q is of single isotropy type, i.e.,
Q = Q(H) for some subgroup H of K. The cotangent bundle T ∗Q is equipped with
its canonical symplectic form, and we have a standard momentum map μ : T ∗Q→ k∗.
Then the orbit space Q/K is a smooth manifold. In the presence of a single non-trivial
isotropy on the configuration space Q one gets a non-trivial isotropy lattice on T ∗Q.
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17108-N04.
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In Hochgerner [14] stratified symplectic reduction of T ∗Q was studied under these
assumptions. In particular, the following result was proved, following an approach
that is generally called Weinstein construction: Let O be a coadjoint orbit lying in
the image of the standard momentum map μ. Then each smooth symplectic stratum
(T ∗Q//OK)(L) of the reduced space can be globally realized as

(W//OK)(L) = T ∗(Q/K) ×Q/K
( ⊔
q∈Q

O ∩ Ann kq

)
(L)

/
K

where

W := (Q×Q/K T ∗(Q/K)) ×Q
⊔
q∈Q

Ann kq ∼= T ∗Q

as symplectic manifolds with a Hamiltonian K-action. Moreover, the reduced sym-
plectic structure in terms intrinsic to this realization was computed. These results
were applied to Calogero-Moser systems with spin associated to polar representations
of compact Lie groups.

In the above setting the reduced space T ∗Q/K is a (singular) Poisson space in
a natural way. The underlying theorem due to Ortega and Ratiu [19] is presented
in 2.2. The goal of this paper is to determine the reduced Poisson bracket on T ∗Q/K.

In section 2 we give the necessary background from singular geometry.
Section 3 presents the basic setting and the prerequisites of the paper, in particular,

recalling from Hochgerner [14] the construction of the Weinstein space W and the
intrinsic symplectic structure on it.

Finally, in section 4 we compute the reduced gauged Poisson bracket on the We-
instein realization W/K of T ∗Q/K. This is done by determining the Poisson bracket
on W via the symplectic structure intrinsic to this space and then using the identi-
fication C∞(W/K) ∼= C∞(W)K . In particular, it will be important to introduce a
suitably chosen linear connection Ã on the bundle

W −→ Q×Q/K T ∗(Q/K).

The formula for the reduced Poisson bracket on W/K will involve the canonical
Poisson structure on T ∗(Q/K), the pairing of a curvature term associated to the
mechanical connection A on Q → Q/K (see section 3) with the appropriate point of⊔
q∈Q Ann kq, and the Lie bracket of the fiber derivatives on

⊔
q∈Q Ann kq.

Note that this result generalizes the formula for the reduced Poisson bracket on
T ∗Q/K presented in Zaalani [34] and in Perlmutter and Ratiu [23] for the case that
K acts on Q freely.

In section 5 we compute the symplectic leaves of the reduced space W/K, and in
section 6 we give examples of our constructions.
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1. Conventions

Let K be a Lie group acting on a manifold M . In fact, we will only be concerned with
the case where K is compact, M is Riemannian, and K acts on M through isometries,
i.e., M is a Riemannian K-space. The action will be written as l : K ×M → M ,
(k, x) �→ l(k, x) = lk(x) = lx(k) = k.x. Sometimes the action will be lifted to
the tangent bundle TM . That is, we will consider h · (x, v) := (h · x, h · v) :=
T lh · (x, v) = (lh(x), Txlh ·v) where (x, v) ∈ TM . As the action is a transformation by
a diffeomorphism it may also be lifted to the cotangent bundle. This is the cotangent
lifted action which is defined by h·(x, p) := (h·x, h·p) := T ∗lh·(x, p) = (h·x, T ∗

h·xlh−1 ·p)
where (x, p) ∈ T ∗M .

The fundamental vector field is going to play repeatedly an important role. It is
defined by

ζX(x) :=
∂

∂t

∣∣∣∣
0

l(exp(+tX), x) = Tel
x(X)

where X ∈ k. The fundamental vector field mapping k → X(M), X �→ ζX is a Lie
algebra anti-homomorphism. By definition the flow of ζX is given by lexp(tX).

If the action by K on M is proper, in the sense that K ×M →M ×M , (k, x) �→
(x, l(k, x)) is a proper mapping, then we have the Slice and Tube Theorem at our
disposal. Properness is automatic for K compact. An exposition of these facts can
be found in Palais and Terng [22] or Ortega and Ratiu [20], for example.

Let H be a subgroup of K. A point x ∈ M is said to be of isotropy or orbit
type H if its isotropy group Kx = { k ∈ K : k.x = x } is conjugate to H within
K for which we shall write Kx ∼ H. The family of subgroups of K conjugate to H
within K is denoted by (H) and called the conjugacy class of H. We will deal with
the isotropy or orbit type submanifold M(H) := {x ∈ M : Kx ∼ H } of type H, the
set MH := {x ∈ M : Kx = H } of points that have symmetry type H, and the set
Fix(H) := MH := {x ∈ M : H ⊆ Kx } of points that are fixed by H. Then M(H)

is a submanifold of M , Fix(H) is a totally geodesic submanifold of M , and MH is an
open submanifold of Fix(H).

If (M,ω) is a symplectic manifold we define the associated Poisson bracket and
Hamiltonian vector field by

{f, g} = ω(∇ω
f ,∇ω

g ) = −∇ω
f (g)

where f, g ∈ C∞(M). This choice of sign is compatible with that in [20]. It is,
however, not universal.

2. Singular geometry

2.1. Singular spaces and smooth structures

First we introduce the Whitney condition (b) which will be necessary in the defini-
tion of Whitney stratified spaces — see Definition 2.8. We follow the approach of
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Mather [17].

Definition 2.1 (Whitney condition (b) in R
n). Let X, Y be disjoint sub-manifolds

of R
n with dimX = r. The pair (X,Y ) is said to satisfy condition (b) at y ∈ Y if

the following is true. Consider sequences (xi)i, (yi)i in X, Y , respectively, such that
xi → y and yi → y. Assume that Txi

X converges to some r-plane τ ⊆ TyR
n = R

n,
and that the lines spanned by the vectors yi − xi converge — in RPn−1 — to some
line l ⊆ R

n = TyR
n. Then l ⊆ τ . The pair (X,Y ) satisfies condition (b) if it does so

at every y ∈ Y .

Obviously condition (b) behaves well under diffeomorphisms in the following sense:
for i = 1, 2 consider pairs (Xi, Yi) in R

n, points yi ∈ Yi, open neighborhoods Ui ⊆ R
n

of yi, and a diffeomorphism φ : U1 → U2 sending y1 to y2 and satisfying φ(U1∩X1) =
U2 ∩ X2 as well as φ(U1 ∩ Y1) = U2 ∩ Y2. Thus it makes sense to formulate this
condition for manifolds.

Definition 2.2 (Whitney condition (b)). Let M be a manifold and X,Y disjoint
sub-manifolds. Now (X,Y ) is said to satisfy condition (b) if the following holds for all
y ∈ Y . Let (U, φ) be a chart around y. Then the pair (φ(X ∩ U), φ(Y ∩ U)) satisfies
condition (b) at φ(y).

By the above this definition is independent of the chosen chart in the formulation.

Example 2.3. Consider M = C
3 = { (x, y, z) } with Y the z-axis, and X = { (x, y, z) :

y2 +x3−z2x2 = 0 }\Y . Then the pair (X,Y ) satisfies condition (b) at all points in Y
except at y = 0. Notice that we can refine the decomposition ofM as (X,Y \{0}, {0}).
Now all pairs in this finer decomposition satisfy condition (b).

Let X be a para-compact and second countable topological Hausdorff space, and
let (I,≤) be a partially ordered set.

Definition 2.4 (Decomposed space). An I-decomposition of X is a locally finite
partition of X into smooth manifolds Si, i ∈ I which are disjoint (but may consist of
finitely many connected components with differing dimension), and satisfy:

(i) Each Si is locally closed in X;

(ii) X =
⋃
i∈I Si;

(iii) Sj ∩ Si 
= ∅ ⇐⇒ Sj ⊆ Si ⇐⇒ j ≤ i.

The third condition is called condition of the frontier. The manifolds Si are called
strata or pieces. In the case that j < i one often writes Sj < Si and calls Sj incident
to Si or says Sj is a boundary piece of Si.

We define the dimension of a manifold consisting of finitely many connected com-
ponents to be the maximum of the dimensions of the manifold’s components.
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The dimension of the decomposed space X is defined as

dimX := sup
i∈I

dimSi

and we will only be concerned with spaces where this supremum is attained.
The depth of the stratum Si of the decomposed space X is defined as

depthSi := sup{ l ∈ N : there are strata Si0 = Si, Si1 , . . . , Sil
such that Si0 < · · · < Sil },

Notice that depthSi is always finite; indeed, otherwise there would be an infinite
family (Sj)j∈J with Sj > Si thus making any neighborhood of any point in Si meet
all of the Sj which contradicts local finiteness of the decomposition. The depth of X
is

depthX := sup{depthSi : i ∈ I }.
Thus, ifX consists of just one stratum, then depthX = 0. From the frontier condition
we have that depthSi ≤ dimX − dimSi, and also depthX ≤ dimX.

A simple example for a decomposed space is a manifold with boundary with big
stratum the interior and small stratum the boundary. Also manifolds with corners
are decomposed spaces in the obvious way. Likewise the cone CM := (M × [0,∞))/
(M × {0}) over a manifold M is a decomposed space, the partition being that into
cusp and open cylinder M × (0,∞).

The following definition of singular charts and smooth structures on singular spaces
is due to Pflaum [25, section 2].

Definition 2.5 (Singular charts). Let X =
⋃
i∈I Si be a decomposed space. A

singular chart (U,ψ) with patch U an open subset of X is to satisfy the following.

(i) ψ(U) is locally closed in R
n;

(ii) ψ : U → ψ(U) is a homeomorphism;

(iii) For every stratum Si that meets U the restriction ψ|Si∩U : Si∩U → ψ(Si∩U)
is a diffeomorphism onto a smooth sub-manifold of R

n.

Two singular charts ψ : U → R
n and φ : V → R

m are called compatible at x ∈ U ∩ V
if there is an open neighborhood W of x in U ∩ V , a number N ≥ max{n,m}, and a
diffeomorphism f : W1 →W2 between open subsets of R

N such that:

W

ψ

��

φ

�����������

ψ(W )
f |ψ(W )

��
� �

��

φ(W )� �

��
R
N W1

f ����
�� W2

� � ��
R
N
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It follows that f |ψ(W ) : ψ(W ) → φ(W ) is a homeomorphism. Further, for all strata S
that meet W the restriction f |ψ(W ∩S) : ψ(W ∩S) → φ(W ∩S) is a diffeomorphism
of sub-manifolds of R

N . The charts (U,ψ) and (V, φ) are called compatible if they
are so at every point of the intersection U ∩ V . It is straightforward to check that
compatibility of charts defines an equivalence relation.

