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ABSTRACT

We introduce a model of a vibrating multidimensional structure made of a n-
dimensional body and a one-dimensional rod. We actually consider the aniso-
tropic elastodynamic system in the n-dimensional body and the Euler-Bernouilli
beam in the one-dimensional rod. These equations are coupled via their bound-
aries. Using appropriate feedbacks on a part of the boundary we show the
exponential decay of the energy of the system.
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Introduction

Let Ω be a non empty bounded open subset of R
n, n ≥ 1, with a boundary Γ of

class C2. We denote by ν(x) = (ν1, . . . , νn)� the unit outward normal vector at x
along Γ. For a fixed x0 ∈ R

n we define the function m(x) = x − x0, x ∈ R
n and the

following partition of the boundary Γ (see figures 1 and 2):

Γ0 = {x ∈ Γ : m(x) · ν(x) ≤ 0 },
ΓN = {x ∈ Γ : m(x) · ν(x) > 0 }.
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Figure 1: A pluridimensional structure for n = 2 — The case Γ̄N ∩ Γ̄D �= ∅

Figure 2: A pluridimensional structure for n = 2 — The case Γ̄N ∩ Γ̄D = ∅
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We also fix an open subset γ of Γ0 such that

m(x) · ν(x) ≤ −α0 < 0, ∀x ∈ γ,

and denote
ΓD = Γ0 \ γ.

In the whole paper we suppose that meas ΓD > 0, meas ΓN > 0, meas γ > 0.
We further fix a 1-dimensional beam ω of length l attached to Ω at a point a ∈ γ

and orthogonal to Γ, in other words (see again figures 1 and 2),

ω = { a + sν(a) : 0 < s < l }.

The derivation with respect to the parameter s will be denoted by ∂.
Finally let α be a non negative real number and θ be a function from γ to R

n of
class C1 with a compact support and such that θ �= 0.

We now consider the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′ − div σ(u) = 0 in Ω × R
+,

v′′ + ρ∂4v = 0 in ω × R
+,

u = 0 on ΓD × R
+,

σ(u) · ν + m · νu′ = 0 on ΓN × R
+,

u(x, t) = v(0, t)θ(x) on γ × R
+,

ρ∂3v(0, t) + αv′(0, t) +
∫

γ
[σ(u) · ν] · θ(x)ds(x) = 0 ∀t ∈ R

+,

∂v(0, t) = ∂2v(l, t) = ∂3v(l, t) = 0,

(1)

with initial conditions ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(0) = u0 in Ω,

u′(0) = u1 in Ω,

v(0) = v0 in ω,

v′(0) = v1 in ω,

where, as usual, u′ means ∂u
∂t , u = u(x, t) = (u1, . . . , un)� denotes the displacement

vector field in the domain Ω and v = v(s, t) denotes the orthogonal displacement of
the beam ω. The stress tensor σ is defined by σij(u) = aijklεkl(u) (in the full paper
we adopt the convention of repeated indices), where ε(u) is the strain tensor given by
(when ∂i = ∂

∂xi
)

εij(u) =
1
2
(∂jui + ∂iuj),

the constant coefficients aijkl are such that

aijkl = aklij = ajikl
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and satisfy the ellipticity condition

∃δ > 0 : aijklεijεkl ≥ δεijεij , (2)

for all symmetric tensor εij . Finally ρ > 0 corresponds to some mechanical properties
of the beam ω.

The components of the vector field div σ(u) are given by

(div σ(u))i = ∂jσij , i = 1, . . . , n.

The system (1) is dissipative since its energy defined by

E(t) =
1
2

∫
Ω

{|u′|2 + σ(u) : ε(u)} dx +
1
2

∫
ω

{|v′|2 + ρ|∂2v|2} ds (3)

is non increasing.
If Γ̄N ∩ Γ̄D �= ∅, we suppose that the elastodynamical system in Ω is reduced to

the isotropic one, namely we assume that

σ(u) = 2με(u) + λ div uIn,

where λ, μ > 0 are the Lamé coefficients and In is the identity matrix in R
n. We

further need to assume that (cf. [3]) c := Γ̄N ∩Γ̄D is a (n−2)-dimensional submanifold
of class C3 such that there exists a neighborhood Ω′ of c such that Γ∩Ω′ is a (n−1)-
dimensional submanifold of class C3. If τ(x) denotes the unit normal vector along c
pointing outward of ΓN , we assume that (see figure 1)

m(x) · τ(x) ≤ 0, ∀x ∈ c.

