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ABSTRACT

We introduce a model of a vibrating multidimensional structure made of a n-
dimensional body and a one-dimensional rod. We actually consider the aniso-
tropic elastodynamic system in the n-dimensional body and the Euler-Bernouilli
beam in the one-dimensional rod. These equations are coupled via their bound-
aries. Using appropriate feedbacks on a part of the boundary we show the
exponential decay of the energy of the system.
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Introduction

Let Q be a non empty bounded open subset of R",n > 1, with a boundary I' of
class C2. We denote by v(z) = (v1,...,v,)" the unit outward normal vector at x
along T'. For a fixed xg € R"™ we define the function m(z) =  — xg, z € R™ and the
following partition of the boundary I" (see figures 1 and 2):

IFo={zel :mx) viz)<0},
I'yv={zel :m(x) vix)>0}.
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Figure 1: A pluridimensional structure for n =2 — The case [y NTp # ()
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Figure 2: A pluridimensional structure for n =2 — The case Iy NT'p =0
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We also fix an open subset v of 'y such that
m(z)-v(z) < —ap <0, Vaenr,

and denote
FD = Fo \’)/.

In the whole paper we suppose that measT'p > 0, measI'y > 0, meas~y > 0.
We further fix a 1-dimensional beam w of length [ attached to {2 at a point a € ~
and orthogonal to I', in other words (see again figures 1 and 2),

w={a+sv(a) : 0<s<l}

The derivation with respect to the parameter s will be denoted by 0.

Finally let a be a non negative real number and 6 be a function from ~ to R™ of
class C' with a compact support and such that 6 # 0.

We now consider the following problem:

w —divo(u) =0 in Q x R,

V" + pdtv =0 in wx Rt,

u=0 onI'p x R,
ow)-v+m-vu' =0 on 'y x RT, (1)
w(z,t) = v(0,1)0(x) on v x Rt

p03v(0,t) + av’(0,t) + fv[a(u) v]-0(z)ds(x) =0 VieRT,

ov(0,t) = 0*v(l,t) = B3v(l,t) = 0,

with initial conditions

w(0) =u’ in Q,

' (0) =u! in Q,

v(0) ="  inw,

v'(0) = vl in w,
where, as usual, v’ means %, u = u(z,t) = (u1,...,u,)" denotes the displacement
vector field in the domain  and v = v(s,t) denotes the orthogonal displacement of
the beam w. The stress tensor o is defined by 0;;(u) = ajjrier(v) (in the full paper
we adopt the convention of repeated indices), where £(u) is the strain tensor given by
(when 0; = 8%1')

1
eij(u) = 5(95u;i + Biuy),
the constant coefficients a;;; are such that

Aijkl = Qklij = Ajikl
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and satisfy the ellipticity condition
46 >0 : QijkI€ijEkL > 65ij5ij7 (2)

for all symmetric tensor €;;. Finally p > 0 corresponds to some mechanical properties
of the beam w.
The components of the vector field divo(u) are given by

(leU(u))l = 3jaij, = ]., cee,n.

The system (1) is dissipative since its energy defined by

E(t) = %/Q{|u’|2 +o(u) : e(u)} de + % /{|v'|2 + p|0*v|?} ds (3)

is non increasing.
If Ty NTp # ), we suppose that the elastodynamical system in Q is reduced to
the isotropic one, namely we assume that

o(u) =2ue(u) + Adivul,,

where A, > 0 are the Lamé coefficients and I,, is the identity matrix in R™. We
further need to assume that (cf. [3]) ¢ := Ty NTp is a (n—2)-dimensional submanifold
of class C® such that there exists a neighborhood €’ of ¢ such that 'NQ is a (n—1)-
dimensional submanifold of class C3. If 7(x) denotes the unit normal vector along ¢
pointing outward of 'y, we assume that (see figure 1)

m(z)-7(x) <0, Vrec

Note that the above system (1) is a coupled system between the anisotropic elas-
todynamical system in 2 and an Euler-Bernouilli beam equation in w. The feedbacks
correspond to the term m - vu’ on I'y and the term «v’(0,¢) on the junction ~.
(Remark that e may be equal to zero.)

