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ABSTRACT

We study boundary properties of universal Taylor series. We prove that if f is a

universal Taylor series on the open unit disk, then there exists a residual subset

G of the unit circle such that f is unbounded on all radii with endpoints in G.

We also study the effect of summability methods on universal Taylor series. In

particular, we show that a Taylor series is universal if and only if its Cesàro

means are universal.
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1. Introduction

A notion of universal Taylor series in the complex plane with respect to overcon-
vergence was defined in the early 1970’s independently by Luh [8] and Chui and
Parnes [2]. Later on, Nestoridis [11] introduced a stronger notion of universality of
Taylor series. In the present work, we deal with universal Taylor series in the sense
of Nestoridis, and we are mainly concerned with their boundary behavior and their
summability. Let us first recall some notations and definitions. We denote by H(D)
the set of holomorphic functions on the unit disk D, endowed with the topology of
uniform convergence on compact sets. For f ∈ H(D), Sn(f, ξ)(z) is the n-th partial
sum of the Taylor series of f with center at ξ ∈ D. For K a subset of C, K0 is the
interior of K, and Kc is its complement. D(w, r) stands for the closed disk with
center w ∈ C and radius r > 0.
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Definition 1.1. Let ξ ∈ D. A holomorphic function f ∈ H(D) belongs to the class
U(D, ξ) provided that for every compact set K ⊂ C with K ∩ D = ∅ and Kc being
connected, and for every function h : K → C continuous on K and holomorphic in K0,
there exists a sequence (λn) of natural numbers such that Sλn

(f, ξ)(z) converges to
h(z) uniformly on K (as n → +∞).

In the particular case when ξ = 0, this definition has the following interpretation:
if f belongs to U(D, 0), then its Taylor expansion has a very good behavior on any
compact subset K of D, since it converges uniformly to f on K (as for any function
f ∈ H(D)). However, outside D, and even on the unit circle T, the sequence of partial
sums of the Taylor series of f has a very strange behavior (in fact, the worst possible
behavior), since it may approximate any reasonable function on any reasonable set.

We are also concerned with universal Taylor series with respect to every center
ξ ∈ D.

Definition 1.2. A holomorphic function f ∈ H(D) belongs to the class U(D) pro-
vided that for every compact set K ⊂ C with K ∩ D = ∅ and Kc being connected,
and for every function h : K → C continuous on K and holomorphic in K0, there
exists a sequence (λn) of natural numbers such that, for any compact set N ⊂ D,

sup
ξ∈N

sup
z∈K

|Sλn
(f, ξ)(z) − h(z)| → 0 as n → +∞.

A suitable application of Baire’s Theorem and Mergelyan’s Theorem shows that
U(D, ξ) and U(D) are dense Gδ subsets of H(D). Moreover, it is proved in [10] that
U(D) = U(D, ξ) for any ξ ∈ D. We mention that in [10], it is proved that these results
hold if we replace D by a simply connected domain Ω contained in some half-plane.

It is known that every function f ∈ U(D) behaves quite badly near the boundary
of D. For instance, if f ∈ U(D), then its Taylor expansion Sn(f, ξ)(z) at ξ ∈ D is not
(C, k)-summable for any z ∈ T and for any k = 1, 2, . . . (see [7]). On the contrary,
for Abel summability, the situation is better. It was proved by D. Armitage and
G. Costakis in [1] (see also [4] for a less strong conclusion) that if E is any subset of
the first category of the unit circle, if ε : [0, 1) → (0,+∞) is any continuous decreasing
function and if g is any holomorphic function in the open unit disk D, then there exists
f ∈ U(D) such that

|f(rz) − g(rz)| < ε(r) for any z ∈ E.