Note that the above system (1) is a coupled system between the anisotropic elas-
todynamical system in Ω and an Euler-Bernouilli beam equation in ω. The feedbacks
correspond to the term m · νu′ on ΓN and the term αv′(0, t) on the junction γ.
(Remark that α may be equal to zero.)

Simpler models were considered in [19, 30, 31], namely their system is a coupling
between the wave equations in Ω and in ω. In [30,31], the controllability of this system
is considered using appropriate control on the boundary; while in [19] the stability
of this system is considered with the help of a feedback only on ΓN . As underlined
in [31], the analysis of more realistic models should be made. Therefore our goal is
to consider a simple but realistic model of the junction between the elasticity system
and a beam. The junction between Ω and ω is made via the transmission conditions

u(x, t) = v(0, t)θ(x) on γ × R
+,

ρ∂3v(0, t) + αv′(0, t) +
∫

γ

[σ(u) · ν] · θ(x)ds(x) = 0 ∀t ∈ R
+.
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The first condition means that the displacement u on γ and v at its extremity a is
prescribed via the profile θ, in a certain sense the beam is clamped at the domain Ω
since we add the condition ∂v(0) = 0. The second condition is a (energy) balance law.
The boundary conditions on the other extremity of the beam mean that the beam
is free at that point. Note that the junction between Ω and ω is made through the
profile θ, therefore the angle between ω and the boundary Γ of Ω could be different
from π/2.

1. The main results

We define the following Hilbert spaces:

H = (L2(Ω))n × L2(ω),

H1
ΓD

(Ω) = {u ∈ H1(Ω) : u = 0 on ΓD },
V = { (u, v) ∈ (H1

ΓD
(Ω))n × H2(ω) : u = θv(0) on γ and ∂v(0) = 0 }.

The space V is equipped with the natural norm

‖(u, v)‖2
V =

∫
Ω

σ(u) : ε(u) dx +
∫

ω

ρ(∂2v)2 ds,

where σ(u) : ε(u) = σij(u)εij(u).

Theorem 1.1. For the initial data ((u0, v0), (u1, v1)) ∈ V ×H, the system (1) has a
unique (weak) solution (u, v) satisfying

(u, v) ∈ C1([0,∞);H) ∩ C([0,∞);V ).

The main result of our paper is the next theorem:

Theorem 1.2. There exist positive constants M and δ such that the energy of any
solution of (1) satisfies

E(t) ≤ Me−δt, ∀t ≥ 0.

Remark 1.3. In [19] the stability of the wave system is obtained under a geometric
assumption between γ and the length of ω. Our paper shows that this assumption is
unnecessary.

2. Well-posedness of the problem

In this section we prove Theorem 1.1 by reducing the system (1) to a first order
evolution equation.

Let us define the operators

A : V �−→ V ′ and B : V �−→ V ′
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by

〈A(u, v), (u∗, v∗)〉V ′,V =
∫

Ω

σ(u) : ε(u∗) dx +
∫

ω

ρ∂2v∂2v∗ ds,

〈B(u, v), (u∗, v∗)〉V ′,V =
∫

ΓN

m · νu · u∗ dΓ + αv(0)v∗(0).

Clearly the operators A and B are well defined. Now to obtain the abstract formula-
tion of (1), we take an arbitrary element (u∗, v∗) ∈ V . We multiply the first identity
of the system (1) by u∗, integrate by parts in Ω, and use the boundary conditions
on ΓD and ΓN . This yields

0 =
∫

Ω

[u′′ − div(σ(u))] · u∗ dx

=
∫

Ω

u′′ · u∗dx −
∫

Γ

(σ(u) · ν) · u∗ dΓ +
∫

Ω

σ(u) : ε(u∗) dx

=
∫

Ω

u′′ · u∗ dx +
∫

Ω

σ(u) : ε(u∗) dx +
∫

ΓN

m · νu′ · u∗ dΓ −
∫

γ

[σ(u) · ν] · u∗ dΓ.