A family of compatible singular charts on X such that the union of patches covers
all of X is called a singular atlas. Two singular atlases are said to be compatible if
all charts of the first are compatible with all charts of the second. Again it is clear
that compatibility of atlases forms an equivalence relation.

Let A be a singular atlas on X. Then we can consider the family of all singular
charts that belong to some atlas compatible with A to obtain a maximal atlas Amax.

Definition 2.6 (Smooth structure). Let X =
⋃
i∈I Si be a decomposed space. A

maximal atlas A on X is called a smooth structure on the singular space X. A
continuous function f : X → R is said to be smooth if the following holds. For all
charts ψ : U → R

n of the atlas A there is a smooth function F : R
n → R such that

f |U = F ◦ ψ. The set of all smooth functions on X is denoted by C∞(X).
A continuous map f : X → Y between decomposed spaces with smooth structures

is called smooth if f∗C∞(Y ) ⊆ C∞(X). An isomorphism F : X → Y between
decomposed spaces is a homeomorphism that is smooth in both directions and maps
strata of X diffeomorphically onto strata of Y .

The smooth structure thus defined on decomposed spaces is in no way intrinsic
but is a structure that is additionally defined to do analysis on decomposed spaces.
Also a smooth map f : X → Y between decomposed spaces need not at all be strata
preserving.

Definition 2.7 (Cone space). A decomposed spaceX =
⋃
i∈I Si is called a cone space

if the following is true. Let x0 ∈ X arbitrary and S the stratum passing through x0.
Then there is an open neighborhood U of x0 in X, there is a decomposed space L
with global chart ψ : L → Sl−1 ⊆ R

l, and furthermore there is an isomorphism of
decomposed spaces

F : U → (U ∩ S) × CL

such that F (x) = (x, c) for all x ∈ U ∩ S. Here CL = (L × [0,∞))/(L × {0}) is
decomposed into the cusp c on the one hand, while the other pieces are of the form
stratum of L times (0,∞). Thus we can take Ψ : CL → R

l, [(z, t)] �→ tψ(z) as a
global chart on CL thereby defining a smooth structure on CL whence also on the
product (U ∩ S) × CL.

The space L is called a link, and the chart F is referred to as a cone chart or also
a link chart. Of course, the link L depends on the chosen point x0 ∈ X.

An example for a cone space is the quadrantQ := {(x, y) ∈ R
2 : x ≥ 0 and y ≥ 0}.

A typical neighborhood of 0 ∈ Q is of the form { (x, y) : 0 ≤ x < r and 0 ≤ y < r }.
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The link with respect to the point 0 then is the arc L := { (cosϕ, sinϕ) : 0 ≤ ϕ ≤ π
2 }.

More generally manifolds with corners carry the structure of cone spaces.

Definition 2.8 (Stratified spaces). Let X ⊆ R
m be a subset and assume that X is

a decomposed space, i.e. X =
⋃
i∈I Si, and that the strata Si be sub-manifolds of

R
m. The I-decomposed space X is said to be (Whitney) stratified if all pairs (Si, Sj)

with i > j satisfy condition (b) — see Definition 2.2. For sake of convenience we will
simply say stratified instead of Whitney stratified.

Theorem 2.9. Let X ⊆ R
m be a subset of a Euclidean space and assume that X =⋃

i∈I Si is decomposed. Then X is stratified if and only if X is a cone space.

Proof. It is proved in Pflaum [26] that every (Whitney) stratified space is also a cone
space.

An outline of the converse direction is given in Sjamaar and Lerman [29, section 6],
and also in Goresky and MacPherson [12, section 1.4]. This argument makes use of
Mather’s control theory as introduced in Mather [17] as well as Thom’s First Isotopy
Lemma.

The above theorem depends crucially on the fact that the decomposed spaceX can
be regarded as a subspace of some Euclidean space. As this assumption will always
be satisfied in the present context we will take the words cone space and stratified
space to be synonymous. In fact, Sjamaar and Lerman [29] take cone space to be the
definition of stratified space.
Example 2.10. As an example consider a compact Lie group K acting by isometries
on a smooth Riemannian manifold M . We are concerned with the orbit projection
π : M →M/K and endow the orbit space with the final topology with respect to the
projection map. For basics on compact transformation groups see Bredon [7], Palais
and Terng [22], or Hochgerner [14, section 7]. Fix a point x0 ∈ M with isotropy
group Kx0 = H. The slice representation is then the action by H on Norx0(K ·x0) =
Tx0(K · x0)⊥. By the Tube Theorem there is a K-invariant open neighborhood U of
the orbit K ·x0 such that K×H V ∼= U as smooth K-spaces where V is an H-invariant
open neighborhood of 0 in Norx0(K · x0).

Now let p = (p1, . . . , pk) be a Hilbert basis for the algebra Poly(V )H ofH-invariant
polynomials on V . That is, p1, . . . , pk is a finite system of generators for Poly(V )H .
The Theorem of Schwarz [28, Theorem 1] now says that p∗ : C∞(Rk) → C∞(V )H is
surjective. Moreover, the induced mapping q : V/H → R

k is continuous, injective,
and proper. See also Michor [18].

Consider the isotropy type sub-manifolds M(H) which is the manifold of all points
of M whose isotropy subgroup is conjugate to H within K. These give a K-invariant
decomposition of M as M =

⋃
(H)M(H) where (H) runs through the isotropy lattice

of the K-action on M . We thus get a decomposition of the orbit space

M/K =
⋃
(H)

M(H)/K

437 Revista Matemática Complutense
2006: vol. 19, num. 2, pags. 431–466



S. Hochgerner/A. Rainer Singular Poisson reduction of cotangent bundles

where again (H) runs through the isotropy lattice of the K-action on M . It is well-
known (e.g., Palais and Terng [22]) that this decomposition renders M/K a decom-
posed space.

Now a theorem of Pflaum [25, Theorem 5.9] says that the induced mapping ψ :
U/K → R

k as defined in the diagram

U
� ��

����

K ×H V

����
U/K

�
φ

��

ψ
���

�
�

�
�

V/H

q

��

V����

p
�����

��
��

��
�

R
k

is a typical singular chart around the point K.x0 in the orbit space. Furthermore, the
smooth functions with respect to this smooth structure are C∞(M/K) = C∞(M)K ,
i.e., none other than the K-invariant smooth functions on M : indeed, by Schwarz’s
Theorem we have

ψ∗C∞(Rk) = φ∗q∗C∞(Rk) = φ∗C∞(V )H = C∞(U)K

whence C∞(U)K = C∞(U/K). Finally, the decomposition of M/K by orbit types
turns the orbit space into a stratified space with smooth structure.

Note that Bierstone [5] showed that the semi-analytic stratification of the orbit
space p(V ) of a linear K-space V coincides with its stratification by components of
sub-manifolds of given isotropy type. HereK is a compact Lie group and p is a Hilbert
basis as above. Further, the semi-analytic stratification of p(V ) satisfies Whitney’s
condition (b).

2.2. Singular Poisson reduction

Let K be a Lie group acting properly on a smooth manifold M . We equip the
orbit space M/K with the quotient topology with respect to the canonical projection
π : M → M/K. The set of smooth functions on M/K is defined by the requirement
that π is a smooth map, i.e.,

C∞(M/K) := { f ∈ C0(M/K) : f ◦ π ∈ C∞(M) }.
Theorem (Singular Poisson reduction). Let (M, {·, ·}) be a Poisson manifold, K
a Lie group, and let l : K × M → M be a smooth proper Poisson action, i.e.,
l∗k{f, g} = {l∗kf, l∗kg} for f, g ∈ C∞(M) and k ∈ K. Then we have:

(i) The pair (C∞(M/K), {·, ·}M/K) is a Poisson algebra, where the Poisson bracket
{·, ·}M/K is characterized by {f, g}M/K ◦ π = {f ◦ π, g ◦ π}, for any f, g ∈
C∞(M/K), and π : M →M/K denotes the canonical smooth projection.
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(ii) Let h ∈ C∞(M)K be a K-invariant function on M . The flow Flt of the Hamil-
tonian vector field associated to h commutes with the K-action, so it induces
a flow FlM/K

t on M/K which is Poisson and is characterized by the identity
π ◦ Flt = FlM/K

t ◦π.
(iii) The flow FlM/K

t is the unique Hamiltonian flow defined by the function H ∈
C∞(M/K) which is given by H ◦ π = h.

Proof. This is due to Ortega and Ratiu [19].

If, in particular, K is a compact Lie group acting by isometries on a smooth
Riemannian manifold M , then by the Tube Theorem [22] and Schwarz’s Theorem [28]
we may identify C∞(M/K) with C∞(M)K , the set of K-invariant smooth functions
on M . See Example 2.10 for details.

Definition 2.11 (Poisson stratified space). Let X be a stratified space endowed with
a smooth structure in the sense of Subsection 2.1. Then X is said to be a singular
Poisson space if there is a Poisson bracket

{·, ·} : C∞(X) × C∞(X) −→ C∞(X)

on the algebra of smooth functions determined by the smooth structure such that the
inclusion of each stratum S ↪→ X is a Poisson morphism. In particular, the strata S
are Poisson manifolds in the usual sense.

An alternative definition of a singular Poisson space in terms of a stratified Poisson
bivector is given by Pflaum [25].

Proposition 2.12 (Reduced Poisson structure). Let (M, {·, ·}) be a Poisson man-
ifold, K a compact Lie group, and let K act on M by Poisson morphisms. Then
(M/K, {·, ·}M/K) is a singular Poisson space.

Proof. By Example 2.10 the algebra C∞(M/K) is indeed determined by a smooth
structure on M/K. Thus it only remains to check that the inclusion of each stratum
M(H)/K ↪→M/K is a Poisson morphism. This is, however, obvious.

2.3. Singular fiber bundles

Definition 2.13 (Singular fiber bundles). Let F and P be stratified spaces (Definition
2.8) with smooth structure (Definition 2.6) and M be a smooth manifold. We say
that the topological fiber bundle

F
� � �� P

π �� M

is a singular fiber bundle if for each trivializing patch U ⊆M the homeomorphism

P |U ∼= U × F

is an isomorphism of stratified spaces.
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There are two reasons for defining singular fiber bundles in this way. Firstly, it is
the kind of structure encountered in Hochgerner [14, Theorem 5.5], and secondly by
Mather’s control theory [17] these bundles possess many features similar to ordinary
smooth fiber bundles. Some of these aspects are presented in the subsections below.

Note that if M is a Riemannian manifold which is acted upon by a compact Lie
group K through isometries then the orbit projection mapping M � M/K is, in
general, not a singular fiber bundle according to this definition. Indeed, the fiber
type of M � M/K needs not to be locally constant.

Lemma 2.14. Let π : P → M be a singular fiber bundle with typical fiber F . Let S
be a stratum of P . Then π|S : S →M is a smooth fiber bundle.

Proof. Indeed, locally the stratum S is diffeomorphic to U×SF where SF is a stratum
of F and U is a trivializing neighborhood in M .