In the same paper, a kind of negative counterpart is proved, namely that if
f ∈ U(D), then there exists a residual subset G of T such that the set { f (n)(rz) ;
0 < r < 1 } is unbounded for every z ∈ G and every positive integer n. As noted
in [1], the behavior of the universal Taylor series itself along radii (case n = 0) re-
mains a “grey zone.” In this paper, we address this question by showing that the
above property remains true for n = 0 (see Theorem 3.2 below).
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Recently, Melas and Nestoridis have studied in [10] the existence of universal
Taylor series with respect to summability methods. We restrict ourselves to (C, k)-
summability for k ≥ 0 an integer. If f ∈ H(D) and ξ ∈ D, σk

n(f, ξ)(z) is the
(C, k)-mean of order n of the Taylor expansion of f with center at ξ. Namely, for
Sn(f, ξ)(z) =

∑n
ν=0 aν(z − ξ)ν , one has

σj
n(f, ξ)(z) =

n∑
ν=0

Aj
n−ν

Aj
n

aν(z − ξ)ν ,

where Al
m = (m+1)···(m+l)

l! . (We refer to [13] for standard properties of Cesàro means
of series.)

A corollary of Theorem 1.4 of [10] is the following

Theorem 1.3. There exists a holomorphic function f ∈ H(D) with the following
property: given a compact set K ⊂ C, K ∩ D = ∅, Kc connected, and a function
h : K → C continuous on K and holomorphic in K0, there exists a sequence (λm) of
natural numbers such that for any k ≥ 0 and for any compact set N ⊂ D,

sup
ξ∈N

sup
z∈K

|σk
λm

(f, ξ)(z) − h(z)| → 0 as m → +∞.

In [10], the authors consider more general Cesàro means (C, a), a ∈ (−1,+∞).
Let us denote by UCes(D) the set of functions f satisfying the conclusion of the

previous theorem: UCes(D) is the set of universal Taylor series with respect to every
center and every Cesàro mean. It is plain that UCes(D) ⊂ U(D). In this paper, we
prove the converse inclusion holds.

The article is organized as follows: in section 2, we recall some definitions and
some results on Ostrowski gaps for Taylor series. Ostrowski gaps are indeed our main
tool to prove our results. Next, section 3 is devoted to the study of the radial limits of
universal Taylor series, whereas in section 4, we are interested in summability methods
for universal Taylor series.

2. Ostrowski gaps of universal Taylor series

Ostrowski gaps were successfully used in [5, 9, 10] to obtain certain properties of
universal Taylor series with respect to overconvergence. We first recall the definition
of Ostrowski gaps.

Definition 2.1. Let
∑+∞

ν=0 aν(z − ξ)ν be a power series with convergence radius
r ∈ (0,+∞). We say that it has Ostrowski gaps (pm, qm) if (pm) and (qm) are
sequences of natural numbers with

(i) p1 < q1 ≤ p2 < q2 ≤ · · · and limm→+∞
qm

pm
= ∞.

(ii) For I =
⋃∞

m=1{pm + 1, . . . , qm}, we have limν∈I |aν |
1/ν = 0.
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We shall use the two following results concerning Ostrowski gaps.

Lemma 2.2 ([9, Theorem 1]). Let f ∈ H(D), ξ0 ∈ D. Suppose that the Taylor series
of f at center ξ0 has Ostrowski gaps (pm, qm). Then the difference Spm

(f, ξ)(z) −
Spm

(f, ξ0)(z) converges to zero (as m → ∞) uniformly on compact sets of D × C

(ξ ∈ D, z ∈ C).

Lemma 2.3 ([10, Theorem 9.1]). Let ξ0 ∈ D, f ∈ U(D, ξ0), K ⊂ C be compact, such
that K ∩D = ∅ and Kc is connected. Also, let h : K → C be a continuous function on
K which is holomorphic in K0. Then there exist two sequences of natural numbers
(pm), (qm) such that

(i) The Taylor series of f at ξ0 has Ostrowski-gaps (pm, qm).

(ii) For any compact set N ⊂ D, supξ∈N supz∈K |Spm
(f, ξ)(z) − h(z)| → 0, as

m → +∞.

As a corollary of this lemma, one gets U(D) = U(D, ξ0) for any ξ0 ∈ D. In our
setting, two supplementary results about Ostrowski turns out to be useful.