In a similar manner, multiplying the second equation of (1) by v∗, and using integra-
tion by parts in ω and the boundary conditions, we obtain

0 =
∫

ω

[v′′ + ρ∂4v]v∗ ds

=
∫

ω

v′′v∗ ds +
∫

ω

ρ∂2v∂2v∗ ds + [ρ∂3vv∗]l0 + [ρ∂2v∂v∗]l0

=
∫

ω

v′′v∗ ds +
∫

ω

ρ∂2v∂2v∗ ds − ρ∂3v(0)v∗(0).

Summing these two identities and taking into account the transmission condition on
γ we arrive at the identity

(u, v)′′ + A(u, v) + B(u′, v′) = (0, 0) in V ′.

We now introduce the operators defined on V × V by

A((u, v), (u∗, v∗)) = ((−u∗,−v∗), A(u, v)),
B((u, v), (u∗, v∗)) = ((0, 0), B(u∗, v∗)).

Setting
X = ((u, v), (u′, v′))

and
A = A + B, (4)
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the system (1) reduces to {
X ′ + AX = 0,

X(0) = ((u0, v0), (u1, v1)).

Lemma 2.1. Under the above hypotheses, the operator A defined on H×H by (4),
with domain

D(A) =
{

((u, v), (u∗, v∗)) ∈ V ×H : (−div(σ(u)), ∂4v) ∈ H,

σ(u) · ν + m · νu∗ = 0 on ΓN ,

ρ∂3v(0) + αv∗(0) +
∫

γ

[σ(u)ν] · θdΓ = 0,

∂v(0) = ∂2v(l) = ∂3v(l) = 0
}

is maximal dissipative. Moreover D(A) is dense in H×H.

The proof of this Lemma is quite standard (see for instance [12, section 2] or
[17, Lemma 3.2]). The theory of linear semi-groups [29, 32] leads to Theorem 1.1.
Note further that for initial data ((u0, v0), (u1, v1)) ∈ D(A), the system (1) has a
unique strong solution (u, v) satisfying

(u, v) ∈ C2([0,∞);H) ∩ C1([0,∞);V ) ∩ C([0,∞);D(A)).

3. Proof of Theorem 1.2

Deriving (3) in time and integrating by parts in space we readily see that

E′(t) = −
∫

ΓN

m · ν|u′(t)|2dΓ − αv′(0, t)2

and consequently

E(S) − E(T ) =
∫ T

S

[∫
ΓN

m · ν|u′(t)|2dx + αv′(0, t)2
]
dt, (5)

for all 0 ≤ S ≤ T < ∞. This leads to the decay of the energy.
We will now obtain the exponential decay of this energy. For that purpose intro-

duce the constant

R0 = max
x∈Ω

( n∑
k=1

(xk − x0k)2
)1/2

.

Let further μ be the smallest positive constant such that for all u ∈ (H1
ΓD

(Ω))n∫
ΓN

|u|2 dΓ ≤ μ2

∫
Ω

σ(u) : ε(u) dx.

We start with two technical Lemmas:
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Lemma 3.1. Let (u, v) be a strong solution of (1). Define

M(u) = 2(m · ∇)u + (n − 1)u

and
N(v) = 2(s − l)∂v − v.

Then we have

‖M(u)(t)‖2
(L2(Ω))n ≤ CE(t), ∀t ≥ 0,

‖N(v)(t)‖2
L2(ω) ≤ CE(t), ∀t ≥ 0,

where, here and below, C > 0 means a positive constant independent of (u, v).

Proof. By integration by parts we have

‖M(u)‖2
(L2(Ω))n =

∫
Ω

[|2(m · ∇)u|2 + (n − 1)2|u|2 + 4(n − 1)u · (m · ∇)u] dx

=
∫

Ω

[|2(m · ∇)u|2 + (n − 1)2|u|2 + 2(n − 1)m · ∇(|u|2)] dx

=
∫

Ω

[|2(m · ∇)u|2 + (1 − n2)|u|2] dx + 2(n − 1)
∫

Γ

m · ν|u|2 dΓ

≤ 4R2
0

∫
Ω

|∇u|2 dx + 2(n − 1)
∫

Γ

m · ν|u|2 dΓ.