Simpler models were considered in [19,30,31], namely their system is a coupling
between the wave equations in Q and in w. In [30,31], the controllability of this system
is considered using appropriate control on the boundary; while in [19] the stability
of this system is considered with the help of a feedback only on I'y. As underlined
in [31], the analysis of more realistic models should be made. Therefore our goal is
to consider a simple but realistic model of the junction between the elasticity system
and a beam. The junction between 2 and w is made via the transmission conditions

u(z,t) = v(0,t)0(x) on v x R,
pd*v(0,t) + av’(0,t) + /[U(u) -v] - 0(x)ds(z) =0 vt € RT.
vy
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The first condition means that the displacement u on v and v at its extremity a is
prescribed via the profile #, in a certain sense the beam is clamped at the domain 2
since we add the condition dv(0) = 0. The second condition is a (energy) balance law.
The boundary conditions on the other extremity of the beam mean that the beam
is free at that point. Note that the junction between €2 and w is made through the
profile 0, therefore the angle between w and the boundary I' of Q could be different
from 7/2.

1. The main results

We define the following Hilbert spaces:
H = (L*(Q)" x L*(w),
Hi (Q)={ueH'(Q) :u=00nTp},
V ={(u,v) € (H%D(Q))” x H*(w) : u = 6v(0) on v and dv(0) = 0}.
The space V is equipped with the natural norm

o)l = [ otw):etwdat [ peoas

where o(u) : e(u) = 045(u)ei; (w).

Theorem 1.1. For the initial data ((uo,vo), (ui,v1)) € V X H, the system (1) has a
unique (weak) solution (u,v) satisfying

(u,0) € CH([0,00); H) N C([0,00); V).
The main result of our paper is the next theorem:

Theorem 1.2. There exist positive constants M and § such that the energy of any

solution of (1) satisfies
E(t) < Me %, vt >0.

Remark 1.3. In [19] the stability of the wave system is obtained under a geometric
assumption between v and the length of w. Our paper shows that this assumption is
unnecessary.

2. Well-posedness of the problem

In this section we prove Theorem 1.1 by reducing the system (1) to a first order
evolution equation.
Let us define the operators

A:V+—V' and B:V+—V'
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by

<A(u7v)7 (U*vv*»V’,V - /

o(u):e(u”)dz + / pd*vd*v* ds,
Q w

(B(u,v), (u*, 0" )y v = m-vu-u* dl + av(0)v*(0).
I'n

Clearly the operators A and B are well defined. Now to obtain the abstract formula-
tion of (1), we take an arbitrary element (u*,v*) € V. We multiply the first identity
of the system (1) by u*, integrate by parts in 2, and use the boundary conditions
on I'p and I'y. This yields

o:Aﬁ/-mﬂdwnwﬁm
:Awhmm—ﬁpwym4ﬁﬁ+lfmydwmx

:/u”-u*dx—l—/U(u):s(u*)daj—i— m-yu'~u*dF—/[a(u)~u]-u*dF.
Q Q ¥

I'n

In a similar manner, multiplying the second equation of (1) by v*, and using integra-
tion by parts in w and the boundary conditions, we obtain

0= /[U” + pd*vjv* ds
= / v"v* ds + / pd*v0*v* ds + [pdPvv*]) + [pd*vov*]]
= / v"v* ds + / pd*vd*v* ds — pd®v(0)v*(0).