Lemma 2.4. Let f ∈ H(D), and suppose that the Taylor expansion of f about ξ0 ∈ D

has Ostrowski gaps (pm, qm). Then for every sequence (rm) with qm/rm → +∞ and
rm ≥ pm, the difference Srm

(f, ξ)(z) − Spm
(f, ξ)(z) converges uniformly to zero (as

m → +∞) on compact sets of D × C (ξ ∈ D, z ∈ C).

Proof. It is sufficient to notice that

|Spm
(f, ξ)(z) − Srm

(f, ξ)(z)| ≤ |Spm
(f, ξ)(z) − Spm

(f, ξ0)(z)|

+ |Spm
(f, ξ0)(z) − Srm

(f, ξ0)(z)| + |Srm
(f, ξ0)(z) − Srm

(f, ξ)(z)|.

Observe that the Taylor expansion of f about ξ0 has Ostrowski gaps (pm, qm) as well as
(rm, qm). By Lemma 2.2, Spm

(f, ξ)(z)−Spm
(f, ξ0)(z) and Srm

(f, ξ0)(z)−Srm
(f, ξ)(z)

converge uniformly to zero on compact sets of D × C. The definition of Ostrowski
gaps now implies that Spm

(f, ξ0)(z)− Srm
(f, ξ0)(z) tends to 0 uniformly on compact

sets of C.

The last lemma that we need is similar to Lemma 2.3, except that we are now
dealing with Cesàro means instead of partial sums. So let us introduce the following
definitions.

Definition 2.5. Let ξ0 ∈ D, j ≥ 0 and f ∈ H(D).

• We say that f belongs to UCes(j)(D, ξ0) provided that for every compact set
K ⊂ C, K ∩ D = ∅, Kc connected, and every function h : K → C continuous
on K and holomorphic in K0, there exists a sequence (λm) of natural numbers
such that

sup
z∈K

|σj
λm

(f, ξ0)(z) − h(z)| → 0 as m → +∞.
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• We say that f belongs to UCes(j)(D) provided that for every compact set K ⊂ C,
K ∩ D = ∅, Kc connected, and every function h : K → C continuous on K and
holomorphic in K0, there exists a sequence (λm) of natural numbers such that,
for every compact set N ⊂ D,

sup
ξ∈N

sup
z∈K

|σj
λm

(f, ξ)(z) − h(z)| → 0 as m → +∞.

• We say that f belongs to UCes(D, ξ0) provided that for every compact set K ⊂ C,
K ∩ D = ∅, Kc connected, and every function h : K → C continuous on K and
holomorphic in K0, there exists a sequence (λm) of natural numbers such that,
for every k ≥ 0,

sup
z∈K

|σk
λm

(f, ξ0)(z) − h(z)| → 0 as m → +∞.

• We say that f belongs to UCes(D) provided that for every compact set K ⊂ C,
K ∩ D = ∅, Kc connected, and every function h : K → C continuous on K and
holomorphic in K0, there exists a sequence (λm) of natural numbers such that,
for every compact set N ⊂ D and for every k ≥ 0,

sup
ξ∈N

sup
z∈K

|σk
λm

(f, ξ)(z) − h(z)| → 0 as m → +∞.

Lemma 2.6. Let ξ ∈ D and f ∈ UCes(j)(D, ξ). Let K be any compact subset of
C \ D such that C \ K is connected, and let h be any continuous function on K
and holomorphic inside K0. Then there exists two sequences (pm), (qm) such that
the Taylor series of f at ξ has Ostrowski gaps (pm, qm), and σj

qm
(f, ξ)(z) → h(z)

uniformly on K.

Proof. The first part of the proof goes along the lines of the proof of step 1 of The-
orem 3 in [5]. Let Cm denote the closed disk Cm := { z ; |z − (3/2)m| ≤ m }. For
large m, K ∩ Cm is empty. Hence, one may find a sequence (qm) of natural num-
bers with qm+1 ≥ mqm such that σj

qm
(f, ξ)(z) converges to h(z) uniformly on K and

|σj
qm

(f, ξ)(z)| ≤ 1 on Cm. Using the Bernstein-Walsh Lemma (see [12]), this yields

max
|z|=m

|σj
qm

(f, ξ)(z)| ≤ max
|z−(3/2)m|≤(5/2)m

|σj
qm

(f, ξ)(z)| ≤

(
5

2

)qm

.