We conclude using Korn’s inequality since ΓD is not empty.
For the second estimate by integration by parts we have

‖N(v)(t)‖2
L2(ω) ≤ 4

∫
ω

(s − l)2(∂v(s, t))2 ds + 3
∫

ω

v2(s, t) ds − 2lv2(0, t).

But Poincaré’s inequality leads to∫
ω

(∂v(s, t))2 ds +
∫

ω

v2(s, t) ds ≤ C
(∫

ω

(∂2v(s, t))2 ds + v2(0, t)
)
.

These two inequalities yield

‖N(v)(t)‖2
L2(ω) ≤ C(E(t) + v2(0, t)). (6)

Now the assumption θ �= 0 and the transmission condition u = θv on γ lead to

v2(0, t) ≤ 1∫
γ

θ2 dΓ

∫
γ

|u|2 dΓ,

and by Korn’s inequality we obtain

v2(0, t) ≤ C

∫
Ω

σ(u) : ε(u) dΓ ≤ CE(t).

This estimate in (6) leads to the conclusion.
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For 0 ≤ T ≤ ∞, we set

Q = Ω × (0, T ), q = ω × (0, T )
Σ = Γ × (0, T ), ΣD = ΓD × (0, T ), ΣN = ΓN × (0, T ).

Lemma 3.2. If α ≥ 0, there exists a constant C ≥ 0 such that for all ε ∈ (0, 1) and
T ≥ 0, we have

∫ T

0

∫
ΓN

|u|2 dΓ dt +
∫ T

0

|v(0, t)|2 dt ≤ C

ε
E(0) + ε

∫ T

0

E(t) dt.

Proof. For t ≥ 0, consider the solution z = z(t) of (compare with [9, Lemma 5.2]){
div(σ(z)) = 0 in Ω,

z = u on Γ.
(7)

This solution is characterized by z = ω + u where ω ∈ (H1
0 (Ω))n is the unique

solution of ∫
Ω

σ(ω) : ε(v) dx = −
∫

Ω

σ(u) : ε(v) dx ∀v ∈ (H1
0 (Ω))n.

This identity means that∫
Ω

σ(z) : ε(v) dx = 0 ∀v ∈ (H1
0 (Ω))n.

Taking v = z − u in this identity, we deduce that∫
Ω

σ(z) : ε(u) dx =
∫

Ω

σ(z) : ε(z) dx ≥ 0. (8)

One easily shows that z also satisfies (see [9, Lemma 5.2])∫
Ω

f · z dx = −
∫

Γ

z · (σ(vf )ν) dΓ, ∀f ∈ (L2(Ω))n, (9)

where vf ∈ (H1
0 (Ω))n is the unique solution of∫

Ω

σ(vf ) : ε(w) dx =
∫

Ω

f · w dx,∀w ∈ (H1
0 (Ω))n.

Taking f = z in the identity (9), we may write∫
Ω

|z|2 dx = −
∫

Γ

z · (σ(vz)ν) dΓ.
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Since z = u on ΓN , z = u = 0 on ΓD, and z = u = θv on γ, by Cauchy-Schwarz’s
inequality we obtain∫

Ω

|z|2 dx ≤ C(‖u‖(L2(ΓN ))n + |v(0, t)|)‖σ(vz)ν‖(L2(Γ))n . (10)

As the boundary Γ is C2, elliptic regularity results yield vz ∈ (H2(Ω))n with the
estimate

‖vz‖(H2(Ω))n ≤ K‖z‖(L2(Ω))n ,

for some positive constant K. This estimate and a standard trace theorem lead to

‖σ(vz)ν‖(L2(Γ))n ≤ K1‖z‖(L2(Ω))n ,

for some positive constant K1. Inserting this estimate in (10) we arrive at∫
Ω

|z|2 dx ≤ C
(∫

ΓN

|u|2 dΓ + |v(0, t)|2
)
. (11)

Since z′ is solution of problem (7) with u′ instead of u, the above arguments yield∫
Ω

|z′|2 dx ≤ C
(∫

ΓN

|u′|2dΓ + |v′(0, t)|2
)
. (12)

In the same manner for t ≥ 0, consider the solution w = w(t) of{
∂4w = 0 in ω,

w(0) = v(0), ∂w(0) = ∂v(0) = 0, ∂2w(l) = ∂3w(l) = 0.
(13)

This solution w is characterized by w = w1 + v where w1 ∈ W is the unique solution
of ∫

ω

∂2w1∂
2k ds = −

∫
ω

∂2v∂2k ds, ∀k ∈ W,

the Hilbert space W (with the natural norm) being defined by

W = { k ∈ H2(ω) : k(0) = ∂k(0) = ∂2k(l) = ∂3k(l) = 0 }.

