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ABSTRACT

Sharp estimates are obtained for the rates of blow up of the norms of embeddings

of Besov spaces in Lorentz spaces as the parameters approach critical values.
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Introduction

Our concern is with embeddings of Sobolev type and more particularly with the be-
haviour of the corresponding embedding constants as the various parameters approach
critical values. To provide some background and motivation for this study we begin
with classical Sobolev spaces on Rn: all the spaces we shall consider in this paper will
consist of real-valued functions. Let k ∈ N, 1 ≤ p < ∞ and denote by ‖·‖p the usual

Lp(R
n) norm. Let wk

p be the (homogeneous) Sobolev space given by the completion
of C∞

0 (Rn) with respect to the norm

‖f‖wk
p

:=
∑
|α|=k

‖Dαf‖p,
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in standard notation; let W k
p be the corresponding inhomogeneous Sobolev space,

with norm

‖f‖W k
p

:= ‖f‖p + ‖f‖wk
p
.

Given any r ∈ (0,∞) and q ∈ (0,∞], let Lr,q be the usual Lorentz space, defined by
the quasinorm

‖f‖r,q :=

⎧⎨
⎩

(∫ ∞

0
{t1/rf∗(t)}q dt

t

)1/q
, 0 < q < ∞,

sup0<t<∞{t1/rf∗(t)}, q = ∞.

Here f∗ is the non-increasing rearrangement of f , given by

f∗(t) = inf{λ ≥ 0 : μf (λ) ≤ t }, t ≥ 0,

where μf is the distribution function of f , defined by

μf (λ) = |{x ∈ Rn : |f(x)| ≥ λ }|n,

|·|n denoting Lebesgue n-measure. Then it is well known that

wk
p ↪→ r−1

k Lrk,p, where 1/rk = 1/p − k/n and 1 < p < n/k. (1)

Here by X ↪→ λY , where X and Y are quasi-Banach spaces and λ > 0, we mean that
there is a constant C > 0, independent of λ, such that for all f ∈ X, λ‖f‖Y ≤ C‖f‖X ;
by X ↪→ Y we mean that X is continuously embedded in Y . We refer to Talenti [23]
for the case k = 1; when k > 1 the results can be derived by induction (see [11]). It
is also a familiar fact that if q > p, then

(q/r)1/q‖f‖r,q ≤ (p/r)1/p‖f‖r,p; (2)

see [22, p. 192]. Together with (1) this gives, under the conditions of (1),

wk
p ↪→ r

1/p−1
k Lrk

. (3)

We see that the embedding constants in (1) and (3) blow up as p → (n/k)−,
k < n. It is natural to ask whether or not these rates of blow up are sharp. Such
questions were considered in [9, 10]. To analyse them, we introduce the embedding
constants

w1 := sup
f �=0

‖f‖rk,p/‖f‖wk
p

and

w2 := sup
f �=0

‖f‖rk
/‖f‖wk

p
.

Revista Matemática Complutense

2006: vol. 19, num. 1, pags. 161–182
162



D. E. Edmunds/W. D. Evans/G. E. Karadzhov Embedding constants for Besov spaces

We use the notation c � d or d � c to mean that c is bounded above by a multiple
of d, the multiple being independent of variables in c and d; also c ≈ d means that
c � d and d � c. Then, with this notation, it turns out that

w1 ≈ rk as p → (n/k)−, k < n. (4)

A simple proof of this follows from the result (see [10, p. 90, Theorem 2.7.2]) that

h1 := sup
f �=0

‖f‖q/‖f‖H
n/p
p

≈ q1−1/p as q → ∞ (5)

(here Hs
p , with s > 0 and 1 < p < ∞, is the usual Bessel-potential space; see [24])

and from the embeddings

Hn/p
p ↪→ W k

p ↪→ wk
p , 1 < p < n/k. (6)

Combination of (6), (2) and (5) gives

w1 � r
1/p
k sup

f �=0
‖f‖rk

/‖f‖
H

n/p
p

� rk,

from which (4) is immediate in view of (1). Analogously,

w2 ≈ r
1−1/p
k as p → (n/k)−, k < n. (7)

The same results hold for the inhomogeneous Sobolev spaces W k
p :

W1 := sup
f �=0

‖f‖rk,p/‖f‖W k
p
≈ rk

and
W2 := sup

f �=0
‖f‖rk

/‖f‖W k
p
≈ r

1−1/p
k .