Summing these two identities and taking into account the transmission condition on
~ we arrive at the identity

(u,v)" + A(u,v) + B(u',v") = (0,0) in V".
We now introduce the operators defined on V' x V' by

A((U,’U), (’LL*,’U*)) = ((_U*v —’U*),A(U,U)),
B((uvv)’ (U*av*)) = ((070)’B(U*’U*>)'

Setting
X = ((u,v), (u',0"))
and
A=A+B, (4)
Revista Matemdtica Complutense 282
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the system (1) reduces to
X'+ AX =0,
X(0) = ((uo, vo), (u1,v1)).
Lemma 2.1. Under the above hypotheses, the operator A defined on H x H by (4),
with domain
D(A) = { (u,v), (u*,v*)) €V x H : (—div(e(u)),d') € H,
ow)-v+m-vu* =0 onTy,

pdv(0) + av*(0) + /[U(u)u} -0dl’ =0,

&«nza%w):a%w)zo}

is mazimal dissipative. Moreover D(A) is dense in H x H.

The proof of this Lemma is quite standard (see for instance [12, section 2| or
[17, Lemma 3.2]). The theory of linear semi-groups [29, 32] leads to Theorem 1.1.
Note further that for initial data ((ug,vo), (u1,v1)) € D(A), the system (1) has a
unique strong solution (u,v) satisfying

(u,v) € C*([0,00); H) N C([0,00); V) N C([0,00); D(A)).

3. Proof of Theorem 1.2

Deriving (3) in time and integrating by parts in space we readily see that
E'(t)=— m - vlu/ (t)|?dT — av’(0,t)?
I'n
and consequently
T
ma_mn:/[ e vful (1) P+ a0 (0,0)%] dt, (5)

for all 0 < S < T < oco. This leads to the decay of the energy.
We will now obtain the exponential decay of this energy. For that purpose intro-

duce the constant
n o\ /2
Ry = mag(Z(:z:k — Tok) ) .
e =1

Let further y be the smallest positive constant such that for all u € (Hf_ (€2))"
/ lu|? dT" < /f/ o(u) : e(u) dz.
I'n Q

We start with two technical Lemmas:

233 Revista Matemadtica Complutense
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Lemma 3.1. Let (u,v) be a strong solution of (1). Define

M(u) =2(m - Vu+(n—1)u
and

N(v) =2(s —1)0v — v.
Then we have
I @)@y < CE(D), 120,

IN@®)|22, < CEW), ¥>0,

where, here and below, C > 0 means a positive constant independent of (u,v).

Proof. By integration by parts we have
1M (W)[1E2()yn = /QH?(m -V)ul? + (n = 1)?*[uf’ + 4(n = 1)u - (m - V)u] dz
= /QH?(m V)ul? 4+ (n = 1)?Juf® +2(n — V)m - V(Jul*)] dz
= /QHZ(m Vul? + (1 —n?)|ul’] dz +2(n — 1) /F m - v|u|? dT

§4R3/|Vu\2d:v+2(n—1)/m'y|u\2dF.
Q T

We conclude using Korn’s inequality since I'p is not empty.
For the second estimate by integration by parts we have

IN@®)2 < 4/(5 —12(Bu(s, 1)) ds + 3/ V2 (s, ) ds — 2002(0, ).

w w

But Poincaré’s inequality leads to

[@sopass [ena<c(]

w

(8%0(s, 1)) ds + v2(0,t)>.
These two inequalities yield
IN (@) ()] 72(0) < CE(E) +v7(0,1)). (6)

Now the assumption 6 # 0 and the transmission condition u = fv on ~ lead to

1
v2(0,1) < 7/|u\2df7
J,o%dr /,

and by Korn’s inequality we obtain
v?(0,1) < C/ o(u) : e(u)dl’ < CE(t).
Q

This estimate in (6) leads to the conclusion. O

Revista Matemdtica Complutense 284
2006: vol. 19, num. 2, pags. 277-296



S. Nicaise/A. Séne Stabilization of a coupled multidimensional system

For 0 < T < 00, we set

Q=0Qx(0,T), g=wx (0,T)
Y=Ix (O,T), YXp=TIpx (O,T)7 Yy =InN X (O,T)