Definition 2.15 (Singular symplectic fiber bundles). Let F and P be stratified sym-
plectic spaces (i.e., singular Poisson spaces with smooth symplectic strata such that
the inclusion mappings are Poisson morphisms) with smooth structure and M be a
smooth symplectic manifold. We say that the singular fiber bundle

F
� � �� P

π �� M

is a singular symplectic fiber bundle if for each trivializing patch U ⊆ M the homeo-
morphism

P |U ∼= U × F

is an isomorphism of stratified symplectic spaces with respect to the inherited sym-
plectic structures. It follows, in particular, that π is a Poisson morphism.

2.4. Control data

The theory of control data is due to Mather [17], and we follow in our presentation of
the subject that of [17]. Let N be a smooth manifold, and X ⊆ N a stratified subset
endowed with the relative topology with strata Si where i ∈ I as in Subsection 2.1.

A tubular neighborhood of a stratum Si in X is a closed neighborhood of Si in N
which is diffeomorphic to an inner product bundle πi : Ei → Si. Via the inner
product we can measure the vertical distance of a point in Ei to Si and call this the
tubular neighborhood function ρi : Ei → R. Clearly, ρi(x) = 0 if and only if x ∈ Si.
We can also think of the tubular neighborhood as being retracted onto Si via the
projection πi. Control data associated to the stratification {Si : i ∈ I } of X is a
system of tubular neighborhoods πi : Ei → Si satisfying the following commutation
relations:

(πj ◦ πi)(x) = πj(x) and (ρj ◦ πi)(x) = ρj(x)

whenever j < i and both sides are defined.
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Proposition 2.16. Suppose there exist control data to the stratification {Si : i ∈ I }
of X. If M is another manifold, and f : N → M a smooth mapping such that
f |Si : Si → M is a submersion for all i ∈ I then the control data may be chosen so
that f |Si ◦ πSi = f for all i ∈ I.

Proof. See Mather [17, Proposition 7.1].

If f : N →M is as in Proposition 2.16 then f is said to be a controlled submersion
from X to M .

By a stratified vector field η on X we mean a collection { ηi : i ∈ I } where each
ηi is a smooth vector field on Si. Assume we are given a system of control data
associated to the stratification of X, and identify the tubular neighborhoods of the
strata with the corresponding inner product bundles. Then the stratified vector field η
on X is said to be a controlled vector field if the following conditions are met. For any
stratum Sj there is an open neighborhood Bj of Sj in the tubular neighborhood Ej
such that for any stratum Si with i > j the conditions

Lηi
(ρj |Bj ∩ Si) = 0 and Tx(πj |Bj ∩ Si) · ηi(x) = ηj(πj(x))

are satisfied for all x ∈ Bj ∩ Si.
Let J be an open neighborhood of {0}×X in R×X, and assume that α : J → X

is a local one-parameter group which is smooth in the sense of Definition 2.6. We say
that α generates the stratified vector field η if J is maximal such that each stratum
Si is invariant under α and ∂

∂t |0α(t, x) = ηi(x) for all x ∈ Si and all i ∈ I.

Proposition 2.17. Assume η is a controlled vector field on X. Then there is a
unique smooth one-parameter group which generates η.

Proof. See Mather [17, Proposition 10.1].

Proposition 2.18. Assume f : N →M is a smooth map such that f |X : X →M is
a controlled surjective submersion. Then the following are true.

• Let ξ be a smooth vector field on M . Then there is a controlled vector field η
on X such that ηi and ξ are f |Si-related for all i ∈ I.

• Suppose further that f |X : X → M is a proper map. Then f |X : X → M is a
singular fiber bundle.

Proof. See Mather [17, Proposition 9.1] for the first statement. Concerning the second
assertion, [17, Proposition 11.1] states that under these assumptions the mapping
f |X : X → M is locally topologically trivial, and it follows from [17, Corollary 10.3]
that the trivializing homeomorphisms are, in fact, isomorphisms of stratified spaces.
Thus f |X : X →M is a singular fiber bundle in the sense of Definition 2.13.
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2.5. Pullback bundles

Let M and Y be smooth manifolds, and let τ : Y → M be a smooth mapping.
Consider a singular fiber bundle π : X →M with typical fiber F as in Definition 2.13.
We consider further the topological pullback bundle of X and Y over M with the
following notation.

X ×M Y τ∗X
π∗τ ��

τ∗π
��

X

π

��
Y

τ �� M

Now we can endow X ×M Y with the product stratification given by strata of the
form S ×M Y which is the smooth fibered product of a stratum S of X with Y over
M . Note that S ×M Y is a well defined pull back bundle by Lemma 2.14. Moreover,
X×M Y inherits a smooth structure in the sense of Subsection 2.1 from the canonical
topological inclusion X ×M Y ↪→ X × Y . The singular space with smooth structure
thus obtained is called the fibered product of X and Y over M . Since π : X →M is a
singular fiber bundle it follows that τ∗π : X ×M Y → Y is a singular fiber bundle as
well with the same typical fiber F . Moreover, this construction satisfies the following
universal property. Let Z be a singular space with smooth structure and f1 : Z → X,
f2 : Z → Y be smooth mappings satisfying π ◦ f1 = τ ◦ f2. Then there is a unique
smooth map f = (f1, f2) such that the following commutes.

Z
f1

������������
f

���
�
�

f2

������������

X
π

����
��

��
��

��
X ×M Y

π∗τ�� τ∗π �� Y
τ

�����
��

��
��

�

M

Therefore, in this sense, pull backs exist in the category of singular fiber bundles.
There is, in fact, a similar notion of pull backs in the work of Davis [10].

3. Mechanical connection and Weinstein construction

Suppose that Q is a Riemannian manifold, and K is a compact Lie group which
acts on Q by isometries. Moreover, Q is assumed to be of single isotropy type, i.e.,
Q = Q(H) where H is an isotropy subgroup of K. The K-action then induces a
Hamiltonian action on the cotangent bundle T ∗Q by cotangent lifts. This means that
the lifted action respects the canonical symplectic form Ω = −dθ on T ∗Q and there
is a momentum map μ : T ∗Q→ k∗ given by 〈μ(q, p), X〉 = θ(ζT

∗Q
X )(q, p) = 〈p, ζX(q)〉
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where (q, p) ∈ T ∗Q, X ∈ k, ζX is the fundamental vector field associated to the K-
action on Q, and ζT

∗Q
X ∈ X(T ∗Q) is the fundamental vector field associated to the

cotangent lifted action.

3.1. Mechanical connection

Since the K-action on Q has only a single isotropy type, the orbit space Q/K is
a smooth manifold, and the projection π : Q → Q/K is a surjective Riemannian
submersion with compact fibers. However, the lifted action by K on T ∗Q is already
much more complicated, and the quotient space (T ∗Q)/K is only a stratified space
in general. Its strata are of the form (T ∗Q)(L)/K where (L) is in the isotropy lattice
of T ∗Q.

The vertical sub-bundle of TQ with respect to π : Q→ Q/K is Ver := kerTπ. Via
the K-invariant Riemannian metric we obtain the horizontal sub-bundle as Hor :=
Ver⊥. We define the dual horizontal sub-bundle of T ∗Q as the sub-bundle Hor∗

consisting of those co-vectors that vanish on all vertical vectors. Likewise, we define
the dual vertical sub-bundle of T ∗Q as the sub-bundle Ver∗ consisting of those co-
vectors that vanish on all horizontal vectors.

We choose and fix a K-invariant inner product on k. For X,Y ∈ k and q ∈ Q
we define Iq(X,Y ) := 〈ζX(q), ζY (q)〉 and call this the inertia tensor. This gives a
non-degenerate pairing on k⊥q ×k⊥q , whence it gives an identification Ǐq : k⊥q → (k⊥q )∗ =
Ann kq. We use this isomorphism to define a one-form on Q with values in the bundle⊔
q∈Q k⊥q by the following:

T ∗
qQ

μq �� Ann kq

(Ǐq)−1

��
TqQ

�
��

Aq ��				 k⊥q

Here the isomorphism TqQ
�→ T ∗

qQ is obtained via theK-invariant Riemannian metric
on Q. See Smale [30] or Marsden, Montgomery, and Ratiu [15, section 2]. The
form A shall be called the mechanical connection on Q→ Q/K. It has the following
properties. It follows from its definition that TQ → ⊔

q∈Q k⊥q , (q, v) �→ (q, Aq(v)) is
equivariant, kerAq = Tq(K.q)⊥, and Aq(ζX(q)) = X for all X ∈ k⊥q .

This means that A ∈ Ω1(Q; k) given by A : TQ → k⊥q ↪→ k, (q, v) �→ Aq(v) is
a principal connection form on the K-manifold Q in the sense of Alekseevsky and
Michor [2, section 3.1]. According to [2, section 4.6] the curvature form associated
to A is defined by

CurvA := dA− 1
2
[A,A]̂
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where

[ϕ,ψ] (̂v1, . . . , vl+k) :=
1
k!l!

∑
σ

signσ[ϕ(vσ1, . . . , vσl), ψ(vσ(l+1), . . . , vσ(l+k))]

is the graded Lie bracket on Ω(Q; k) :=
⊕∞

k=0 Γ(ΛkT ∗Q ⊗ k), and ϕ ∈ Ωl(Q; k) and
ψ ∈ Ωk(Q; k). The minus in the definition of CurvA emerges, since we are dealing
with left actions. The form CurvA is called the mechanical curvature.

Proposition 3.1 (Properties of CurvA). Let Z1, Z2 ∈ k and v, w horizontal vector
fields on Q with respect to the orbit projection π : Q � Q/K. Then:

(i) CurvA(ζZ1 , ζZ2)(q) ∈ kq.

(ii) CurvA(v, ζZ2)(q) = 0.

(iii) CurvA(v, w)(q) ∈ k⊥q .

Moreover, the form CurvA : Λ2TQ → k is K-equivariant, Ad(h) · CurvA(v, w)(q) =
CurvA(v, w)(q) for all h ∈ Kq, and CurvA drops to a well defined form

CurvA0 ∈ Ω2
(
Q/K;

( ⊔
q∈Q

Fix(Kq) ∩ k⊥q
)/

K
)

where Fix(Kq) := {X ∈ k : Kq ⊆ KX }.
Notice that (

⊔
q∈Q Fix(Kq) ∩ k⊥q )/K is a smooth manifold and a topological sub-

space of the stratified space (
⊔
q∈Q k⊥q )/K — see Lemma 4.2.

Proof. Assertion (i) is true since the vertical bundle is integrable: Indeed, Φ := ζ ◦A :
TQ → Ver defines a (generalized) principal bundle connection on Q � Q/K in the
sense of Alekseevsky and Michor [2]. As usual, the curvature R associated to Φ is
given by R(X,Y ) = Φ[X − ΦX,Y − ΦY ]. By [2, Proposition 4.4] R and CurvA are
related by

R = −ζ ◦ CurvA

whence (i) follows. Using this relation again it follows that CurvA(v, ζZ2)(q) ∈ kq and
this is already sufficient for the purpose of this paper. However, using [2, Proposi-
tion 4.7] and the Slice theorem for Riemannian actions the stronger result (ii) is true
as well. Assertion (iii) follows also by using the Slice theorem.