As before this identity means that∫
ω

∂2w∂2k ds = 0 ∀k ∈ W,

and taking k = w − v in this identity, we deduce that∫
ω

∂2v∂2w =
∫

ω

(∂2w)2 ds ≥ 0. (14)
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Let us also notice that w satisfies∫
ω

gw ds = −w(0)∂3kg(0), ∀g ∈ L2(ω), (15)

where kg ∈ W is the unique solution of∫
ω

∂2kg∂
2k ds =

∫
ω

gk ds,∀k ∈ W.

Taking g = w in the identity (15), we may write∫
ω

|w|2 ds = −w(0)∂3kw(0),

and since w(0) = v(0), we obtain∫
ω

|w|2 ds ≤ |v(0, t)||∂3kw(0)|. (16)

As kw ∈ H4(ω) with the estimate

‖kw‖H4(ω) ≤ K∗‖w‖L2(ω),

for some positive constant K∗, by the Sobolev embedding theorem we obtain

|∂3kw(0)| ≤ K∗
1‖w‖L2(ω),

for some positive constant K∗
1 . Inserting this estimate in (16) we arrive at∫

ω

|w|2 ds ≤ C|v(0, t)|. (17)

Since w′ is solution of problem (13) with v′ instead of v, the above arguments
yield ∫

ω

|w′|2 ds ≤ C|v′(0, t)|. (18)

Now using a standard trace theorem and Korn’s inequality (since ΓD �= ∅) we have∫
ΓN∪γ

|z|2 dΓ ≤ C

∫
Ω

σ(z) : ε(z) dx.

Recalling that z = u on ΓN and z = u = θv on γ, we get∫
ΓN

|u|2 dΓ + |v(0, t)|2 ≤ C

∫
Ω

σ(z) : ε(z) dx.
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This implies that∫
ΓN

|u|2dΓ + |v(0, t)|2 ≤ C
(∫

Ω

σ(z) : ε(z) dx + ρ

∫
ω

(∂2w)2 ds
)
.

Using the identities (8) and (14) we get∫
ΓN

|u|2 dΓ + |v(0, t)|2 ≤ C(
∫

Ω

σ(z) : ε(u) dx + ρ

∫
ω

∂2v∂2w).

Integrating this identity for t ∈ (0, T ), we find

∫
ΣN

|u|2 dΓ dt +
∫ T

0

|v(0, t)|2 dt ≤ C
(∫

Q

σ(u) : ε(z) dx dt + ρ

∫
q

∂2v∂2w ds dt
)
.

By integration by parts, we get

∫
ΣN

|u|2 dΓ dt +
∫ T

0

|v(0, t)|2 dt ≤ C
(
−

∫
Q

div σ(u) · z dx dt + ρ

∫
q

∂4vw ds dt

+
∫

Σ

σ(u)ν · z dΓ dt + ρ

∫ T

0

w(0, t)∂3v(0, t) dt
)
.

As z = u on ΣN , z = 0 on ΣD, z = θv(0, t) on γ× (0, T ), and w(0) = v(0, t), using
the boundary conditions on ΣN and on γ × (0, T ) for u we may write

∫
Σ

σ(u)ν · z dΓdt =
∫

ΣN

m · νu′u dΓdt −
∫ T

0

v(0, t)(ρ∂3v(0, t) + αv′(0, t)) dt.

Inserting this identity in the last one and using the first and second identities of (1),
we arrive at

∫
ΣN

|u|2 dΓ +
∫ T

0

|v(0, t)|2 dt ≤ C
(
−

∫
Q

u′′ · z dx dt −
∫

q

v′′w ds dt

+
∫

ΣN

m · νu′u dΓ dt − α

∫ T

0

v(0, t)v′(0, t) dt
)
.