Lemma 3.2. If a > 0, there exists a constant C > 0 such that for all e € (0,1) and
T >0, we have

T T C T
/ / |u|2drdt+/ [v(0,t)|% dt < —E(O)—i—a/ E(t)dt.
0o Jry 0 € 0

Proof. For ¢t > 0, consider the solution z = z(¢) of (compare with [9, Lemma 5.2])

{div(o(z)) =0 inQ,

zZ=u on I

(7)

This solution is characterized by z = w + u where w € (H}(2))" is the unique
solution of

/ o(w):e(v)de = —/ o(u):e(v)de Yov € (Hy(Q)".
Q Q
This identity means that

/Qa(z) ce(v)dr =0 Yuve (HH(Q)".

Taking v = z — u in this identity, we deduce that

/Qa(z) ce(u)dx = / o(z) :e(z)dx > 0. (8)

Q

One easily shows that z also satisfies (see [9, Lemma 5.2])

[ #zde== [ zpmar, vre@ @), (9)
Q T

where vy € (HJ(£2))™ is the unique solution of

/ o(vy) s e(w)de = / fwdz,Yw € (Hi (Q))".
Q Q

Taking f = z in the identity (9), we may write

/Q|z|2 dx:f/rz'(a(vz)z/)dF.

285 Revista Matemadtica Complutense
2006: vol. 19, num. 2, pags. 277296



S. Nicaise/A. Séne Stabilization of a coupled multidimensional system

Since z =uon 'y, z=u=0on I'p, and z = u = fv on ~, by Cauchy-Schwarz’s
inequality we obtain

/QIZI2 de < C([[ull 2@ yyn + [0(0,))llo (v)vll L2y (10)

As the boundary T' is C?, elliptic regularity results yield v, € (H?(£2))" with the
estimate

vzl (a2 )y < Kllzll(z2@)yms

for some positive constant /. This estimate and a standard trace theorem lead to

lo()vllpz @y < Killzllze@)n

for some positive constant K. Inserting this estimate in (10) we arrive at

/Q\z|2dx < c(/FN|u|2 dr + [o(0.0)?). (1)

Since 2’ is solution of problem (7) with u’ instead of u, the above arguments yield

/\z'|2 dr < C’(/ |u'|dT" + |v'(07t)|2). (12)
Q I'n

In the same manner for ¢ > 0, consider the solution w = w(t) of

4 _ .
{3 w =0 in w, (13)

w(0) = v(0), Ow(0) =0v(0) =0, *w(l)=dw(l)=0.

This solution w is characterized by w = w; + v where w; € W is the unique solution

of
/azwlazk‘ds = —/ 0?vd%kds, Vke W,

the Hilbert space W (with the natural norm) being defined by
W ={ke H*(w) : k(0) = 0k(0) = 9*k(l) = 0°k(l) = 0 }.

As before this identity means that
/ Pwdkds =0 VkeW,
and taking k = w — v in this identity, we deduce that

/ 0*vd*w = /(5‘210)2 ds > 0. (14)
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Let us also notice that w satisfies
/ gwds = —w(0)8%k,(0), Vg e L2(w), (15)

where k, € W is the unique solution of

/82k982kds = / gk ds,Vk € W.

Taking ¢ = w in the identity (15), we may write

/|w|2 ds = —w(0)0%k,,(0),

and since w(0) = v(0), we obtain
[ 1wk ds < 000,010, 0). (16)
As k,, € H*(w) with the estimate
1kwll ey < B {wll 22w,
for some positive constant K*, by the Sobolev embedding theorem we obtain
0%k (0)] < K7 |wl| 2w,

for some positive constant K. Inserting this estimate in (16) we arrive at

/ lw|?ds < C|v(0,1)]. (17)

Since w’ is solution of problem (13) with v’ instead of v, the above arguments
yield

/|w’|2 ds < C|v'(0,t)]. (18)