Clearly CurvA isK-equivariant. The element CurvA(v, w)(q) is fixed by all h ∈ Kq

since this is true for q and horizontal vectors at q have isotropy at least Kq. Finally,
the last conclusion is an obvious consequence of the above. It is only to notice that
(
⊔
q∈Q Fix(Kq) ∩ k⊥q )/K really is a smooth fiber bundle over Q/K which, again, is a

consequence of the Slice theorem.

We define a pointwise dual A∗
q : Ann kq → Ver∗q ⊆ T ∗

qQ by the formula A∗
q(λ)(v) =

λ(Aq(v)) where λ ∈ Ann kq and v ∈ TqQ. Notice that A∗
q(μq(p)) = p for all p ∈ Ver∗q

and μq(A∗
q(λ)) = λ for all λ ∈ Ann kq.
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3.2. Weinstein bundle construction

Using the horizontal lift mapping which identifies Hor ∼= (Q×Q/K T (Q/K)) and the
mechanical connection A we obtain an isomorphism

TQ = Hor⊕Ver −→ (Q×Q/K T (Q/K)) ×Q
⊔
q∈Q

k⊥q

of bundles over Q. Via the Riemannian structure there is a dual version to this
isomorphism, and to save on typing we will abbreviate

W := (Q×Q/K T ∗(Q/K)) ×Q
⊔
q∈Q

Ann kq ∼= Hor∗ ⊕Ver∗ .

To set up some notation for the upcoming proposition, and clarify the picture consider
the following stacking of pull-back diagrams. It will be reference point for the whole
paper.

W ρ∗eτ=e

eτ ��

eτ∗ρ=eρ

��

⊔
q Ann kq

ρ

��
Q×Q/K T ∗(Q/K) π∗τ=eτ ��

τ∗π=eπ

��

Q

π

��
T ∗(Q/K) τ �� Q/K

(1)

The upper stars in this diagram are, of course, not pull-back stars. It is in fact the
transition functions that are being pulled-back, whence the name.

Proposition 3.2 (Symplectic structure on W). There is a dual isomorphism

ψ = ψ(A) : (Q×Q/K T ∗(Q/K)) ×Q
⊔
q∈Q

Ann kq = W −→ T ∗Q,

(q, η, λ) �−→ (q, η +A(q)∗λ)

where we identify elements in {q} × T ∗
[q](Q/K) with elements in Hor∗q via the dual of

the inverse of the horizontal lift.
This isomorphism can be used to induce a symplectic form on the connection de-

pendent realization of T ∗Q, namely σ = ψ∗Ω where Ω = −dθ is the canonical form on
T ∗Q. Moreover, there is an explicit formula for σ in terms of the chosen connection:

σ = (π̃ ◦ ρ̃)∗ΩQ/K − d˜̃τ
∗
B

where ΩQ/K is the canonical symplectic form on T ∗(Q/K), and furthermore B ∈
Ω1(

⊔
q Ann kq) is given by

B(q,λ)(v1, λ1) = 〈λ,Aq(v1)〉.
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The explicit formula now is

(dB)(q,λ)((v1, λ1), (v2, λ2)) = 〈λ,CurvAq (v1, v2)〉 + 〈λ, [Z1, Z2]〉 − 〈λ2, Z1〉 + 〈λ1, Z2〉
where (q, λ) ∈ ⊔

q Ann kq, (vi, λi) ∈ T(q,λ)(
⊔
q Ann kq) for i = 1, 2, and

vi = ζZi(q) ⊕ vhor
i ∈ Verq ⊕Horq

is the decomposition into vertical and horizontal part with Zi ∈ k.
Furthermore, there clearly is an induced action by K on W. This action is Hamil-

tonian with momentum mapping

μA = μ ◦ ψ : W −→ k∗, (q, η, λ) �−→ λ,

where μ is the momentum map T ∗Q→ k∗, and ψ is equivariant.

Proof. This proposition is proved in Hochgerner [14, Proposition 5.1]. However, the
proof can be considerably simplified using the relation σ = ψ∗Ω = −ψ∗dθ, and we
present this simplification.

Let ξ ∈ TW with T (τ̃ ◦ ρ̃) · ξ = v ∈ TQ and w = (q, η, λ) ∈ W. Then

(ψ∗θ)w(ξ) = 〈η +A∗
q(λ), vq〉 = ((π̃ ◦ ρ̃)∗θQ/K)w(ξ) + (˜̃τ

∗
B)w(ξ)

whence σ = (π̃ ◦ ρ̃)∗ΩQ/K − d˜̃τ
∗
B. It only remains to compute dB:

(dB)(q,λ)((v1, λ1), (v2, λ2))
= L(v1,λ1)(B(v2, λ2))(q,λ) − L(v2,λ2)(B(v1, λ1))(q,λ) −B(q, λ)([(v1, λ1), (v2, λ2)])

=
∂

∂t

∣∣∣∣
0

B(Fl(v1,λ1)
t (q, λ))(v2, λ2)

− ∂

∂t

∣∣∣∣
0

B(Fl(v2,λ2)
t (q, λ))(v1, λ1) − 〈λ,Aq[v1, v2](q)〉

=
∂

∂t

∣∣∣∣
0

〈Flλ1
t (λ), A(Flv1t (q))(v2)〉

− ∂

∂t

∣∣∣∣
0

〈Flλ2
t (λ), A(Flv2t (q))(v1)〉 − 〈λ,Aq[v1, v2](q)〉

= 〈λ1(λ), Z2〉 − 〈λ2(λ), Z1〉 + 〈λ,Lv1(A(v2))q − Lv2(A(v1))q −Aq[v1, v2](q)〉
= 〈λ1(λ), Z2〉 − 〈λ2(λ), Z1〉 + 〈λ, dAq(v1, v2)〉
= 〈λ1(λ), Z2〉 − 〈λ2(λ), Z1〉 + 〈λ,CurvAq (v1, v2)〉 + 〈λ, [Z1, Z2]〉.

4. Gauged Poisson reduction

Let H be a closed subgroup of our compact Lie group K. Let S be a smooth manifold,
and a : H×S → S, (h, s) �→ h ·s a left action. We will be mostly interested in the case
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where S is a slice for the K-action on Q, and a is the (trivial) slice representation.
Consider the left actions l, r, t : H × S ×K → S ×K which are defined by

l : (h, s, k) �−→ (s, hk), r : (h, s, k) �−→ (s, kh−1),

and t : (h, s, k) �−→ (h · s, kh−1).

The following lemma is elementary on the one hand as its computations are straight-
forward. However, it is also tricky on the other hand since it involves a choice of sign
in the definition of the fundamental vector field from section 1, and there are many
possibilities to get confused. Note also that we use the left multiplication to trivialize
T ∗K = K × k∗.

Lemma 4.1 (Cotangent lifted actions). The lifted actions of H on T ∗(S × K) =
T ∗S ×K × k∗ corresponding to l, r, t are given by

T ∗S ×K × k∗ −→ T ∗S ×K × k∗

T ∗lh : (s, p, k, η) �−→ (s, p, hk, η)

T ∗rh : (s, p, k, η) �−→ (s, p, kh−1,Ad∗(h) · η)
T ∗th : (s, p, k, η) �−→ (h · s, T ∗

s ah.p, kh
−1,Ad∗(h) · η)

respectively, and where Ad∗(h) · η := η ◦ Ad(h−1). Moreover, these lifted actions are
Hamiltonian with respect to the canonical exact symplectic form on T ∗(S × K) =
T ∗S ×K × k∗, and the corresponding momentum maps are given by

T ∗S ×K × k∗ −→ h∗

Jl : (s, p, k, η) �−→ (Ad∗(k) · η)|h
Jr : (s, p, k, η) �−→ −η|h
Jt : (s, p, k, η) �−→ μ(s, p) − η|h

where μ : T ∗S → h∗ is the canonical equivariant momentum map with respect to the
Hamiltonian action T ∗a : H × T ∗S → T ∗S.

Proof. The point here is the choice of sign in the definition of the fundamental vector
field mapping ζ in section 1. Note also that the cotangent bundle momentum map
μ : T ∗S → h∗ is given by 〈μ(s, p), X〉 = θ(ζaX)(s, p) where θ is the Liouville form on
T ∗S, and Ω = −dθ is the cotangent bundle symplectic form.

Let us introduce the abbreviation E :=
⊔
q∈Q Ann kq.

Lemma 4.2. The natural projection ρ : E → Q is a smooth fiber bundle with typical
fiber Ann h, were H is an isotropy subgroup of K and h is its Lie algebra.
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Proof. We trivialize at an arbitrary point q0 ∈ Q. We may assume Kq0 = H. Let
U ⊆ Q be a tube around K.q0 such that U ∼= S × K/H as K-spaces, where S is a
slice at q0. Then it is possible to trivialize as

E|U

��

∼= �� S × (K × Ann h)/H

��

S ×K ×H Ann h

U
∼= �� S ×K/H

with trivializing map given by

S ×K ×H Ann h −→ E|U, (s, [(k, λ)]) �−→ (k · s,Ad∗(k)(λ))

where Ad∗(k)(λ) := Ad(k−1)∗(λ). This map is well-defined and smooth with inverse
given by

(q, λ) = (k · s,Ad∗(k)(λ0)) �−→ (s, [(k, λ0)])

which is well-defined and smooth as well. Notice furthermore that the trivializing
map is K-equivariant with respect to the K-action on S × K ×H Ann h given by
g · (s, [(k, λ)]) = (s, [(gk, λ)]). Indeed, this follows immediately from Lemma 4.1.

Lemma 4.3. Let E :=
⊔
q∈Q Ann kq.

(i) Let U ⊆ Q be a trivializing neighborhood for ρ : E → Q as in the proof of
Lemma 4.2. Then E|U is K-invariant, and if (L) is an element of the isotropy
lattice for the K-action on E then the corresponding stratum is trivialized as

(E|U)(L)
∼= S ×K ×H (Ann h)(L0)H

where L0 ⊆ H is an isotropy subgroup for the H-action conjugate to L in K,
and (L0)H is the conjugacy class of L0 in H. Moreover, the strata of Ann h/H
are of the form (Ann h)(L0)H/H.

(ii) The induced mapping ρ0 : E/K → Q/K is a singular fiber bundle with typical
fiber Ann h/H in the sense of Definition 2.13.

Proof. Let q0 ∈ Q with Kq0 = H. Then

(q0, λ) ∈
( ⊔
q∈Q

Ann kq

)
(L)

= E(L)

if and only if

λ ∈ Ann h and H ∩Kλ = Hλ = L0 ∼ L within K

which is true if and only if
λ ∈ (Ann h)(L0)H
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where L0 is a subgroup of H conjugate to L within K. Notice that it follows from
the Slice Theorem for Riemannian actions that (Ann h)(L0)H is a smooth manifold,
e.g., Palais and Terng [22]. Therefore, also the second assertion follows.