Now integrating by parts in time, we obtain

∫
ΣN

|u|2 dΓ +
∫ T

0

|v(0, t)|2 dt ≤ C
(∫

Q

u′ · z′ dx dt +
∫

q

v′w′ ds dt

−
∫

Ω

zu′|T0 −
∫

ω

wv′|T0 +
∫

ΣN

m · νu′udΓ dt − α

∫ T

0

v(0, t)v′(0, t) dt
)
. (19)
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Fix an arbitrary ε0 ≥ 0. Using several times (5), (11), (12), (17), (18), and Young’s
inequality, we can estimate the different integrals of the right-hand side of the above
inequality as follows:∫

ΣN

m · νuu′dΣ ≤ ε0

∫
ΣN

|u|2 dΣ +
1

4ε0

∫
ΣN

m · ν|u′|2 dΣ

≤ 2ε0μ
2

∫ T

0

E(t) dt +
1

4ε0
E(0),

∫
Q

z′u′dxdt ≤ ε0

∫
Q

|u′|2 dx dt +
1

4ε0

∫
Q

|z′|2 dx dt

≤ 2ε0

∫ T

0

E(t)dt +
C

4ε0
E(0),

∫
q

w′v′dxdt ≤ 2ε0

∫ T

0

E(t) dt +
C

4ε0
E(0),

−
∫

Ω

zu′|T0 ≤ 4(1 + Cμ2)E(0),

−
∫

ω

wv′|T0 ≤ CE(0),

−α

∫ T

0

v(0, t)v′(0, t) dt ≤ 1
ε0

α

∫ T

0

|v′(0, t)|2 dt + ε0

∫ T

0

|v(0, t)|2 dt

≤ 1
ε0

E(0) + ε0

∫ T

0

|v(0, t)|2 dt.

Using these different estimates in (19), we arrive at the requested estimate by
choosing ε0 appropriately.

Proof of Theorem 1.2. Without loss of generality we can assume that
( l

2
+

∫
γ

m · ν|θ(x)| dΓ
)
≤ 0. (20)

Indeed if (20) is not satisfied, we can use the following scaling argument: For a
parameter β > 0 fixed later on, let us set

v̂(ŝ, t) = v(βŝ, t) on ω̂,

where
ω̂ = { a + ŝν(a) : 0 < ŝ < l̂ },
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l̂ = l/β being the length of ω̂. We then see that the pair (u, v̂) is solution of (1) with
ω (resp. ρ) replaced by ω̂ (resp. ρ̂ = β−4ρ). For this new system, the condition (20)
is equivalent to ( l

2β
+

∫
γ

m · ν|θ(x)| dΓ
)
≤ 0,

which holds if β is chosen sufficiently large, namely if

β ≥ − l

2
∫

γ
m · ν|θ(x)| dΓ

. (21)

For a fixed β, we further notice that

min{1, β}Ê(t) ≤ E(t) ≤ max{1, β}Ê(t),

where Ê(t) is the energy of the new system:

Ê(t) =
1
2

∫
Ω

{|u′|2 + σ(u) : ε(u)} dx +
1
2

∫
ω̂

{|v̂′|2 + ρ̂|∂̂2v̂|2} dŝ.

Consequently the exponential stability of the energy E is equivalent to the exponential
stability of the energy Ê. Therefore if (20) does not hold, it suffices to consider the
new system for (u, v̂) for a fixed β satisfying (21) and the exponential stability of this
new system (proved below) will imply the exponential stability of the original system

Assume first that (u, v) is a strong solution of (1).
If Γ̄D ∩ Γ̄N = ∅, then multiplying the first identity of (1) by

M(u) = 2(m · ∇)u + (n − 1)u

and integrating by parts on Q we obtain

0 = (u′,M(u))|T0 +
∫

Q

|u′|2 dx dt −
∫

ΣN

m · ν|u′|2dΣ

−
∫

γ×[0,T ]

m · ν|u′|2 ds(x) dt +
∫

Q

σ(u) : ε(u) dx dt

−
∫

Σ

[(σ(u)ν) · M(u) − (m · ν)σ(u) : ε(u)] dΣ.