This analysis explains what happens when the integration parameter p approaches
the critical value n/k from below. However, a question which has attracted much
recent attention concerns blow up when the smoothness parameter approaches crit-
ical values. To explain this we introduce the (homogeneous) Besov spaces bs

p,q. For
0 < s < k, 1 ≤ p < ∞ and 0 < q ≤ ∞ these may be defined as the completion of
C∞

0 (Rn) with respect to the norm

‖f‖bs
p,q

:=

(∫ ∞

0

{t−sωk
p(t, f)}q dt

t

)1/q

,

(suitably interpreted when q = ∞), where ωk
p(t, f) := sup|h|≤t

∥∥Δk
hf

∥∥
p

is the kth-order

Lp−modulus of continuity of f,Δk
h being the kth−order difference operator with step

length h; see after (10) below. It is well known (see [21]) that

bs
p,q ↪→ Lr,q if 1/r = 1/p − s/n, 0 < s < n/p,
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and we wish to find sharp rates of blow up of the embedding constant as s → (n/p)−.
Let

b1 := sup
f �=0

‖f‖r,q/‖f‖bs
p,q

(8)

and
b2 := sup

f �=0
‖f‖r/‖f‖bs

p,q
. (9)

Since s → n/p and 0 < s < k, we must have n/p ≤ k; it turns out that the results are
different for the two possible cases n/p < k and n/p = k. When n/p < k it is known
that (see [11])

bs
p,q ↪→ r−cLr,q, 1/r = 1/p − s/n, 0 < s < n/p < k, c = max(1, 1/q),

and we show that as s → n/p < k, with 1 < p < ∞ and 0 < q ≤ ∞,

b1 ≈ rc, b2 ≈ r(1−1/q)+ , a+ = max(a, 0).

If k = n/p the results are different since ‖f‖bs
p,q

may tend to infinity as s → n/p = k.
Putting s = σk, 0 < σ < 1, we show that if 1 < p < ∞, k = n/p and 0 < q ≤ ∞,
then, as σ → 1−,

bkσ
p,q ↪→ (1 − σ)−a+cLr,q,

where
1/r = (1 − σ)/p, a = min(1/p, 1/q), c = max(1, 1/q).

When k = 1, q = p ≥ 1, these results were proved by Bourgain, Brezis and Miro-
nescu [5], Maz’ya and Shaposhnikova (see [18, 19]) and Kolyada and Lerner [15]; the
cases k = n/p ≥ 2, q ≥ 1 and k 	= n/p, q > 0 are covered by [11] if p ≥ 1. In this
paper, not only do we establish results for wider exponent ranges, but we also provide
different proofs for the aforementioned cases: as in [11] we use real interpolation, but
we make substantial use of the (nonlinear) spaces L(r,q) defined to be the set of all
functions f ∈ L1 + L∞ such that f∗(∞) = 0 and

‖f‖L(r,q)
:=

⎧⎨
⎩
{
∫ ∞

0
tq/r

(
f∗∗(t) − f∗(t))q dt

t

}1/q
, 0 < q < ∞,

supt>0 t1/r(f∗∗(t) − f∗(t)), q = ∞,

is finite (see [2,17,20]). Here f∗∗(t) = t−1
∫ t

0
f∗(s)ds. For the embedding constants b1,

b2 of (8) and (9) we show that if 1 < p < ∞, k = n/p, 1 ≤ q ≤ ∞ and 1/r = (1−σ)k/n,
then as r → ∞,

b1 ≈ r1−1/p, b2 ≈ r1−2/p.

Inequalities of the type

f∗∗(t) − f∗(t) ≤ 2{ f∗∗(t) − f∗∗(2t) } � t−1/pωk
p(t1/n, f)
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(f ∈ C∞
0 (Rn), k ∈ N, 1 ≤ p < n/(k − 2) if k ≥ 3, 1 ≤ p ≤ ∞ otherwise) enable the

proofs to be streamlined and may have independent interest. Similar inequalities are
given by Kolyada in [13,14] in the cases n = 1, k = 1, 2; see Remark 1.3.