Now using a standard trace theorem and Korn’s inequality (since I'p # ) we have

/ |z|2dl" < C/ o(z) : e(z) du.
' nUy Q

Recalling that z =u on I'y and z = u = v on =, we get

/F ul? dT + [0(0,1)[* < C/ch(z):s(z) dz.
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This implies that

/FN|U|2dr 100,87 < c(/Q o(2) : e(2) do +p/(a2w)2 ds).

w

Using the identities (8) and (14) we get

/ [l dT + [0(0, 8)]? < C(/

o(z):e(u)dx + p/ 0*vd*w).
'y Q w

Integrating this identity for ¢ € (0,7"), we find

T
/ |u|? dT dt —l—/ [v(0,t)|> dt < C(/ o(u) :e(z)dxdt + p/62v82wdsdt).
N 0 Q q

By integration by parts, we get

T
/ |u|2dth+/ \v(O,t)|2dt§C<f/ divg(u)~zdxdt+p/84vwdsdt
3N 0 Q q

+/Zcr(u)1/~zdI‘dt+p/0Tw(O,t)831)(O,t) dt).

Asz=uonXy,z=0o0nXp, z=0v(0,t) onyx(0,T), and w(0) = v(0,t), using
the boundary conditions on X and on v x (0,7") for u we may write

T
/ o(u)v - zdldt = m - vu'udldt — / v(0,)(pdv(0,t) + v’ (0, 1)) dt.
5 0

XN

Inserting this identity in the last one and using the first and second identities of (1),
we arrive at

T
/ |u|2dF+/ |v(0,t)\2dt§C(—/ u”~zdxdt—/v"wdsdt
XN 0 Q q

T
+ m-uu’udf‘dt—a/ v(o,t)v’(o,t)dt).
N 0

Now integrating by parts in time, we obtain

T
/ |u|2dF+/ |v(0,t)\2dt§0</ u"z'dxdt—l—/v'w’dsdt
N 0 Q

q

T
7/ zu’|(7;7/wv/|0T+ m-uu’udfdtfa/ v(0,¢)v'(0,t) dt). (19)
Q w EN 0
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Fix an arbitrary €9 > 0. Using several times (5), (11), (12), (17), (18), and Young’s
inequality, we can estimate the different integrals of the right-hand side of the above
inequality as follows:

1
m.yuu’dEgso/ |u\2d2+—/ m - vl |*d2
SN SN deo Jxy

T
1
< 250u2/ E(t)dt + —E(0),
0 450

1
/z’u’dzdt§50/|u’|2 dxdt—i-f/|z'|2 dx dt
Q Q

<2€0/ E(t dt—&-—E(O)

’ C
/w'v’dmdt < 260/ E(t)dt + —E(0),
q 0 4eo

- [l <40+ B0,
Q
—/ wv' |} < CE(0),

T
—a/ v(O,t)v'(O,t)dt<—a/ [v'(0,t |2dt+50/ [v(0,t)|? dt
0

S +€0/ |UOt|2dt
€o

Using these different estimates in (19), we arrive at the requested estimate by
choosing ¢, appropriately. O

Proof of Theorem 1.2. Without loss of generality we can assume that
- —|—/m |6(2)| dr) <o0. (20)
¥

Indeed if (20) is not satisfied, we can use the following scaling argument: For a
parameter 8 > 0 fixed later on, let us set

0(8,t) = v(B8,t) on @,

where X
w={a+38v(a) : 0<s<I},
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[ =1/ being the length of &. We then see that the pair (u, ) is solution of (1) with
w (resp. p) replaced by @ (resp. p = 3~ %p). For this new system, the condition (20)

is equivalent to
l
i . T) <
(2ﬁ+Lm vjo(z)]dr) <o,

which holds if § is chosen sufficiently large, namely if

l
_2f,ym-1/|9(x)|dl“'

g =

For a fixed §, we further notice that
min{1, 3YE(t) < E(t) < max{1, 3}E(t),
where E(t) is the energy of the new system:
. 1 1 A
B =5 [P+ ot dot 5 [ (0 +plo%0P) ds.
Q o