Theorem 4.4. There is a stratified isomorphism of stratified bundles over Q/K, in
the sense of Definition 2.13,

ψ−1
0 = ψ−1

0 (A) : (T ∗Q)/K −→ T ∗(Q/K) ×Q/K
( ⊔
q∈Q

Ann kq

)/
K =: W,

[(q, p)] �−→ (C∗(q, p), [(q, μ(q, p))])

where the stratification was suppressed. Here

C∗ : T ∗Q→ Hor∗ → T ∗(Q/K)

is constructed as the pointwise dual to the horizontal lift mapping C : T (Q/K)×Q/KQ
→ Hor ⊆ TQ, ([q], v; q) → Cq(v) associated to the connection A ∈ Ω1(Q; k).

If (L) is an isotropy class of the K-action on T ∗Q, then ψ−1
0 maps the isotropy

stratum (T ∗Q)(L)/K onto

T ∗(Q/K) ×Q/K
( ⊔
q∈Q

Ann kq

)
(L)

/
K =: W(L).

Moreover, the natural projection

ρ̃
(L)
0 : W(L) → T ∗(Q/K)

is a smooth fiber bundle with typical fiber of the form (Ann h)(L0)H/H. Here L0 ⊆ H

is an isotropy subgroup for the H-action conjugate to L in K, and (L0)H is the
conjugacy class of L0 in H.

Therefore, ρ̃0 : W → T ∗(Q/K) is a singular fiber bundle in the sense of Defini-
tion 2.13.

In the case that K acts on Q freely the first assertion of the above theorem can
also be found in Cendra, Holm, Marsden, Ratiu [8]. Following Ortega and Ratiu
[20, section 6.6.12] the above constructed interpretation W of (T ∗Q)/K is called
Weinstein space referring to Weinstein [32] where this universal construction first
appeared.

Proof. We consider first the map

ϕ0 = ϕ0(A) : (TQ)/K −→ T (Q/K) ×Q/K
( ⊔
q∈Q

k⊥q
)/

K,

[(q, v)] �−→ (Tπ(q, v), [(q, Aqv)])

449 Revista Matemática Complutense
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the pointwise dual of whose inverse will be ψ−1
0 .

The spaces TQ and (TQ)/K are stratified into isotropy types. Since the base Q is
stratified as consisting only of a single stratum, the equivariant foot point projection
map τ : TQ→ Q is trivially a stratified map. Using the Slice Theorem on the base Q
it is easy to see that both (TQ)/K → Q/K and the projection (

⊔
q∈Q k⊥q )/K → Q/K

are singular bundle maps in the sense of Definition 2.13. Hereby (
⊔
q∈Q k⊥q )/K is

stratified into isotropy types. According to Davis [10] or also Subsection 2.5 pullbacks
are well defined in the category of stratified spaces and thus it makes sense to define
T (Q/K) ×Q/K (

⊔
q∈Q k⊥q )/K as a stratified space with smooth structure.

The map ϕ0 is well defined: indeed, for (q, v) ∈ TQ and k ∈ K we have

Tπ(k · q, k · v) = (π(k · q), Tk·qπ(Tqlk(v))) = (π(q), Tq(π ◦ lk)(v)) = Tqπ(v),

and [(k.q, A(k.q, k.v))] = [(q, A(q, v))] by equivariance of A. It is clearly continuous
as a composition of continuous maps. Moreover, since C∞((TQ)/K) = C∞(TQ)K

by Example 2.10 it follows that ϕ0 is a smooth map of singular spaces.
We claim that ϕ0 maps strata onto strata, and moreover we have the formula

ϕ0((TQ)(L)/K) = T (Q/K) ×Q/K
( ⊔
q∈Q

k⊥q
)

(L)

/
K.

Indeed, consider (q, v) ∈ (TQ)(L), that is H ∩ Kv = L′ ∼ L where H = Kq. The
notation L′ ∼ L means that L′ is conjugate to L within K. Now we can decompose
v as v = v0 ⊕ ζX(q) ∈ Horq ⊕Tq(K · q) for some appropriate X ∈ k. Since Q consists
only of a single isotropy type we have TqQ = TqQH + Tq(K · q) — which is not a
direct sum decomposition. As usual, QH = { q ∈ Q : Kq = H }. This shows that
v0 ∈ TqQH , since Horq = Tq(K · q)⊥ ⊆ TqQH , and hence H ⊆ Kv0 . By equivariance
of A it follows that

Kq ∩Kv = H ∩Kv0 ∩KζX(q) = H ∩KζX(q) = H ∩KA(q,v)

which is independent of the horizontal component. Hence the claim. The restriction
of ϕ0 to any stratum clearly is smooth as a composition of smooth maps.

Since Aq(ζX(q)) = X for X ∈ k⊥q we can write down an inverse as

ϕ−1
0 : ([q], v; [(q,X)]) → [(q, Cq(v) + ζX(q))]

and again it is an easy matter to notice that this map is well defined, continuous,
and smooth on each stratum. Again, it follows from the definition of the smooth
structures on the respective spaces that ϕ−1

0 is smooth.
It makes sense to define the dual ψ−1

0 of the inverse map ϕ−1
0 in a point wise
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manner, and it only remains to compute this map.

〈ψ−1
0 [(q, p)], ([q], v; [(q,X)])〉 = 〈[(q, p)], [(q, Cq(v) + ζX(q))]〉

= 〈p, Cq(v)〉 + 〈p, ζX(q)〉
= 〈C∗(q, p), v〉 + 〈μ(q, p), X〉
= 〈(C∗(q, p), [(q, μ(q, p))]), ([q], v; [(q,X)])〉

where we used the K-invariance of the dual pairing over Q.
Finally, ψ−1

0 is an isomorphism of singular Poisson spaces: note first that the
identifying map W/K →W , [(q; [q], η; q, λ)] �→ ([q], η; [(q, λ)]) is well-defined because
Kq acts trivially on Hor∗q = T ∗

[q](Q/K) � η which in turn is due to the fact that all
points of Q are regular. Moreover, by the universal property for singular pull back
bundles from subsection 2.5 it is obvious that this map W/K → W is smooth and
has a smooth inverse. The quotient Poisson bracket is well-defined since C∞(W)K ⊆
C∞(W) is a Poisson sub-algebra. The statement now follows because the diagram

T ∗Q
ψ−1

��

����

W

		 		









(T ∗Q)/K
ψ−1

0 �� W W/K

is commutative, and composition of top and down-right arrow is Poisson and the left
vertical arrow is surjective.

Using Lemma 4.3 together with Subsection 2.3 the global description of W/K ∼= W
as a fibered product thus follows.

Next we shall construct a connection on ρ : E → Q which will provide a connection
on ρ̃ : W → Q×Q/K T ∗(Q/K). Recall the mechanical connection A ∈ Ω1(Q; k) from
section 3. Consider the embedding

ι : E −→ T ∗Q, (q, λ) �−→ (q, A∗
q(λ)).

On � : T ∗Q→ Q we choose the canonical (with respect to the metric) linear connec-
tion Φ(�) : TT ∗Q→ V (�). Consider the following diagram

TE
Φ(ρ) ��			

� �

Tι

��

V (ρ)
⊔

(q,λ)∈E Ann kq

TT ∗Q
Φ(�) �� V (�)

dμ|V (�)

��
(2)

which induces a linear connection Φ(ρ) on ρ : E → Q.
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Lemma 4.5. The diagram (2) is well-defined.

Proof. We have to show that dμ|V (�) takes values in V (ρ) =
⊔

(q,λ)∈E Ann kq. Since
μq(A∗

q(λ)) = λ for all λ ∈ Ann kq and q ∈ Q, it suffices to prove that 〈dμ(q0, p0)
(ξ(q0,p0)), X〉 = 0 for fixed (q0, p0) ∈ T ∗Q, ξ ∈ Γ(V (�)), and X ∈ kq0 . Now, for
arbitrary (q, p) ∈ T ∗Q,

〈dμ(q, p)(ξ(q,p)), X〉 = Ω(q,p)(ζ
T∗Q
X , ξ)

= −(ζT
∗Q

X · θ(ξ))(q, p) + (ξ · θ(ζT∗Q
X ))(q, p) + θ([ζT

∗Q
X , ξ])(q, p).

We have
θ(ξ)(q, p) = 〈p, T(q,p)� · ξ(q,p)〉 = 0

for all (q, p) ∈ T ∗Q and ξ ∈ Γ(V (�)), so θ(ξ) = 0. Next we find

θ(ζT
∗Q

X )(q0, p) = 〈p, T(q0,p)� · ζT
∗Q

X (q0, p)〉 = 〈p, ζX(q0)〉 = 0

for all p ∈ T ∗
q0Q since X ∈ kq0 by assumption. Since ξ takes values in the vertical

subbundle V (�) and vertical bundles are integrable its flow preserves fibers of �, that
is Flξt (q0, p0) = (q0, pt) for some curve pt in T ∗

q0Q. Therefore,

(ξ · θ(ζT∗Q
X ))(q0, p0) =

∂

∂t

∣∣∣∣
0

〈pt, ζX(q0)〉 =
∂

∂t

∣∣∣∣
0

0 = 0.

Finally,
θ([ζT

∗Q
X , ξ])(q, p) = 〈p, T(q,p)� · [ζT

∗Q
X , ξ](q, p)〉 = 0

for all (q, p) ∈ T ∗Q, since the fact that ζT
∗Q

X and ζX are �-related as well as ξ and
0 implies that [ζT

∗Q
X , ξ] and [ζX , 0] = 0 are �-related, i.e., T(q,p)�.[ζ

T∗Q
X , ξ](q, p) = 0.

This completes the proof.

Via the pullback construction (see Diagram (1)) this also induces a linear connec-
tion on ρ̃ : W → Q×Q/K T ∗(Q/K). We denote this connection by Ã : TW → V (ρ̃).
Notice that V(q,η,λ)(ρ̃) = Ann kq by construction.

The connection Ã and the momentum map μA := μ ◦ ψ : W → k∗ are related by

Ã(q, η, λ)(ξ) = dμA(q, η, λ)(ξ),

where ξ ∈ T(q,η,λ)W, and (q, η, λ) is short-hand for (q; [q], η; q, λ) ∈ W.
We will use the connection Ã to decompose an arbitrary vector ξ ∈ T(q,η,λ)W as

ξ = (v(q); η′([q], η); v1(q), ν(q, λ)),

where ν(q, λ) = Ã(q, η, λ)(ξ) is independent of η. Notice also that v1(q) = v(q) by
the pullback property. Further we can decompose v(q) ∈ TqQ according to

v(q) = v(q)hor(π) + ζZ(q) ∈ Hq(π) ⊕ Vq(π)
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with respect to the connection A on π : Q → Q/K. The same can be done with
η′([q], η) ∈ T([q],η)(T ∗(Q/K)) as

η′([q], η) = η′([q], η)hor(τ) + η′([q], η)ver(τ) ∈ H([q],η)(τ) ⊕ V([q],η)(τ)

with respect to the canonical connection on τ : T ∗(Q/K) → Q/K which comes from
the induced metric on Q/K. Notice that we have η′([q], η)hor(τ) = v(q)hor(π) by the
pullback property.