Let us now write Sn(f, ξ)(z) =
∑n

ν=0 aν(z − ξ)ν and

σj
n(f, ξ)(z) =

n∑
ν=0

Aj
n−ν

Aj
n

aν(z − ξ)ν .
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It follows from Cauchy’s formula that

∣∣∣∣aν

Aj
qm−ν

Aj
qm

∣∣∣∣
1/ν

≤
1

m

(
5

2

)qm/ν

for all ν ≤ qm.

We set pm = max([log(qm + 1)], [qm/ log m]) + 1. For ν ∈ [pm, qm], we have

(
Aj

qm−ν

Aj
qm

)1/ν

≥

(
1 −

ν

qm + 1

)j/ν

≥

(
1 −

qm

qm + 1

)j/ν

=

(
1

qm + 1

)j/ν

≥

(
1

qm + 1

) j

log(qm+1)

= e−j .

Hence, we get for any ν ∈ [pm, qm]

|aν |
1/ν ≤ m−(1−ln(5/2))e−j .

Therefore, the Taylor series of f about ξ has Ostrowski gaps (pm, qm).

3. Radial limits of universal Taylor series

The aim of this section is to address the question of Armitage and Costakis:

Theorem 3.1. If f ∈ U(D), then there exists a residual subset G ⊂ T such that the
set { f (n)(rz) ; 0 < r < 1 } is unbounded for every z ∈ G and every n ≥ 0.

Since the intersection of two residual subsets remains a residual subset, in view of
Armitage and Costakis’ result, it is enough to prove the following theorem.

Theorem 3.2. If f ∈ U(D), then there exists a residual subset G ⊂ T such that
{ f(rz) ; 0 < r < 1 } is unbounded for every z ∈ G.

Proof. Our approach is based on (C, 1)-summability of the partial sums of certain
Taylor series. So, we will need Rogosinski’s formula in a form already used in the
theory of universal Taylor series (see for instance [10, Lemma 2.7]).

Lemma 3.3. Let (cν)ν≥0 be a sequence of complex numbers and Sn(z) =
∑n

ν=0 cνzν

the associated Taylor series. Set Sn = Sn(1). Suppose that the series
∑

ν≥0 cν is
(C, 1) summable to σ ∈ C. Let D be an infinite subset of N, and for every n ∈ D, let
zn be a complex number such that limn→+∞, n∈D n(1 − zn) = u 
= 0. Then

lim
n→+∞, n∈D

z−n
n (Sn(zn) − σ) − (Sn − σ) = 0.

The proof of Theorem 3.2 is based on the following claim:

Revista Matemática Complutense

2006: vol. 19, num. 1, pags. 235–247
240



Frédéric Bayart Boundary behavior and Cesàro means of universal Taylor series

Claim. There exists a residual set G ⊂ T such that for every boundary point w ∈ G,
and every open disk Dw ⊂ D with T ∩ Dw = {w}, the set f(Dw) is unbounded.

We shall actually prove that there is at most one point w ∈ T such that there
exists a disk Dw ⊂ D with T ∩ Dw = {w} and f(Dw) bounded. Suppose to the
contrary that there are two such points. Without loss of generality, one may assume
that one of them is 1, and denote the second one by w. D1 and Dw will stand for
the disks where f is bounded, and ξ1 (resp. ξw) is the center of D1 (resp. Dw). Let
F (z) =