Consequently the exponential stability of the energy FE is equivalent to the exponential
stability of the energy E. Therefore if (20) does not hold, it suffices to consider the
new system for (u, v) for a fixed [ satisfying (21) and the exponential stability of this
new system (proved below) will imply the exponential stability of the original system
Assume first that (u,v) is a strong solution of (1).
If Tp NTx = (), then multiplying the first identity of (1) by

M(u)=2(m-V)u+ (n—1)u

and integrating by parts on ) we obtain
0= (u, M(u))[T +/ W dedt— [ m vl 2dS)
Q N
- / m - v|u'|* ds(z) dt —|—/ o(u) : e(u) dzdt
¥%[0,T] Q

- /2[(U(U)V) ~M(u) — (m-v)o(u) : e(u)] d.

If T'p NT N # 0, then applying [3, Theorem 4.1], we have
0> (u, M(u))[T +/ o |2 dar dt —/ m - v dS
Q XN
7/ m - v|u'|* ds(x) dtJr/ o(u) : e(u)dzdt
¥x[0,T] Q

- /z[(U(U)V) ~M(u) — (m-v)o(u) : e(u)] d.

Revista Matemdtica Complutense 200
2006: vol. 19, num. 2, pags. 277-296



S. Nicaise/A. Séne Stabilization of a coupled multidimensional system

Similarly multiplying the second identity of (1) by N(v) and integrating by parts
on g we obtain

T T
0:2/ /mzfz/ [v/(0,t)|* dt
0 w 0

Tl T
+/UIN(U)|(7;+2[)/ /(821))2 dt+21p/ 3v(0,1)0v(0, 1)
w o Jo 0
T
+p / 9300, £)0(0, ) dt.
0

These two identities (or inequalities if T'p N Ty # () allow to obtain

T 4
vu)? ;
/OE(t)dtg . | |+;L
where
n == [ @) [ ¥,
B= [ () M) - (m- vl s sl
XNUXDp
112 l T /2
Ig,:/yx(oyT)m-l/|u| dfdt—|—§/0 v"%(0,t) dt,
= . u)—(m-vjolu) : u 4’1 ! SU v
ulwmwwmﬁﬂ>< Jo(u) : <(u)]ds an (0,£)0(0, 1) dt.

Lemma 3.1 yields
I, < CE(0).

As in [1,9] using local coordinates systems we obtain the estimate

bscw@+LuW+wm@>

Using the boundary condition u = 6v on v x (0,7 in system (1) and the condi-
tion (20), we get

Iy = (é —&—[ym-l/ﬁ(m)ﬁ) /OT v'2(0,8)dt < 0.
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Again using the boundary condition on v x (0,7) in system (1) we may write
I = / (o (w)v) - M(u) — (m - v)o(u) : e(u)] dS
% (0,T)

(0% T ’
+ Lx<o,T>(a(u)V)'QU(O’t)d2+2/0 (0, 6)v(0, ) dt.  (22)

N | =

The estimation of I is also based on the use of local coordinates systems (cf. [1]).
Namely for all x € T, we denote by 7r(fn) the orthogonal projection on the tangent
hyperplane 7, (I"). Any vector field v : @ — R™ will be split up as follows:

() = vr(z) + v, ()v(z),

where vr(z) = 7(x)v(x) is the tangential component of v and v, (z) = v(x)-v(x). We
further denote by 0,v = v - Vo, the normal derivative of v and by Vv = Vo — v
the tangential gradient of v. For further uses, we set drv = Vpu, the tangential
derivation of v, where T means the transposed matrix of the matrix 7. Similarly for
a vector v, v will mean its transposed vector.