Definition 4.6 (Vertical differentiation on ρ̃ : W → Q ×Q/K T ∗(Q/K)). Let ν ∈
V(q,η,λ)(ρ̃) = Ann kq and F ∈ C∞(W). We define

dvF (q, η, λ)(ν) :=
∂

∂t

∣∣∣∣
0

F (q, η, λ+ tν)

to be the vertical derivative of F at (q, η, λ).

Definition 4.7 (Covariant differentiation on ρ̃ : W → Q ×Q/K T ∗(Q/K)). Let
χ := 1 − Ã : TW → H(ρ̃) denote the horizontal projection with respect to ρ̃. The
covariant derivative of F ∈ C∞(W) is defined as d

eAF := dF ◦ χ.

Lemma 4.8. Let F ∈ C∞(W)K , and decompose the Hamiltonian vector field of F
at (q, η, λ) ∈ W as

∇σ
F (q, η, λ) = (v(q); η′([q], η); v(q), ν(q, λ))

with ν(q, λ) = Ã(q, η, λ)(∇σ
F (q, η, λ)) according to above. Here σ is the symplectic

structure on W from Proposition 3.2. Then, ν(q, λ) = 0.

Proof. This is a consequence of Noether’s Theorem. We have

ν(q, λ) = Ã(q, η, λ)(∇σ
F (q, η, λ)) = dμA(q, η, λ)(∇σ

F (q, η, λ)) = 0,

since μA is constant along flow lines of Hamiltonian vector fields of invariant functions.

Lemma 4.9. Let F ∈ C∞(W)K , and decompose the Hamiltonian vector field of F
at (q, η, λ) ∈ W as

∇σ
F (q, η, λ) = (v(q); η′([q], η); v(q), 0).

Then,

η′([q], η) =
((

ΩQ/K([q],η)

)∨)−1

(d
eAF (q, η, λ)),

where we consider d
eAF (q, η, λ) as an element of T ∗

([q],η)(T
∗(Q/K)) via the dual of the

horizontal lift mapping.
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Recall that ΩQ/K denotes the canonical symplectic form on T ∗(Q/K).

Proof. For the purpose of the lemma we may assume that the vertical part of the
first entry vanishes, i.e, A.T (τ̃ ◦ ρ̃).∇σ

F = 0 with notation as in diagram (1). Thus we
may simplify the problem by assuming that F ∈ C∞(W)K factors through π̃ ◦ ρ̃, i.e.,
there is a smooth map f : T ∗(Q/K) → R such that F = f ◦ π̃ ◦ ρ̃ : W → R. Then,
d

eAF (q, η, λ) = d
eAF (q, η, 0) = df((π̃ ◦ ρ̃)(q, η, 0)) = df([q], η). Now, the projection

Q×Q/K T ∗(Q/K) = μ−1
A (0) �� �� μ−1

A (0)/K = T ∗(Q/K)

is a Poisson morphism. Therefore, we find

η′([q], η) = T(q,η,0)(π̃ ◦ ρ̃) · ∇σ
F (q, η, 0) = ∇Q/K

f ((π̃ ◦ ρ̃)(q, η, 0))

=
((

ΩQ/K([q],η)

)∨)−1

(df([q], η)) =
((

ΩQ/K([q],η)

)∨)−1

(d
eAF (q, η, 0))

which gives the assertion.

Lemma 4.10. Let F ∈ C∞(W)K , and decompose the Hamiltonian vector field of F
at (q, η, λ) ∈ W as

∇σ
F (q, η, λ) = (v(q); η′([q], η); v(q), 0).

Via the connection A ∈ Ω1(Q; k) we can write

v(q) = v(q)hor(π) + ζZ(q) ∈ Hq(π) ⊕ Vq(π).

Then Z = −dvF (q, η, λ) ∈ k⊥q , and, moreover, Ad(h) · Z = Z for all h ∈ Kq.

Proof. We work in tube coordinates around q ∈ Q. Thus let S be a slice through
q for the K-action on Q such that U ∼= S × K/H as K-spaces where U is a tube
around K · q and H = Kq. Then we have a K-equivariant isomorphism of symplectic
manifolds

W|U ∼= T ∗S ×K ×H Ann h ∼= T ∗S × T ∗K//0T
∗R(H)

where the right hand side carries the obvious symplectic structure. Here T ∗R(H)
is the cotangent lifted action of the right multiplication of H on K, and we use
left multiplication to trivialize T ∗K = K × k∗. This follows from Lemma 4.1 and
an argument similar as in the proof of Lemma 4.2. In particular, note that (as
in Hochgerner [14, section 4]) the isomorphism is symplectic since it comes as the
cotangent lift of a diffeomorphism of the base spaces. Since we already know that
the part of the Hamiltonian vector field of F which is tangent to T ∗S is given by
the local coordinates of (v(q)hor(π), η′([q], η)), we may further reduce the problem to
considering a function F ∈ C∞(K ×H Ann h)K = C∞(Ann h/H). This identification
is due to Lemma 4.3(ii). Now, referring again to Lemma 4.1 we have

K ×H Ann h = T ∗K//0T
∗R(H),
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where T ∗R(H) is the cotangent lifted action of the right multiplication of H on K,
and where we use left multiplication to trivialize T ∗K = K × k∗. Thus, there exists
a function F1 ∈ C∞(T ∗K) = C∞(K × k∗) that is T ∗L(K)-invariant (L denotes
the left multiplication on K) and T ∗R(H)-invariant such that the following diagram
commutes:

K × Ann h
� � ��

����

K × k∗

F1

��
K ×H Ann h

F �� R

We choose local cotangent bundle coordinates ai, bi where i = 1, . . . ,m on T ∗K =
K × k∗ such that b1, . . . , bl are coordinates on h∗, bl+1, . . . , bm are coordinates on
Ann h, and such that ∂

∂a1
, . . . , ∂

∂al
are a basis of h, and ∂

∂al+1
, . . . , ∂

∂am
are a basis

of h⊥. Then for the canonical Poisson bracket on T ∗K we obtain

−∇T∗K
F1

(e, λ) = {F1, ·}T∗K(e, λ) =

=
m∑
i=1

(
∂F1

∂bi
(e, λ)

∂

∂ai
− ∂F1

∂ai
(e, λ)

∂

∂bi

)
=

m∑
i=l+1

∂F1

∂bi
(e, λ)

∂

∂ai
∈ h⊥

which is the vertical derivative of F1 identified with an element of h⊥ through choice
of a basis. Since the projection K × Ann h � K ×H Ann h is Poisson, Hamiltonian
vector fields project to Hamiltonian vector fields, i.e., −∇T∗K

F1
(e, λ) projects to

−∇K×HAnn h
F [(e, λ)] = −Z.

Therefore, the Hamiltonian vector field of F on K ×H Ann h is (dvF, 0) which is
tangent to the K/H-factor. Thus −Z = dvF (q, η, λ) ∈ k⊥q .

To see the second assertion let h ∈ H and notice that

Ad(h) · ∇T∗K
F1

(e, λ) = ThRh−1 · TeLh · ∇T∗K
F1

(e, λ) = ∇T∗K
F1

(e,Ad∗(h) · λ)

since F1 is both T ∗L(H)- and T ∗R(H)-invariant. Let πH : K×Ann h � K×H Ann h
denote the projection. Then

Ad(h) · Z = TπH · ∇T∗K
F1

(e,Ad∗(h).λ) = ∇K×HAnn h
F [(h, λ)] = TπH · ∇T∗K

F1
(e, λ) = Z

since F1 depends only on the second factor, i.e., it is T ∗L(K)-invariant.

Theorem 4.11 (Poisson structure on Weinstein space). The identification

W/K
=−→W, [(q; [q], η; q, λ)] �−→ ([q], η; [(q, λ)])

gives an induced Poisson bracket on C∞(W ) = C∞(W)K which makes the stratified
isomorphism

ψ0 = ψ0(A) : T ∗(Q/K) ×Q/K
( ⊔
q∈Q

Ann kq

)/
K = W −→ (T ∗Q)/K
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from Theorem 4.4 into an isomorphism of Poisson spaces.
Let [(q, η, λ)] ∈ W/K = W , and f1, f2 ∈ C∞(W ). Assume that F1, F2 ∈ C∞(W)K

are lifts of f1, f2 to W. Then the induced Poisson bracket on W is given by

{f1, f2}W [(q, η, λ)]

= ΩQ/K([q],η)

(((
ΩQ/K([q],η)

)∨)−1

(d
eAF1(q, η, λ)),

((
ΩQ/K([q],η)

)∨)−1

(d
eAF2(q, η, λ))

)
− 〈λ,CurvA0 (v1(q)hor(π), v2(q)hor(π))〉 − 〈λ, [dvF1(q, η, λ), dvF2(q, η, λ)]〉

where ΩQ/K is the canonical symplectic form on T ∗(Q/K), the covariant deriva-
tives d

eAFi(q, η, λ) are considered as elements of T ∗
([q],η)(T

∗(Q/K)), and vi(q)hor(π) =

Tτ · ((ΩQ/K([q],η)

)∨)−1(d
eAFi(q, η, λ)). Finally, CurvA0 is the induced form on Q/K asso-

ciated to the mechanical connection A from Proposition 3.1.

In the case that K acts freely on Q the Poisson bracket on the reduced Poisson
manifold T ∗Q/K is determined in Zaalani [34] and in Perlmutter and Ratiu [23]. In
the first paper the realization of T ∗Q/K as Weinstein space is used, the latter deals
with its realization as Sternberg and Weinstein space.

Proof. The first part of the theorem has already been checked in the proof of Theo-
rem 4.4.

Let f1, f2 ∈ C∞(W ) and let F1, F2 ∈ C∞(W)K be its unique lifts to W. In
order to establish the formula for the reduced Poisson bracket we decompose the
Hamiltonian vector fields of F1 and F2 as above

∇σ
Fi

(q, η, λ) = (vi(q); η′i([q], η); vi(q), νi(q, λ)) (i = 1, 2).

With the intrinsic symplectic form σ on W from Proposition 3.2 we have

{f1, f2}W [(q, η, λ)] = {F1, F2}W(q, η, λ) = σ(∇σ
F1
,∇σ

F2
)(q, η, λ)

which turns to the desired formula by the identity η′i([q], η)
hor(τ) = vi(q)hor(π), and

Lemmas 4.8, 4.9, and 4.10.