∫
(0,z)

f(u) du, where (0, z) is any path (in D) connecting 0 to z ∈ D. Since

F ′ = f is bounded on D1, F has a continuous extension to D1. By Fejer’s Theorem,
there exists �1 ∈ C such that σ1

n(F, ξ1)(1) → �1 as n → ∞. Analogously, there is
�w ∈ C such that σ1

n(F, ξw)(w) → �w as n → ∞.
Let Γ be a closed arc on T from w to 1, and take P any holomorphic polynomial

such that
∫
Γ

P (z)dz 
= �1 − �w. We denote by C the compact subset of C defined by

C = { reiθ ; eiθ ∈ Γ, 1 ≤ r ≤ 2 }. By Lemma 2.3, there exist two sequences of natural
numbers (pm), (qm) such that the Taylor series of f with center at ξw has Ostrowski
gaps (pm − 1, qm), and

sup
z∈C

|Spm−1(f, ξw)(z) − P (z)| → 0, as m → +∞.

Since F is obtained by integration termwise of the power series of f , its power series
with center ξw has Ostrowski gaps (pm, qm). Writing Sn(f, ξw)(z) =

∑n
ν=0 aν(z−ξw)ν ,

so that Sn(F, ξw)(z) = F (ξw) +
∑n−1

ν=0
aν

ν+1 (z − ξw)ν+1, we have

σ1
n(F, ξw)(z) = F (ξw) + a0(z − ξw)

(
1 −

1

n + 1

)
+

a1

2
(z − ξw)2

(
1 −

2

n + 1

)

+ · · · +
an−1

n
(z − ξw)n

(
1 −

n

n + 1

)

= Sn(F, ξw)(z) −
(z − ξw)

n + 1
Sn−1(f, ξw)(z). (1)

We apply this formula for n = pm and z = w, and we let m go to infinity. Since the
sequence (Spm−1(f, ξw)(w)) is bounded, the sequence (Spm

(F, ξw)(w)) converges to
�w. Integrating along Γ, we deduce that

Spm
(F, ξw)(1)

m→+∞
−−−−−→ �w +

∫
Γ

P := α.

On the other hand, Lemma 2.2 ensures that Spm
(F, ξ1)(1) tends also to α. We write

Sn(F, ξ1)(z) =
∑n

ν=0 bν(z − ξ1)
ν and set zpm

= 1 + 1
pm

. In order to apply Ro-

gosinski’s Formula, it is convenient to set cν = bν(1 − ξ1)
ν . The series

∑
ν≥0 cν is

(C, 1)-summable, and in the notation of Lemma 3.3, one has Sn = Sn(F, ξ1)(1) and
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Spm
(zpm

) = Spm
(F, ξ1)

(
1+ 1

pm
− ξ1

pm

)
. By uniform convergence on C, Spm

(zpm
) tends

to α. So, Lemma 3.3 gives

lim
m→+∞

z−pm

pm
(α − �1) + (α − �1) = 0.

Observe now that limm→+∞ z−pm
pm

= e−1 to deduce that α = �1: this contradicts∫
Γ

P 
= �1 − �w. Thus, the claim is proved.
Theorem 3.2 can now be deduced from the claim as in [1]. For the sake of com-

pleteness, we shall include some details. The radial cluster set Cρ(f, z) of f at z is
defined in the following way: a ∈ Cρ(f, z) if there exists a sequence (rn) ∈ (0, 1)
such that limn→+∞ rn = 1 and limn→+∞ f(rnz) = a. The cluster set C(f, z) of f
at z consists of all points a for which there exists a sequence (zn) ∈ D having the
properties limn→∞ zn = z and limn→∞ f(zn) = a. Our claim shows that for every
z in a residual subset G ⊂ T, C(f, z) is unbounded. We conclude by Collingwood’s
maximality Theorem (see [3]) which asserts that for a residual set of points z on the
unit circle, Cρ(f, z) = C(f, z).

4. Cesàro means of universal Taylor series

We begin this section by two lemmas. The first one is an elementary geometrical
lemma.

Lemma 4.1. Let K be a compact subset of C such that C \ K is connected and
K ∩ D = ∅. Then there exist two compact subsets L and M of C and a positive real
number α > 0 such that

• L ∩ D = M ∩ D = ∅, K ⊂ L ⊂ M .

• C \ M is connected.