The paper concludes with a brief discussion of the supercritical case of embeddings
of Besov spaces; that is, when the target space is L∞.

1. Preliminaries

1.1. Real interpolation and Besov spaces

We recall briefly the construction of real interpolation spaces. Let �A = (A0, A1) be
a pair of quasi-Banach spaces that are compatible in the sense that both A0 and A1

are continuously embedded in some common quasi-Banach space. The K-functional
for �A is defined, for t > 0 and f ∈ A0 + A1, by

K(t, f ; �A) = K(t, f ;A0, A1) = inf
f=f0+f1

{‖f0‖A0
+ t‖f1‖A1

}.

For 0 < θ < 1 and 0 < q ≤ ∞, the real interpolation space �Aθ,q = (A0, A1)θ,q is the
set of all f ∈ A0 + A1 such that

‖f‖ �Aθ,q
:=

⎧⎨
⎩

(∫ ∞

0

(
t−θK(t, f ; �A)

)q dt
t

)1/q

, 0 < q < ∞,

supt>0 t−θK(t, f ; �A), q = ∞,

is finite. It is well known (cf. [3, p. 341]) that

K(tk, f ;Lp, w
k
p) ≈ ωk

p(t, f) := sup
|h|≤t

‖Δk
hf‖p, p ∈ [1,∞), (10)

where Δk
h denotes the kth difference operator defined recursively by

Δhf(x) = Δ1
hf(x) = f(x + h) − f(x), Δk

h = Δ1
hΔk−1

h (k ≥ 2).

The homogeneous Besov spaces bs
p,q on Rn, with k ∈ N, 0 < s < k, 1 ≤ p < ∞

and 0 < q ≤ ∞, are defined as the completion of C∞
0 (Rn) with respect to the norm

‖f‖bs
p,q

:=

(∫ ∞

0

(t−sωk
p(t, f))q dt

t

)1/q

,

interpreted appropriately when q = ∞. We shall write bs
p instead of bs

p,p.
From (10) we see that for 0 < s < 1,

bsk
p,q = (Lp, w

k
p)s,q.
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Moreover (see [11])

K(t, f ;Lp, w
1
p) ≈

{
t−n

∫
|h|≤t

‖Δhf‖p
pdh

}1/p

.

Together with Fubini’s theorem this shows that

‖f‖bs
p
≈

(∫
Rn

∫
Rn

|f(x) − f(y|p

|x − y|n+sp
dxdy

)1/p

, (11)

with constants of equivalence independent of s. In fact, in [15] it is shown that

(n�n)1/p2−n−2‖f‖bs
p
≤

(∫
Rn

∫
Rn

|f(x) − f(y|p

|x − y|n+sp
dxdy

)1/p

≤ ((n + p)�n)1/p‖f‖bs
p
,

where � denotes the volume of the unit ball in Rn. Hence our norm on bs
p is equivalent

to that used in [5, 6, 18], namely the right-hand side of (11).

1.2. The spaces L(r, q)

These spaces will play an important technical rôle in our arguments. For 0 < q ≤ ∞
and −∞ < 1/r < 1 the (nonlinear) space L(r, q) is defined (following [2,17,20]) to be
the family of all f ∈ L1 + L∞ such that f∗(∞) = 0 and

‖f‖L(r,q) :=

{∫ ∞

0

tq/r(f∗∗(t) − f∗(t))q dt

t

}1/q

< ∞

(with the natural interpretation when q = ∞). Here f∗∗(t) = t−1
∫ t

0
f∗(s)ds. Since

d
dtf

∗∗(t) = t−1{f∗(t) − f∗∗(t)}, it follows that

f∗∗(t) =

∫ ∞

t

(f∗∗(s) − f∗(s))
ds

s
if f∗(∞) = 0. (12)

Note that an application of l’Hôpital’s rule to f∗∗(t) = t−1
∫ t

0
f∗(s) ds shows that the

condition f∗(∞) = 0 is equivalent to f∗∗(∞) = 0. Note also that

L(∞, 1) = L∞.

We shall need the following embedding result.