If ΓD ∩ ΓN �= ∅, then applying [3, Theorem 4.1], we have

0 ≥ (u′,M(u))|T0 +
∫

Q

|u′|2 dx dt −
∫

ΣN

m · ν|u′|2 dΣ

−
∫

γ×[0,T ]

m · ν|u′|2 ds(x) dt +
∫

Q

σ(u) : ε(u) dx dt

−
∫

Σ

[(σ(u)ν) · M(u) − (m · ν)σ(u) : ε(u)] dΣ.
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Similarly multiplying the second identity of (1) by N(v) and integrating by parts
on q we obtain

0 = 2
∫ T

0

∫
ω

|v′|2 − l

∫ T

0

|v′(0, t)|2 dt

+
∫

ω

v′N(v)|T0 + 2ρ

∫ T

0

∫ l

0

(∂2v)2 dt + 2lρ

∫ T

0

∂3v(0, t)∂v(0, t)

+ ρ

∫ T

0

∂3v(0, t)v(0, t) dt.

These two identities (or inequalities if Γ̄D ∩ Γ̄N �= ∅) allow to obtain

∫ T

0

E(t) dt ≤
∫

ΣN

m · ν|u′|2 +
4∑

i=1

Ii

where

I1 = −
∫

Ω

(u′,M(u))|T0 −
1
2

∫
ω

N(v)v′|T0 ,

I2 =
∫

ΣN∪ΣD

[(σ(u)ν) · M(u) − (m · ν)σ(u) : ε(u)]dΣ,

I3 =
∫

γ×(0,T )

m · ν|u′|2 dΓ dt +
l

2

∫ T

0

v′2(0, t) dt,

I4 =
∫

γ×(0,T )

[(σ(u)ν) · M(u) − (m · ν)σ(u) : ε(u)]dΣ − 1
2
ρ

∫ T

0

∂3v(0, t)v(0, t) dt.

Lemma 3.1 yields

I1 ≤ CE(0).

As in [1, 9] using local coordinates systems we obtain the estimate

I2 ≤ C(E(0) +
∫

ΣN

(|u|2 + |u′|2) dΣ).

Using the boundary condition u = θv on γ × (0, T ) in system (1) and the condi-
tion (20), we get

I3 =
( l

2
+

∫
γ

m · ν|θ(x)|2
) ∫ T

0

v′2(0, t)dt ≤ 0.
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Again using the boundary condition on γ × (0, T ) in system (1) we may write

I4 =
∫

γ×(0,T )

[(σ(u)ν) · M(u) − (m · ν)σ(u) : ε(u)] dΣ

+
1
2

∫
γ×(0,T )

(σ(u)ν) · θv(0, t) dΣ +
α

2

∫ T

0

v′(0, t)v(0, t) dt. (22)

The estimation of I4 is also based on the use of local coordinates systems (cf. [1]).
Namely for all x ∈ Γ, we denote by π(x) the orthogonal projection on the tangent
hyperplane Tx(Γ). Any vector field v : Ω̄ → R

n will be split up as follows:

v(x) = vT (x) + vν(x)ν(x),

where vT (x) = π(x)v(x) is the tangential component of v and vν(x) = v(x) ·ν(x). We
further denote by ∂νv = ν · ∇v, the normal derivative of v and by ∇T v = ∇v − ∂nv
the tangential gradient of v. For further uses, we set ∂T v = ∇T v, the tangential
derivation of v, where τ means the transposed matrix of the matrix τ . Similarly for
a vector v, v will mean its transposed vector.

Following [15] or [33], the strain tensor is written as follows:

ε(v) = εT (v) + νεS(v) + εS(v)ν + εν(v)νν on Γ,

with

2εT (v) = π(∂T vT )π + π∂T vT π + 2vν∂T ν,

2εS(v) = ∂νvT + ∇T vν − (∂T ν)vT ,

εν(v) = ∂νvν ,

where (∂T ν) is the curvature operator of Γ. Similarly the stress tensor may be written

σ(v) = σT (v) + νσS(v) + σS(v)ν + σν(v)νν on Γ,

where σT (v) is an endomorphism on the tangent hyperplane, σS(v) is a tangent vector
field and σν(v) is a scalar field.