Following [15] or [33], the strain tensor is written as follows:

e(v) =er(v) + ves(v) + es(v)¥ + €, (V)vD on T,
with
2er(v) = w(Opvr)m + TOpvrT + 20,07V,

2es(v) = dyvp + Vv, — (Opv)vr,
Eu(v) = auvua

where (Orv) is the curvature operator of I". Similarly the stress tensor may be written
o) =or(v)+rvos(v)+os(v)T+o,(v)vv  onT,

where or(v) is an endomorphism on the tangent hyperplane, og(v) is a tangent vector
field and o, (v) is a scalar field.
These splittings allow to write

e(v):e(w) =er(v):er(v) + Q@P + le, (v)]2 on T,

o) :e(v) =or ) :er(v) + 205(v)es(v) + o, (v)e, (v) onT.

Using these local coordinates systems and the boundary condition on ~y x (0,7)
in system (1) we obtain

o(u)y =og(u) + o, (u)v on v x (0,7),
M(u) = 2(m - v)d,u + v1(0)v(0,t) on vy x (0,7),
Revista Matemdtica Complutense 202
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for some vector valued function vy (#) (depending on 6 and its tangential gradient).
This yields

o(u)v - M(u) =
)+ o (w)P)Opu + o(u)v - v1(0)v(0, 1)

(Gs(u)Oy,ur + o, (w)vd,u,)

+o(u) : C1(0)v(0,t) on v x (0,7),

for some matrix valued function C(6) (depending on 6 and its tangential gradient).
On the other hand, we recall that

o(u):e(u) =or(u) : ep(u) + 205(u)es(u) + o, (u)e, (u) on vy x (0,7),
and again using the boundary condition, we obtain
o(u) : e(u) = (Gs(u)Oyur + o, (w)vdyu,) + o(u) : C2(0)v(0,1) on vy x (0,7).

All together we arrive at

(oc(u)v) - M(u) — (m-v)o(u) :e(u) = (m-v)o(u) : e(u)
+o(u): C3(0)v(0,1) on v x (0,7).

Inserting this identity into (22), we obtain

I, = / (m-v)o(u) : e(u)dx
% (0,T)
1 a [T ,
+ [o(u) : C3(0) + = (o (u)v) - 0]v(0,t) dX + f/ v’ (0,t)v(0,t) dt.
~x(0,T) 2 2. Jo
By Young’s inequality we obtain
Iy < / (m-v)o(u) : e(u)dXdt
vx(0,T)
c [T
+ e/ o (w)|? dS dt + 7/ (0, )] dt
% (0,T) € Jo
T
+a/ [v/(0,1)|%dt, Ve € (0,1).
0

Now using the assumption (2), we may write

lo(w)? < Cle()]? < Co(u) : £(u).
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Therefore reminding that m - v < —ag < 0 on ~, by fixing € < C;“, we obtain

m -V T T
Qg/ d@meEﬁ+C/|WMWﬁ+a/|MQm%t
vx(0,T) 2 0 0

Since m - v < 0 on v, we conclude that
T T
ugc/|wuwﬁ+a/|wmmmt
0 0

The estimates on I;,i = 1,...,4 yield
T T
2/Aﬂﬂﬁ§0@®%% 7mmwmm+a/|mqm%w
0 XN 0
T
e |m%z+am/'ﬁ@wﬁ.@a
0

XN

By Lemma 3.2 the above estimate (23) becomes
T T
2/ E(t)dt < C(E(0) + m - vu/|?d% + a/ [v/(0,t)|%dt)
0 SN 0

+ QE(O) + s/T E(t)dt,
€ 0

for any € > 0. By choosing ¢ small enough, we arrive at the observability estimate

T T
/ E(t)dt < C(E(0) + m-vlu|?dE + a/ [0 (0, 1) dt).
0 0

XN
This estimate remains valid for weak solutions by a density argument. The conclusion
now follows from this estimate as shown in [26, Theorem 3.3]. O

Acknowledgements. We thank the referee of our paper whose remarks allowed us
to improve the statement and the proof of Theorem 1.2.
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