Lemma 1.1. Let 1 < r < ∞, 0 < q ≤ ∞ and put c = max(1, 1/q). Then

L(r, q) ↪→ r−cLr,q.
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Proof. First suppose that q ≥ 1 and recall that replacement of f∗ by f∗∗ in ‖f‖r,q

gives a quasinorm equivalent to ‖f‖r,q (see [3, p. 219, Lemma 4.4.5]). Then from (12)
and Minkowski’s inequality we have, for all f ∈ L(r, q),

‖f‖r,q �

∫ ∞

1

‖f∗∗(s·) − f∗(s·)‖r,q
ds

s

�

∫ ∞

1

s−1/r‖f‖L(r,q)
ds

s
= r‖f‖L(r,q).

If 0 < q < 1, we integrate by parts and obtain,

‖f‖q
r,q �

∫ ∞

0

tq/rhq(t)
dt

t
=

r

q
[tq/rhq(t)]∞0 − r

∫ ∞

0

tq/rhq−1(t)h′(t) dt,

where
h(t) := f∗∗(t), h′(t) = −t−1(f∗∗(t) − f∗(t)).

To handle the integrated terms, first note that since

t(f∗∗(t) − f∗(t)) =

∫ ∞

f∗(t)

μf (s) ds

(see [7, equation (6)]), t(f∗∗(t) − f∗(t)) is increasing. Thus

t(f∗∗(t) − f∗(t))

(∫ ∞

t

sq/r−1−q ds

)1/q

≤

(∫ ∞

t

(f∗∗(s) − f∗(s))qsq/r−1 ds

)1/q

,

and so

t1/r(f∗∗(t) − f∗(t)) �

(∫ ∞

t

(f∗∗(s) − f∗(s))qsq/r−1 ds

)1/q

.

This shows that

f∗∗(t) − f∗(t) =

{
o(t−1/r) as t → ∞,

O(t−1/r) as t → 0.

It follows that

t1/rf∗∗(t) =

{
t1/r

∫ ∞

t
(f∗∗(s) − f∗(s)) ds

s → 0 as t → ∞,

O(1) as t → 0.

Hence the integrated terms may be ignored and we have

‖f‖q
r,q � r

∫ ∞

0

tq/r(f∗∗(t) − f∗(t))q dt

t
,

as desired. The lemma is proved.
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1.3. Pointwise estimates for the rearrangement

Lemma 1.2. Let k ∈ N and suppose that 1 ≤ p < n
k−2 if k ≥ 3, 1 ≤ p ≤ ∞ if

k = 1, 2. Then for all f ∈ C∞
0 (Rn),

f∗∗(t) − f∗∗(2t) � t−1/pωk
p(t1/n, f), 0 < t < ∞. (13)

Note that for n = 1, similar estimates are proved in [13, Theorem 1], in the case
k = 1 and [14, pp. 149–150], for k = 2; see Remark 1.3 below.

Proof. Let t > 0 and let Bh be the ball in Rn with centre 0, radius h and measure 2t.
Let u ∈ Rn, |u| ≤ h. Since

|f(x)| ≤ |Δuf(x)| + |f(x + u)|,

we have, integrating with respect to u over Bh,

2t|f(x)| ≤

∫
Bh

|Δuf(x)|du +

∫ 2t

0

f∗(s) ds.

Now integrate with respect to x over a subset E of Rn with Lebesgue n-measure t and
take the supremum over all such sets E. This gives (see [3, p. 53, Proposition 2.3.3])

2t[f∗∗(t) − f∗∗(2t)] ≤

∫
Bh

(Δuf)∗∗(t) du

=
1

t

∫
Bh

∫ t

0

(Δuf)∗(s) dsdu �
1

t

∫
Bh

‖Δuf‖1 du

≤ 2 sup
|u|≤(2t/�n)1/n

‖Δuf‖1 = 2ω1
1((2t/�n)1/n, f). (14)

In view of of [4, (5.4.5), p. 332] and the fact that ω1
1 is an increasing function, we see

that (13) follows immediately if p = k = 1. If p > 1, we apply Hölder’s inequality
and obtain (13) for k = 1. To cover the case k = 2 we use the inequality

|f(x)| ≤
1

2
|Δ2

uf(x − u)| +
1

2
[|f(x + u)| + |f(x − u)|]

which follows directly from the definition of Δ2
uf(x − u). Integration of this with

respect to u over Bh gives

2t|f(x)| ≤
1

2

∫
Bh

|Δ2
uf(x − u)| du +

∫ 2t

0

f∗(s) ds.