• For any z ∈ L, there exists w ∈ L such that z ∈ D̄(w,α) and D̄(w,α) ⊂ L.

Proof. Let A ≥ 1 be an integer such that K ⊂ { z ∈ C ; 1 ≤ |z| ≤ A }. Since 0 and
A + 1 belong to the complement of K, which is connected, we can join them by a
simple polygonal line Γ lying in the complement of K. The distance of K to Γ is
positive, greater than or equal to 3α, 0 < α ≤ 1

2 . We then set:

M = { z ∈ C ; 1 ≤ |z| ≤ A + 2α, dist(z,Γ) ≥ α },

L0 = {w ∈ C ; 1 + α ≤ |w| ≤ A + α, dist(w,Γ) ≥ 2α },

L =
⋃

w∈L0

D̄(w,α) = { z ∈ C ; dist(z, L0) ≤ α }.

One can easily check that M , L0, and L are compact subsets of C, that M ∩ D =
L∩D = ∅, that C \M is connected, and that L ⊂ M . (For the last assertion, observe
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that for z in L, γ in Γ and w in L0 with z ∈ D(w,α), the following inequalities are
satisfied: |z − γ| ≥ |w − γ| − |z − w| ≥ 2α − α ≥ α.) Moreover, by construction of L,
for any z ∈ L, there exists w ∈ L such that z ∈ D̄(w,α) and D̄(w,α) ⊂ L. It remains
to prove that K is contained in L. Take any z ∈ K, and set w = z + z

|z|α. It is

straightforward that 1 + α ≤ |w| ≤ A + α. On the other hand, take any γ ∈ Γ. One
has |w − γ| ≥ |z − γ| − α ≥ 2α. This proves that w belongs to L0, and since z lies
in D̄(w,α), one gets z ∈ L.

We will also need a classical lemma which comes from Harmonic Analysis.

Lemma 4.2. Let P be a holomorphic polynomial of degree N , w ∈ C, α > 0, k ≥ 1.
Then one has

sup
z∈D̄(w,α)

|P (k)(z)| ≤
N(N − 1) · · · (N − k + 1)

αk
sup

z∈D̄(w,α)

|P (z)|.

Proof. For w = 0 and α = 1, this is just Bernstein’s inequality (see for instance [6]).
Otherwise, we set Q(z) = P (αz + w), so that

sup
z∈D̄(0,1)

|Q(k)(z)| = αk sup
z∈D̄(w,α)

|P (k)(z)|.

Theorem 4.3. Let f ∈ H(D), and ξ0 ∈ D. Suppose that there exists k ≥ 0 such
that, for any compact set K ⊂ C \ D, with Kc connected and for every function h
continuous on K and holomorphic in K0, there exists a sequence (λm) of natural
numbers such that

sup
z∈K

|σk
λm

(f, ξ0)(z) − h(z)| → 0 as m → +∞.

Then for any compact set K ⊂ C \ D with Kc connected and for any holomorphic
polynomial P , there exists a sequence (λm) of natural numbers such that, for any
compact subset N of D, for every j ∈ N,

sup
ξ∈N

sup
z∈K

|σj
λm

(f, ξ)(z) − P (z)| → 0 as m → +∞.

Proof. We will extend formula (1) to link σj
n(f, ξ)(z) to Sn(f, ξ)(z) and its derivatives.

Writing Sn(f, ξ)(z) =
∑n

ν=0 aν(z − ξ)ν , we have

σj
n(f, ξ)(z) = Sn(f, ξ)(z)

+

n∑
ν=0

[(n + 1) − ν] · · · [(n + j) − ν] − (n + 1) · · · (n + j)

(n + 1) · · · (n + j)
aν(z − ξ)ν

= Sn(f, ξ)(z)

+
n∑

ν=0

Pj(n)ν(ν − 1) · · · (ν − j + 1) + · · · + P1(n)ν

(n + 1) · · · (n + j)
aν(z − ξ)ν ,
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where each Pl is a polynomial (whose coefficients depend only on j) with deg(Pl) ≤
j − l. This in turn gives