These splittings allow to write

ε(v) : ε(v) = εT (v) : εT (v) + 2|εS(v)|2 + |εν(v)|2 on Γ,

σ(v) : ε(v) = σT (v) : εT (v) + 2σS(v)εS(v) + σν(v)εν(v) on Γ.

Using these local coordinates systems and the boundary condition on γ × (0, T )
in system (1) we obtain

σ(u)ν = σS(u) + σν(u)ν on γ × (0, T ),
M(u) = 2(m · ν)∂νu + v1(θ)v(0, t) on γ × (0, T ),
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for some vector valued function v1(θ) (depending on θ and its tangential gradient).
This yields

σ(u)ν · M(u) = σ(u)νM(u)
= 2(m · ν)(σ̄S(u) + σν(u)ν̄)∂νu + σ(u)ν · v1(θ)v(0, t)
= 2(m · ν)(σ̄S(u)∂νuT + σν(u)ν̄∂νuν)

+ σ(u) : C1(θ)v(0, t) on γ × (0, T ),

for some matrix valued function C1(θ) (depending on θ and its tangential gradient).
On the other hand, we recall that

σ(u) : ε(u) = σT (u) : εT (u) + 2σS(u)εS(u) + σν(u)εν(u) on γ × (0, T ),

and again using the boundary condition, we obtain

σ(u) : ε(u) = (σ̄S(u)∂νuT + σν(u)ν̄∂νuν) + σ(u) : C2(θ)v(0, t) on γ × (0, T ).

All together we arrive at

(σ(u)ν) · M(u) − (m · ν)σ(u) : ε(u) = (m · ν)σ(u) : ε(u)
+ σ(u) : C3(θ)v(0, t) on γ × (0, T ).

Inserting this identity into (22), we obtain

I4 =
∫

γ×(0,T )

(m · ν)σ(u) : ε(u) dΣ

+
∫

γ×(0,T )

[σ(u) : C3(θ) +
1
2
(σ(u)ν) · θ]v(0, t) dΣ +

α

2

∫ T

0

v′(0, t)v(0, t) dt.

By Young’s inequality we obtain

I4 ≤
∫

γ×(0,T )

(m · ν)σ(u) : ε(u) dΣ dt

+ ε

∫
γ×(0,T )

|σ(u)|2 dΣ dt +
C

ε

∫ T

0

|v(0, t)|2 dt

+ α

∫ T

0

|v′(0, t)|2dt,∀ε ∈ (0, 1).

Now using the assumption (2), we may write

|σ(u)|2 ≤ C|ε(u)|2 ≤ Cσ(u) : ε(u).
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Therefore reminding that m · ν < −α0 < 0 on γ, by fixing ε < Cα0
2 , we obtain

I4 ≤
∫

γ×(0,T )

m · ν
2

σ(u) : ε(u) dΣ dt + C

∫ T

0

|v(0, t)|2 dt + α

∫ T

0

|v′(0, t)|2 dt.

Since m · ν ≤ 0 on γ, we conclude that

I4 ≤ C

∫ T

0

|v(0, t)|2 dt + α

∫ T

0

|v′(0, t)|2 dt.

The estimates on Ii, i = 1, . . . , 4 yield

2
∫ T

0

E(t) dt ≤ C(E(0) +
∫

ΣN

m · ν|u′|2dΣ + α

∫ T

0

|v′(0, t)|2dt)

+ C

∫
ΣN

|u|2 dΣ + C(θ)
∫ T

0

v2(0, t )dt. (23)

By Lemma 3.2 the above estimate (23) becomes

2
∫ T

0

E(t) dt ≤ C(E(0) +
∫

ΣN

m · ν|u′|2dΣ + α

∫ T

0

|v′(0, t)|2dt)

+
C

ε
E(0) + ε

∫ T

0

E(t) dt,

for any ε > 0. By choosing ε small enough, we arrive at the observability estimate∫ T

0

E(t) dt ≤ C(E(0) +
∫

ΣN

m · ν|u′|2 dΣ + α

∫ T

0

|v′(0, t)|2 dt).

This estimate remains valid for weak solutions by a density argument. The conclusion
now follows from this estimate as shown in [26, Theorem 3.3].

Acknowledgements. We thank the referee of our paper whose remarks allowed us
to improve the statement and the proof of Theorem 1.2.
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