Hence as before we have

2t[f∗∗(t) − f∗∗(2t)] ≤

∫
Bh

(Δ2
uf)∗∗(t) du. (15)
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As above we obtain from this the estimate (13) for the case k = 2.
To deal with the situation when k ≥ 3, we proceed by induction. Suppose that k

is even (when it is odd the argument is analogous) and that (13) holds for this k; let
p < n/k. Then (12) and the inductive hypothesis show that

f∗∗(t) �

∫ ∞

t

s−1/pωk
p(s1/n, f)

ds

s
=

∫ ∞

t

s−1/p+k/n
ωk

p(s1/n, f)

sk/n

ds

s
.

Since t 
−→ t−1K(t, f ;Lp, w
k
p) is monotonic decreasing (see [3, p. 294]), this gives,

with the help of (10),

f∗∗(t) � t−1/pωk
p(t1/n, f), k < n/p.

Apply this estimate to Δ2
uf : we obtain

(Δ2
uf)∗∗(t) � t−1/pωk

p(t1/n,Δ2
uf), k < n/p.

From Lemma 5.4.11 of [3] and this we see that

sup
|v|≤t1/n

sup
|u|≤ct1/n

‖Δk
vΔ2

uf‖p � ωk+2
p (t1/n, f)

and (
Δ2

uf
)∗∗

(t) � t−1/pωk+2
p (t1/n, f), k < n/p.

Together with (15) this gives (13) with k replaced by k+2. The proof is complete.

Remark 1.3. When n = 1, it is proved respectively in [13, Theorem 1] and [14, pp. 149–
150], that

f∗∗(t) − f∗(t) � t−1/pω1
p(t, f) (16)

and
f∗∗(t) − f∗(t) � t−1/pω2

p(t, f) (17)

These results are equivalent to the cases k = 1, 2 respectively of (13), as we shall now
show. Since

d

dt
f∗∗(t) = −t−1{f∗∗(t) − f∗(t)}

we have that

f∗∗(t) − f∗∗(2t) =

∫ 2t

t

s−1{f∗∗(s) − f∗(s)} ds.

Hence, from (16) and [3, p. 332, (4.5)],

f∗∗(t) − f∗∗(2t) �

∫ 2t

t

s−1− 1
p ω1

p(s, f)ds � t−1/pω1
p(2t, f)

� t−1/pω1
p(t, f),

169 Revista Matemática Complutense
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whence (13) with k = 1. In (26) below we prove that

f∗∗(t) − f∗(t) ≤ 2{f∗∗(t) − f∗∗(2t)}

and so (13) with k = 1 implies (16). Similarly (17) is equivalent to the case k = 2
of (13).

2. Sharp embedding constants for Besov spaces, the subcritical

case

Here we consider the well known embedding (see [21])

bs
p,q ↪→ Lr,q, 1/r = 1/p − s/n, 0 < s < n/p,

and aim to find sharp rates of blow up for the embedding constants as s → n/p. As
explained in the Introduction, this means that n/p ≤ k, and the cases n/p < k and
n/p = k give different results. We introduce the embedding constants

b1 := sup
f �=0

‖f‖r,q/‖f‖bs
p,q

and b2 := sup
f �=0

‖f‖r/‖f‖bs
p,q

.

2.1. The case n/p < k

Theorem 2.1. Let 1 < p < ∞, 0 < q ≤ ∞, 0 < s < n/p < k, 1/r = 1/p − s/n and

put c = max(1, 1/q). Then as s → n/p,

b1 ≈ rc and b2 ≈ r(1−1/q)+ . (18)

Proof. From [11] we know that bs
p,q ↪→ r−cLr,q. This implies that

b1 � rc (19)

and
b2 � rc−1/q.