σj
n(f, ξ)(z) = Sn(f, ξ)(z) + Qj(n)(z − ξ)jSn−j(f

(j), ξ)(z) + · · ·

+ Q1(n)(z − ξ)Sn−1(f
′, ξ)(z), (2)

where Ql is a rational function such that the difference of the degrees of numerator
and denominator is less than or equal to −l. The proof will be done in two steps.
First, we show that the statement of Theorem 4.3 is true for k = 0, i.e., if f belongs to
U(D, ξ0). As recalled in the introduction, we have in fact f ∈ U(D). So, let K ⊂ C\D

be a compact set such that Kc is connected, and let P be a holomorphic polynomial.
We define L and M as the compact subsets of C given by Lemma 4.1, and α > 0
is the positive number associated with these data. By Lemma 2.3, there exist two
sequences of natural numbers (pm) and (qm) so that the Taylor series of f at center ξ0

has Ostrowski-gaps (pm, qm) and for any compact set N ⊂ D,

sup
ξ∈N

sup
z∈M

|Spm
(f, ξ)(z) − P (z)| → 0 as m → +∞.

Hence, if we fix a compact set N ⊂ D, there exists a constant C1 ∈ (0,+∞) such
that, for any m ≥ 0, we have

sup
ξ∈N

sup
w∈L

|Spm
(f, ξ)(w)| ≤ C1.

Pick any z ∈ K and ξ ∈ N . There exists w ∈ L such that D(w,α) ⊂ L and
z ∈ D̄(w,α). By Lemma 4.2, one obtains

|Spm−l(f
(l), ξ)(z)| ≤

pm · · · (pm − l + 1)

αl
C1.

We now consider a sequence (rm) of natural numbers such that rm/pm → +∞ and

qm/rm → +∞. (For instance, rm = [p
1/2
m q

1/2
m ] will do.) By Lemma 2.4, there exists

another constant C2 such that for z ∈ K, l ∈ {1, . . . , j} and m ≥ 0, one has

sup
ξ∈N

sup
z∈K

∣∣∣Srm−l(f
(l), ξ)(z)

∣∣∣ ≤ sup
ξ∈N

sup
z∈K

∣∣∣Spm−l(f
(l), ξ)(z)

∣∣∣ + C2.

Putting this together, and using the fact that pm/rm goes to 0, one has proved that
for any l in {1, . . . , j}, Ql(rm)(z− ξ)lSrm−l(f

(l), ξ)(z) tends to 0 uniformly on N ×K
(ξ ∈ N , z ∈ K). Therefore, if we apply equation (2) for n = rm, we get that
σj

rm
(f, ξ)(z) − P (z) converges to 0 uniformly on N × K, and this completes the first

part of the proof of Theorem 4.3.
Secondly, suppose that f satisfies the assumptions of Theorem 4.3 for a given

k ≥ 1. Let K be any compact subset of C \ D with Kc connected, and let P be any
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holomorphic polynomial. We are going to prove that there exists a sequence (λm) of
natural numbers such that Sλm

(f, ξ0)(z) converges uniformly to P on K. By the first
part of the proof, this is clearly sufficient to obtain Theorem 4.3. The proof is again
based on identity (2). Let K and P be defined as above and consider L, M , and
α > 0 given by Lemma 4.1. Lemma 2.6 gives two sequences of natural numbers (pm)
and (qm) such that the Taylor series of f at center ξ0 has Ostrowski-gaps (pm, qm)
and

σk
qm

(f, ξ0)(z) → P (z) uniformly on M.

Let εm = supz∈L|Sqm
(f, ξ0)(z)−P (z)|, and let C3 = supz∈L|P (z)|. (Observe that we

do not know a priori whether εm goes to 0.) Since for any z ∈ L, there exists w ∈ L
such that D̄(w,α) ⊂ L, Lemma 4.2 ensures that for l ∈ {0, . . . , k}, we have

sup
z∈L

|Spm−l(f
(l), ξ0)(z)| ≤

pm · · · (pm + 1 − l)

αl
sup
z∈L

|Spm
(f, ξ0)(z)|.