The above theorem implies, in particular, that the embedding T ∗(Q/K) ↪→W as
the zero section is a Poisson morphism when T ∗(Q/K) is equipped with its standard
Poisson structure. Now, fixing λ ∈ (Ann h)(L)H defines a smooth embedding

ιλ : T ∗(Q/K) ∼= T ∗(QH/N(H)) −→W(L), ([q], η) �−→ [(q, η, λ)]

where q ∈ QH := {q ∈ Q : Kq = H}, N(H) is the normalizer of H in K, and (L)H ,
(L) denotes the conjugacy class of L ⊆ H in H, K respectively. A quick inspection
shows that ιλ is, in general, not Poisson if T ∗(Q/K) carries its usual Poisson structure.
An element λ ∈ k∗ is called totally isotropic if kλ = k.
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Corollary 4.12 (Charge). If λ ∈ Ann h is totally isotropic then the embedding
ιλ : T ∗(Q/K) ↪→ W is Poisson if T ∗(Q/K) is equipped with the Poisson structure
stemming from the magnetic symplectic form Ωλ := ΩQ/K − 〈λ, τ∗ CurvA0 〉.
Proof. This is obvious from the formula of Theorem 4.11.

Due to the appealing similarity of the symplectic form Ωλ with that appearing
in electromagnetism Ωλ is called a magnetic symplectic form, and we think of the
totally isotropic momentum value λ as the charge of the test particles moving in the
electromagnetic field on the reduced configuration space Q/K. This analogy will be
carried further in section 5 where we equip our particles with spin by considering gen-
eral momentum values. See Guillemin and Sternberg [13, section 20] for a discussion
of electromagnetism in a symplectic framework.

Since Hamiltonian vector fields associated to K-invariant functions are tangent
to the isotropy type submanifolds we can define Hamiltonian vector fields on W as
follows. Let f ∈ C∞(W ) and F = φ∗f ∈ C∞(W)K where φ : W � W is the
projection. Then ∇W

f which is characterized by

∇W
f ◦ φ = −{f, ·}W ◦ φ = Tφ · ∇σ

F

is a stratified vector field on W in the sense of Subsection 2.3. Let φ(L) : W(L) � W(L)

denote the restriction of φ to the isotropy stratum.

Corollary 4.13 (Hamiltonian vector fields). Let [(q, η, λ)] ∈ W(L) = W(L)/K and
f ∈ C∞(W ) with unique lift F = φ∗f . Then

∇W
f [(q, η, λ)] =

(
v0,

((
ΩQ/K([q],η)

)∨)−1

(d
eAF (q, η, λ)), ad∗(dvF (q, η, λ)) · λ

)
where we consider d

eAF (q, η, λ) as an element of T ∗
([q],η)(T

∗(Q/K)) through the iso-
morphism given by the dual of the horizontal lift with respect to the mechanical con-
nection A on Q � Q/K. Moreover, v0 := T([q],η)τ ·

((
ΩQ/K([q],η))

)∨)−1(d
eAF (q, η, λ)).

Proof. Notice firstly that

∇σ
F (q, η, λ)−

(
v(q)hor(π),

((
ΩQ/K([q],η)

)∨)−1

(d
eAF (q, η, λ)), ad∗(−Z)·λ

)
∈ kerT(q,η,λ)φ(L)

by Lemmas 4.8, 4.9, and 4.10, and where −Z = dvF (q, η, λ). We have v0 = Tqπ ·
(v(q)hor(π)) then

∇W
f [(q, η, λ)] = T(q,η,λ)φ(L) · ∇σ

F (q, η, λ)

= T(q,η,λ)φ(L) ·
(
v(q)hor(π),

((
ΩQ/K([q],η)

)∨)−1

(d
eAF (q, η, λ)), ad∗(−Z) · λ

)
=

(
v0,

((
ΩQ/K([q],η)

)∨)−1

(d
eAF (q, η, λ)), ad∗(−Z).λ

)
.
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The last equality in the aligned equation is true since

(v(q)hor(π),
((

ΩQ/K([q],η))
∨
)−1

(d
eAF (q, η, λ)), ad∗(−Z) · λ)

is horizontal with respect to the projection φ(L) : W(L) � W(L) which is equipped
with the structure of a Riemannian submersion.

5. Symplectic leaves

It is well known that any smooth Poisson manifold foliates into smooth symplectic
initial submanifolds. These symplectic submanifolds are the leaves of the integrable
distribution with jumping rank defined by the Hamiltonian vector fields. In particular,
if (M,ω) is a symplectic manifold which is acted upon in a Hamiltonian fashion by a
compact Lie group K such that this action is free this is true for the quotient manifold
M/K which carries an induced Poisson structure. Moreover, the symplectic leaves of
M/K are simply the connected components of the Marsden-Weinstein reduced spaces
M//OK where O is a coadjoint orbit.

In the present context where M/K = (T ∗Q)/K is a singular Poisson space such
a statement cannot be true in this form. (We continue to assume that Q is of single
isotropy type, i.e., Q = Q(H) whence the cotangent lifted action has a non-trivial
isotropy lattice if H 
= {e}.) However, using that Hamiltonian vector fields associated
to K-invariant functions are tangent to isotropy type submanifolds (T ∗Q)(L) we can
still define a characteristic distribution on (T ∗Q)(L)/K, and find in subsection 5.3
that its symplectic leaves are the connected components of the smooth symplectic
manifold T ∗(Q/K) ×Q/K (

⊔
q∈QO ∩ Ann kq)(L)/K. This result is put into perspec-

tive in Subsection 5.2 where we recall the singular Weinstein space description of
T ∗Q//OK ∼= W//OK.

5.1. Universal reduction procedure

The singular reduction diagram of Ortega and Ratiu [20, Theorem 8.4.4] adjoined
to the universal reduction procedure of Arms, Cushman, and Gotay [3], see also
[20, section 10.3.2] applied to the Weinstein space has the following form.

μ−1
A (O) �� � �

����

μ−1
A (λ) � � ��

����

W

����
μ−1
A (O)/K �� �

μ−1
A (λ)/Kλ

� � �� W/K W

where λ ∈ μA(W) and O is the coadjoint orbit passing through λ. In this diagram
the isomorphism μ−1

A (λ)/Kλ
∼= W//OK is an isomorphism of singular symplectic

spaces with smooth structure, and the inclusion μ−1
A (λ)/Kλ ↪→ W is a morphism
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of singular Poisson spaces. In the universal reduction scheme of Arms, Cushman,
and Gotay [3] this morphism is actually used to equip μ−1

A (λ)/Kλ with a Poisson
structure. Therefore, it is sensible to expect the smooth symplectic leaves of W to
be the connected components of the smooth symplectic strata of W//OK. The latter
space is described in the next subsection.

5.2. Symplectic reduction of W
Let O be a coadjoint orbit in the image of the momentum map μA : W → k∗, and let
(L) be in the isotropy lattice of theK-action on W such that WO

(L) := μ−1
A (O)∩W(L) 
=

∅. Then we have
ιO(L) : WO

(L) ↪→ W,

the canonical embedding, and the orbit projection mapping

πO
(L) : WO

(L) � WO
(L)/K =: (W//OK)(L).

Consider furthermore

ρO(L) :
( ⊔
q∈Q

O ∩ Ann kq

)
(L)

�
( ⊔
q∈Q

O ∩ Ann kq

)
(L)

/
K

and
νO(L) :

( ⊔
q∈Q

O ∩ Ann kq

)
(L)

−→ O, (q, λ) �−→ λ

as well as the embedding

jO(L) :
( ⊔
q∈Q

O ∩ Ann kq

)
(L)

↪→
⊔
q∈Q

Ann kq.

Finally, we denote the Kirillov-Kostant-Souriou symplectic form on O by ΩO, that is
ΩO(λ)(ad∗(X) ·λ, ad∗(Y ) ·λ) = 〈λ, [X,Y ]〉. Remember from Proposition 3.2 that the
symplectic structure on W is denoted by σ.

Theorem 5.1 (Gauged symplectic reduction). Let Q = Q(H), let O be a coadjoint
orbit in the image of the momentum map μA : W → k∗, and let (L) be in the isotropy
lattice of the K-action on W such that WO

(L) := μ−1
A (O) ∩ W(L) 
= ∅. Then the

following are true.

(i) The smooth manifolds (W//OK)(L) and

(O//0H)(L0)H =: (O ∩ Ann h)(L0)H/H

are typical symplectic strata of the stratified symplectic spaces W//OK and
O//0H respectively. Here L0 is an isotropy subgroup of the induced H-action
on O and (L0)H denotes its isotropy class in H.
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(ii) The symplectic stratum (W//OK)(L) can be globally described as

(W//OK)(L) = T ∗(Q/K) ×Q/K
( ⊔
q∈Q

O ∩ Ann kq

)
(L)

/
K

whence it is the total space of the smooth symplectic fiber bundle

(O//0H)(L0)H
� � �� (W//OK)(L)

�� T ∗(Q/K)

Hereby L0 is an isotropy subgroup of the induced H-action on O which is con-
jugate in K to L, and (L0)H denotes its isotropy class in H.

(iii) The symplectic structure σO
(L) on (W//OK)(L) is uniquely determined and given

by the formula
(πO

(L))
∗σO

(L) = (ιO(L))
∗σ − (μA|WO

(L))
∗ΩO.

More precisely,
σO

(L) = ΩQ/K − βO
(L)

where βO
(L) ∈ Ω2((

⊔
q∈QO ∩ Ann kq)(L)/K) is defined by

(ρO(L))
∗βO

(L) = (jO(L))
∗dB + (νO(L))

∗ΩO.

Finally B is the form that was introduced in Proposition 3.2. Thus for (q, λ) ∈
(
⊔
q∈QO ∩ Ann kq)(L) and

(vi, ad∗(Xi).λ) ∈ T(q,λ)

( ⊔
q∈Q

O ∩ Ann kq

)
(L)

where i = 1, 2 we have the explicit formulas

B(q,λ)(vi, ad∗(Xi) · λ) = 〈λ,Aq(vi)〉

and also

dB(q,λ)((v1, ad∗(X1) · λ), (v2, ad∗(X2) · λ))

= 〈λ,CurvAq (v1, v2)〉 + 〈λ, [X2, Z1]〉 − 〈λ, [X1, Z2]〉 + 〈λ, [Z1, Z2]〉

where vi = ζZi(q) ⊕ vhor
i ∈ Verq ⊕Horq is the decomposition into vertical and

horizontal parts with Zi ∈ k.

(iv) The stratified symplectic space can be globally described as

W//OK = T ∗(Q/K) ×Q/K
⊔
q∈Q

O ∩ Ann kq/K
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whence it is canonically the total space of

O//0H
� � �� W//OK �� T ∗(Q/K)

which is a singular symplectic fiber bundle with singularities confined to the fiber
direction in the sense of Definition 2.15.

Proof. Assertion (i) is a well-known principle of stratified symplectic reduction — see
Ortega and Ratiu [20, section 8.4]. The other assertions are proved in [14, Theo-
rem 5.5]

5.3. Symplectic leaves of W = W/K

Let O be a coadjoint orbit in the image of the cotangent bundle momentum map
μ : T ∗Q → k∗. As before (L) denotes an isotropy type of the K-action on T ∗Q, and
(L0)H denotes an isotropy type of the Ad∗(H)-action on O. Let λ ∈ O ∩ Ann h with
Kλ ∩H = L0 ⊆ H. We want to make use of the Witt-Artin decomposition and thus
denote the symplectic slice of the H-action on O at λ by

V := (h · λ)Ω
O
/(h · λ)

where ΩO denotes the positive KKS-form on O. Notice that this is well defined since
H · λ = Ad∗(H) · λ ⊆ O ∩ Ann h is an isotropic submanifold of O. (The H-action
on O is Hamiltonian with momentum map O → h∗ given by restriction to h.) By
construction V is a symplectic vector space. Thus this is also true for the linear
subspace VL0 := {v ∈ V : Hv = L0} of fixed symmetry type.