Suppose that 0 < q ≤ 1. Choose f ∈ C∞
0 (Rn) such that f = 1 in a neighbourhood of

the origin and |supp f |n > 2. Then f∗(s) � 1 for 0 < s < 1 and hence

‖f‖r,q � r1/q as r → ∞. (20)

On the other hand,

ωk
p(t, f) �

{
tk, 0 < t < 1,

1, t > 1.

Thus
‖f‖bs

p,q
� 1,
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and from this, (19) and (20) we obtain the required estimate (18) for b1, when
0 < q ≤ 1.

Next let 1 < q ≤ ∞. Consider the inhomogeneous Besov space Bs
p,q, with quasi-

norm

‖f‖Bs
p,q

:= ‖f‖p + ‖f‖bs
p,q

.

We have

Bn/p
p,q ↪→ Bs

p,q ↪→ bs
p,q if 0 < s < n/p < k,

and

b1 � sup
f �=0

‖f‖r,q/‖f‖B
n/p
p,q

� r1/q sup
f �=0

‖f‖r/‖f‖B
n/p
p,q

. (21)

Now we choose a test function f in a way similar to that used in [25]:

f(x) :=
l∑

j=0

ψ(2jx), l ≈ r,

where ψ ∈ C∞
0 (Rn) is non-negative and ψ(x) = 1 when |x| ≤ a, for some a > 0.

Then ‖f‖r � r. However, as in [25], we see that ‖f‖
B

n/p
p,q

≈ r1/q. Together with (21)

this gives b1 � r, from which (18) follows for b1, when 1 < q ≤ ∞.
The proof of (18) for b2 is analogous.

2.2. The case k = n/p

Here the results are different as ‖f‖bs
p,q

may tend to ∞ as s → n/p = k. We write
s = σk, 0 < σ < 1. Our initial aim is to obtain upper estimates for the embedding
constants b1 and b2; to do this it is convenient to establish some preliminary results.

Lemma 2.2. Let f ∈ C∞
0 (Rn). Then

f∗∗(t) − f∗∗(2t) � t1/n|∇f |∗∗(t) (22)

and

f∗∗(t) − f∗∗(2t) � t2/n|D2f |∗∗(t), (23)

where D2 =
∑

|α|=2 Dα.

When n = 1, the estimate 22 is equivalent to one given in [12, Lemma 5.1] (see
also [1]); see Remark 2.4 below.

Proof. From (14), if t > 0 then

f∗∗(t) − f∗∗(2t) ≤
1

2t

∫
Bh

(Δuf)∗∗(t) du,

171 Revista Matemática Complutense

2006: vol. 19, num. 1, pags. 161–182



D. E. Edmunds/W. D. Evans/G. E. Karadzhov Embedding constants for Besov spaces

where Bh is the ball in Rn with centre 0, radius h and measure 2t. To estimate the
right-hand side of this, we note that

|(Δuf)(x)| =

∣∣∣∣
∫ 1

0

∇f(x + su) · u ds

∣∣∣∣ ≤
∫ 1

0

|∇f(x + su)||u| ds

(see [16, V,4]). Integrate with respect to x over a subset E of Rn with Lebesgue
measure t and take the supremum over all such subsets E. Then by [3, p. 53, Propo-
sition 2.3.3],

(Δuf)∗∗(t) ≤

∫ 1

0

|∇f |∗∗(t)|u| ds = |∇f |∗∗(t)|u|.

Hence

f∗∗(t) − f∗∗(2t) ≤
1

2t

∫
Bh

|∇f |∗∗(t)|u| du � t1/n|∇f |∗∗(t),

as required. The proof of (23) is similar, starting from

|(Δ2
uf)(x)| �

∫ 1

0

|D2f(x + su)||u|2 ds

(see [16, V,5]) and using (15).