Writing

Sqm−l(f
(l), ξ0) = Sqm−l(f

(l), ξ0) − Spm−l(f
(l), ξ0) + Spm−l(f

(l), ξ0)

and
Spm

(f, ξ0) = Spm
(f, ξ0) − Sqm

(f, ξ0) + Sqm
(f, ξ0) − P + P

and denoting ε
(l)
m = supz∈L|Spm−l(f

(l), ξ0)(z)−Sqm−l(f
(l), ξ0)(z)| (which clearly tends

to 0 by the definition of Ostrowski gaps), one deduces

sup
z∈L

|Sqm−l(f
(l), ξ0)(z)| ≤ ε(l)

m +
pm · · · (pm + 1 − l)

αl
(ε(0)

m + εm + C3).

Suppose now l ≥ 1. Recall that the difference of the degrees of the numerator and the
denominator of Ql is less than or equal to −l. Hence, since pm · · · (pm + 1 − l) ≤ pl

m

and since pm ≤ qm, the boundedness of (ε
(l)
m )m and of (ε

(0)
m )m yields the existence of

a constant Dl independent on m, such that

sup
z∈L

|Ql(qm)||z − ξ0|
l|Sqm−l(f

(l), ξ0)(z)| ≤ Dl
pm

qm
(1 + εm),

Using (2) we obtain

εm ≤ sup
z∈L

|σ(k)
qm

(f, ξ0)(z) − P (z)| + (D1 + · · · + Dk)
pm

qm
(1 + εm),

which in turn gives

εm

(
1 − (D1 + · · · + Dk)

pm

qm

)
≤ sup

z∈L
|σ(k)

qm
(f, ξ0)(z) − P (z)| + (D1 + · · · + Dk)

pm

qm
.

Since pm/qm → 0 as m → +∞, we get that εm tends to 0, and Theorem 4.3 is
proved.

245 Revista Matemática Complutense

2006: vol. 19, num. 1, pags. 235–247



Frédéric Bayart Boundary behavior and Cesàro means of universal Taylor series

Corollary 4.4. For any ξ ∈ D and any k ≥ 0, we have the following equalities:

U(D) = UCes(D) = UCes(D, ξ) = UCes(k)(D) = UCes(k)(D, ξ).

Proof. We just prove that UCes(D) = U(D); the remaining identities are proved in the
same way. Let f ∈ U(D), let K be a compact subset of C, K ∩D = ∅, Kc connected,
and let h : K → C be a continuous function on K and holomorphic in K0. By
Mergelyan’s Theorem, there exists a sequence (Pl) of holomorphic polynomials such
that Pl → h uniformly on K. For any l ≥ 1, there exists a sequence (λm(l))m≥0 such
that, for any k ≥ 0 and any compact set N ⊂ D, one has

sup
z∈K

|σk
λm(l)(f, ξ0)(z) − Pl(z)| → 0 as m → +∞.

Using a diagonal argument, we easily deduce Corollary 4.4.

Remark 4.5. The previous theorem gives in particular another proof (without using
Rogosinski’s formula) that the Taylor expansion of f ∈ U(D) with center at ξ ∈ D

cannot be (C, k)-summable at any point of T.

Remark 4.6. In Theorem 4.3, the (arbitrary) polynomial P may be replaced by any
entire function. The proof is unchanged.

Remark 4.7. Melas and Nestoridis’ results, and the results about Ostrowski gaps
of Taylor series, are also valid if one replaces D by a simply connected domain Ω
contained in some half-plane. On the other hand, our method of proof requires the
geometrical Lemma 4.1. So, our result is still valid if we replace D by another simply
connected domain contained in some half-plane for which Lemma 4.1 remains true
(for instance, a square). We do not know what happens for domains where Lemma 4.1
does not hold. In the same vein, we do not know if our result is still valid if we consider
(C, a)-means, with a ∈ (−1,+∞) not necessarily a natural number.
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