Lemma 5.2. Under these assumptions (O ∩ Ann h)(L0)H is a smooth manifold and
Tλ(O ∩ Ann h)(L0)H = T([e],0)(H/L0 × VL0). Furthermore, (O ∩ Ann h)(L0)H/H is a
smooth symplectic manifold and T[λ]((O ∩ Ann h)(L0)H/H) = VL0 .

Proof. This is a direct consequence of the Symplectic Slice theorem. See Ortega and
Ratiu [20, chapter 7] for a treatment of this theorem and [20, section 8.1] for the way
in which it is used.

For notational convenience we abbreviate (O ∩ Ann h)(L0)H/H =: (O//0H)(L0)H .

Lemma 5.3. Assume that [(q, η, λ)] ∈W(L) = W(L)/K and f ∈ C∞(W ) with unique
lift F = φ∗f . Let q ∈ QH and λ ∈ (Ann h)(L0)H where L0 ⊆ H is conjugate to L
within K. Then

∇W
f [(q, η, λ)] ∈ T([q],η)(T ∗(Q/K)) × T[λ](O//0H)(L0)H .

Moreover, the latter space is the real span of local Hamiltonian vector fields evaluated
at [(q, η, λ)].
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Proof. According to Corollary 4.13 we have

∇W
f [(q, η, λ)] =

(
v0,

((
ΩQ/K([q],η)

)∨)−1

(d
eAF (q, η, λ)), ad∗(dvF (q, η, λ)) · λ

)
where we consider d

eAF (q, η, λ) as an element of T ∗
([q],η)(T

∗(Q/K)) through the iso-
morphism given by the dual of the horizontal lift with respect to the mechanical
connection A on Q � Q/K. Moreover, v0 := T([q],η)τ · ((ΩQ/K([q],η))

∨)−1(d
eAF (q, η, λ)).

By Lemma 5.2 we have to check that ad∗(−Z).λ ∈ VL0 = ((h ·λ)Ω
O
/(h ·λ))L0 . Indeed,

by Lemma 4.10 it is true that Ad(h).Z = Z for all h ∈ H where Z := −dvF (q, η, λ).
Thus [Z, h] = 0 whence ad∗(−Z) ·λ ∈ (h ·λ)Ω

O
and even ad∗(−Z) ·λ ∈ (h ·λ)Ω

O
/(h ·λ).

Moreover, it follows that h · ad∗(−Z) · λ = ad∗(−Z) · λ for all h ∈ H ∩ Kλ = L0.
However, since ad∗(−Z) ·λ is also an element of the Riemannian slice of the H-action
on O at λ it follows that Had∗(−Z)·λ ⊆ Hλ = L0 since this is a general feature of
Riemannian slices. Therefore, ad∗(−Z) · λ ∈ VL0 , as claimed.

The second claim follows by going again through the proof of Lemma 4.10.

Let P(L) denote the coinduced Poisson two-tensor on W(L). Then we may rephrase
the above lemma by saying that

P̌(L)(T ∗
[(q,η,λ)]W(L)) = T([q],η)(T ∗(Q/K)) × T[λ](O//0H)(L0)H .

Thus we get the following theorem.

Theorem 5.4 (Symplectic leaves). Let (L) be an element of the isotropy lattice of
the K-action on W. Then the characteristic distribution of the coinduced Poisson
structure P(L) on W(L) is given by

P̌(L)(T ∗W(L)) = T
(
T ∗(Q/K) ×Q/K

( ⊔
q∈Q

O ∩ Ann kq

)
(L)

/
K

)

whence the smooth symplectic leaves of W(L) are the connected components of the
smooth symplectic manifolds

(W//OK)(L) = T ∗(Q/K) ×Q/K
( ⊔
q∈Q

O ∩ Ann kq

)
(L)

/
K.

The symplectic form which makes the inclusion (W//OK)(L) ↪→W(L) a Poisson mor-
phism as that of Theorem 5.1.

Proof. The statement about the integrability of the characteristic distribution is tau-
tologous since it is described as the tangent bundle of a smooth manifold. The
inclusion (W//OK)(L) ↪→ W(L) is a Poisson morphism by the reasoning of subsec-
tion 5.1.
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5.4. Charge and spin

We shortly describe and interpret some special cases of Theorem 5.4. Retaining as-
sumptions and notation of this theorem we additionally require that (

⊔
q∈Q Ann kq)/K

→ Q/K be a trivial vector bundle so that( ⊔
q∈Q

O ∩ Ann kq

)
(L)

/
K = Q/K ×O//0H and W//OK = T ∗(Q/K) ×O//0H.

If O//0H = {point} = {λ} then we obtain the same result as in Corollary 4.12, i.e.,
T ∗(Q/K) inherits the magnetic symplectic form Ωλ := ΩQ/K − 〈λ, τ∗ CurvA0 〉.

If O//0H is non-trivial then W//OK = T ∗(Q/K) ×O//0H with its induced sym-
plectic structure

Ω(q, η, [λ]) = ΩQ/K(q,η) − 〈λ, τ∗ CurvA0 〉 − ΩO
[λ]

(where ΩO denotes the reduced symplectic form on O//0H obtained from the KKS-
form on O) describes the phase space of a (color)-charged particle moving on Q/K
under the influence of the field CurvA0 and with internal spin parameters corresponding
to O//0H.

6. Examples

6.1. Calogero-Moser space

In the spirit of Hochgerner [14] we can apply Theorem 4.11 to obtain rational versions
of spin Calogero-Moser systems. That is, let V be a real Euclidean vector space and
K a connected compact Lie group that acts on V through a polar representation. Via
the inner product we consider the cotangent bundle of V as a product T ∗V = V ×V .
The canonical symplectic form Ω is thus

Ω(a,α)((a1, α1), (a2, α2)) = 〈α2, a1〉 − 〈α1, a2〉
where 〈 , 〉 is the inner product on V .

The cotangent lifted action of K is the diagonal action on V × V . According to
Dadok [9] we may think of the action by K on V as a symmetric space representation
and thus consider k ⊕ V =: l as a real semisimple Lie algebra with Cartan decompo-
sition into k and V , and with bracket relations [k, k] ⊆ k, [k, V ] ⊆ V , and [V, V ] ⊆ V .
The momentum mapping corresponding to the K-action on T ∗V = V × V is now
given by μ : V × V → k∗ = k, (a, α) �→ [a, α] = ad(a) · α where we identify k = k∗ via
an Ad(K)-invariant inner product.

Let Vr denote the open and dense subset of V consisting of regular elements. Fol-
lowing the ideas of Alekseevsky, Kriegl, Losik, Michor [1] we can interpret the Poisson
reduced space (T ∗Vr)/K as the Poisson phase space of a rational spin Calogero-Moser
system. Indeed, letH denote the free Hamiltonian on T ∗Vr and h its induced Hamilto-
nian on (T ∗Vr)/K. Then the Hamiltonian vector field of h computed by Theorem 4.11
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and its Corollary 4.13 is exactly minus the one of the Calogero-Moser Hamiltonian in
[1, section 6.5]. (The difference in the sign comes from a different convention in defin-
ing the Hamiltonian vector field of a function.) According to section 5 the smooth
symplectic leaves of (T ∗Vr)/K are given by the connected components of smooth
strata of (T ∗Vr)//OK where O is a coadjoint orbit in k∗. The latter space is described
in [14, section 6.3].

6.2. Orbit type SO(5)/SO(3)

Let SO(5) act on S9 ⊆ R
5 × R

5 through the diagonal action. We denote by Q the
open and dense subset of elements (v, w) ∈ S9 ⊆ R

5 × R
5 such that v and w are

linearly independent. Clearly, Q is preserved by the SO(5)-action, and constitutes,
moreover, the regular stratum with respect to this action. Thus Q is of single isotropy
type, and this type is easily seen to be H := SO(3) ⊆ SO(5) =: K. Writing K as a
matrix group we embed H in the usual way in the lower right corner. The orbit space
Q/K can be identified with the open disk B2 of radius 1 in R

2, and the projection
Q � Q/K is a (non-principal) fiber bundle with typical fiber K/H.

We consider the cotangent lifted K-action on T ∗Q. This is clearly a non-free
action with a non-trivial isotropy lattice. By Theorem 4.11 the singular Poisson
reduced space with respect to the lifted K-action is of the form

T ∗B2 × Ann h/Ad∗(H),

since the bundle (
⊔
q∈Q Ann kq)/K → Q/K = B2 is, in this case, trivial. Using the

trace form we identify Ann h with h⊥. Now, the map

h⊥ −→ R × R
3 × R

3, (xij)ij �−→ (x21, (xk1)5k=3, (xk2)
5
k=3) = (t, v, w)

is a linear isomorphism that is equivariant for the H-action on the right hand side
which acts trivially on the R-factor and in the standard diagonal way on the R

3×R
3-

factor. Thus the singular Poisson reduced space with respect to the lifted K-action
is of the form

T ∗B2 × R × R
3 ×H R

3.

However, the induced Poisson structure is not obvious at all (if we did not have
Theorem 4.11). The stratification is the product stratification induced by the obvious
stratification of (R3 ×R

3)/H. Notice also that the induced form CurvA0 on B2 which
comes from the mechanical curvature is by Proposition 3.1 R-valued and evaluates on
the t-factor.

In order to get a non-trivial symplectic leaf of T ∗B2 × Ann h/Ad∗(H) let

λ :=

⎛
⎜⎜⎜⎜⎝

0 1 1 0 0
−1 0 −1 1 0
−1 1
0 −1
0 0

⎞
⎟⎟⎟⎟⎠
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and O be the (co-)adjoint orbit through λ. Doing the appropriate linear algebra one
sees that dim kλ = 2, dim k⊥λ = 8, h ∩ kλ = {0}, and dim h⊥ ∩ k⊥λ = 5. Doing a little
more linear algebra the symplectic normal space (see, in particular, subsection 5.3)
to the H-action on O at λ computes to be

V =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

0 t a 0 0
−t 0 t a 0
−a −t
0 −a
0 0

⎞
⎟⎟⎟⎟⎠ : t, a ∈ R

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

Since h ∩ kλ = {0} we thus get VL0 = V whence T[λ]((O ∩ Ann h)(L0)H/H) = V . In
particular, the symplectic leaf passing through

T ∗B2 × {[λ]} ⊆ T ∗B2 × Ann h/Ad∗(H) = T ∗B2 × R × R
3 ×H R

3

is 6-dimensional. Further and more detailed investigation into this example will be
written up elsewhere.
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