We shall also need to generalize the Sobolev spaces we have been considering to
those built up over the Lorentz scale. If in the definition of wk

p we replace the Lebesgue

space Lp by the Lorentz space Lp,q, we obtain a space that we shall denote by wkLp,q.
A consequence of Lemma 2.2 is

Proposition 2.3. Let 1 < p ≤ ∞, 0 < q ≤ ∞, k ∈ {1, 2} and as in (1) define rk by

1/rk = 1/p − k/n. Then for all f ∈ C∞
0 (Rn),

‖f‖L(rk,q) � ‖f‖wkLp,q
. (24)

Proof. From (12), if t > 0 then

f∗∗(t) − f∗∗(2t) =

∫ 2t

t

(f∗∗(τ) − f∗(τ))
dτ

τ
. (25)

Since the function g given by

g(t) = t(f∗∗(t) − f∗(t))

is non-decreasing, (25) implies that

f∗∗(t) − f∗∗(2t) =

∫ 2t

t

τ(f∗∗(τ) − f∗(τ))
dτ

τ2
≥ t(f∗∗(t) − f∗(t)) ·

1

2t
;
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that is,
f∗∗(t) − f∗(t) ≤ 2{f∗∗(t) − f∗∗(2t)}. (26)

Suppose that k = 1. Then using (26) and (22), we see that if p, q < ∞, then

‖f‖q
L(r1,q) =

∫ ∞

0

tq/r1(f∗∗(t) − f∗(t))q dt

t
�

∫ ∞

0

tq/r1(f∗∗(t) − f∗∗(2t))q dt

t

�

∫ ∞

0

(
t1/p|∇f |∗∗(t)

)q dt

t
� ‖f‖w1Lp,q

.

If either p or q is infinite the proof is adapted in a natural manner.
The proof when k = 2 is similar, using this time (23) instead of (22).

Remark 2.4. In [12, Lemma 5.1], it is proved that

f∗(t) − f∗(2t) � t1/n|∇f |∗∗(t). (27)

This is equivalent to (22). For, it follows from

f∗∗(2t) =
1

2t

{∫ t

0

f∗(s) ds +

∫ 2t

t

f∗(s) ds

}

that
f∗(t) ≤ 2f∗∗(2t) − f∗(2t)

and hence, on using (26), if (22) holds, we have

f∗(t) − f∗(2t) ≤ 2{f∗∗(2t) − f∗(2t)}

≤ 4{f∗∗(2t) − f∗(4t)}

� t1/n|∇f |∗∗(2t)

≤ t1/n|∇f |∗∗(t).

Conversely, (27) implies that

f∗∗(t) − f∗∗(2t) = t−1

∫ t

0

{f∗(s) − f∗(2s)} ds

� t−1

∫ t

0

s1/n|∇f |∗∗(s) ds

≤ t1/n|∇f |∗∗(t)

since s|∇f |∗∗(s) is non-decreasing.

Proposition 2.5. Let 1 < p < ∞ and let r1 be defined by 1/r1 = 1/p − 1/n. Then

for all f ∈ C∞
0 (Rn),

I := t

{∫ ∞

tn

τp/r1 (f∗∗(τ) − f∗(τ))p dτ

τ

}1/p

� ω1
p(t, f).
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Proof. Let

gt(x) := t−n

∫ t

0

· · ·

∫ t

0

f(x + y) dy1 · · · dyn.

Then

Ip � tp
∫ ∞

tn

τp/r1(f∗∗(τ) − f∗∗(2τ))p dτ

τ

� tp
∫ ∞

tn

τp/r1
(
(f − gt)

∗∗(τ) + g∗∗t (τ) − f∗∗(2τ)
)p dτ

τ
. (28)

We claim that
g∗∗t (τ) ≤ f∗∗(τ).

To justify this, note that

g∗∗t (τ) ≤ t−n

∫ t

0

· · ·

∫ t

0

f∗∗(τ)dy1 · · · dyn = f∗∗(τ).

Then (28) gives

Ip � ‖f − gt‖
p
p + tp

∫ ∞

tn

τp/r1(g∗∗t (τ) − g∗∗t (2τ))p dτ

τ
. (29)

Moreover, from (25) we have

f∗∗(t) − f∗∗(2t) � t−1

∫ 2t

0

{f∗∗(τ) − f∗(τ)} dτ. (30)

Together with Minkowski’s inequality, (29) and (30) give

I � ‖f − gt‖p + t‖gt‖L(r1,p),

and using (24) this shows that

I � ‖f − gt‖p + t‖gt‖w1
p
.

Since ‖f − gt‖p ≤ ω1
p(t, f) and ‖gt‖w1

p
≤ ω1

p(t, f), the proof is complete.

A basic result concerning the embeddings of the spaces wkLp,q is given in the
following Lemma (see also [20]).

Lemma 2.6. Let k ∈ N, 0 < q ≤ ∞ and suppose that 1 < p < n/(k − 2) if k ≥ 3,
and 1 < p ≤ ∞ otherwise. Let rk be given by 1/rk = 1/p − k/n, as in (1). Then

wkLp,q ↪→ L(rk, q).
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Proof. The cases k = 1, 2 follow directly from Proposition 2.3. For the remaining
cases, we use induction and suppose that the Lemma is true for some k, with rk > 0.
By the inductive hypothesis applied to the second-order derivatives of f ∈ wk+2Lp,q,
we have

‖D2f‖Lrk,q
� ‖f‖wk+2Lp,q

,

and hence, by (26) and (23),

‖f‖L(rk+2,q) � ‖f‖wk+2Lp,q
.

The proof is complete.

After this preparation we can give the promised embedding result.

Theorem 2.7. Let 1 < p < ∞, 0 < q ≤ ∞ and k = n/p. Then as σ → 1−,

bkσ
p,q ↪→ (1 − σ)−a+cLr,q, (31)

where

1/r = (1 − σ)/p

and

a = min(1/p, 1/q), c = max(1, 1/q).

Proof. First suppose that k = 1. From Proposition 2.5, with f ∈ bσ
p,q,

‖f‖q
bσ

p,q
�

∫ ∞

0

t(1−σ)q

{∫ ∞

tn

up/r1(f∗∗(u) − f∗(u))p du

u

}q/p
dt

t
:= I.

To estimate I from below, first suppose that q ≤ p and apply Minkowski’s inequality:

I �

∫ ∞

0

t(1−σ)q/n

{∫ ∞

1

(ut)p/r1 (f∗∗(ut) − f∗(ut))
p du

u

}q/p
dt

t

�

{∫ ∞

1

(∫ ∞

0

t(1−σ)q/n(ut)q/r1(f∗∗(ut) − f∗(ut))q dt

t

)p/q
du

u

}q/p

�

(∫ ∞

1

u−(1−σ)p/n du

u

)q/p

‖f‖q
L(r1,q).

Thus
‖f‖bσ

p,q
� (1 − σ)−1/p‖f‖L(r1,q), q ≤ p. (32)

If q > p, we integrate by parts. Let h(t) :=
∫ ∞

t
up/r1(f∗∗(u) − f∗(u))p du

u . Then

I �

∫ ∞

0

t(1−σ)q/nhq/p(t)
dt

t
� −(1 − σ)−1

∫ ∞

0

t(1−σ)q/nh(q/p)−1(t)h′(t)dt.
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Since t 
−→ g(t) := t{f∗∗(t) − f∗(t)} is non-decreasing, we have

h(t) =

∫ ∞

t

u−p/n
(g(u)

u

)p

du ≥ gp(t)

∫ ∞

t

u−p/n−p du,

and so
h(t) � t1−p/n{f∗∗(t) − f∗(t)}p.

Hence

I � (1 − σ)−1

∫ ∞

0

uq/r1(f∗∗(u) − f∗(u))q du

u

and so
‖f‖bσ

p,q
� (1 − σ)−1/q‖f‖L(r1,q), q > p. (33)

The Theorem for the case k = 1 now follows immediately from (32), (33), and
Lemma 1.1.

Now suppose that k ≥ 2. We claim that

bkσ
p,q ↪→ (wk−1

p , wk
p)σ1,q, 1 − σ1 = (1 − σ)k. (34)

In fact, using the embedding

(Lp, w
k
p)θ,1 ↪→ wk−1

p , θ = 1 − 1/k,

we obtain (34) by reiteration (see [11]):

bkσ
p,q ↪→ ((Lp, w

k
p)θ,1, w

k
p)σ1,q ↪→ (wk−1

p , wk
p)σ1,q, 1 − σ1 = (1 − σ)k.

Moreover, since we know the theorem to be true when k = 1, we have

bσ1
p,q ↪→ (1 − σ1)

−aLrσ1
,q, 1/rσ1

= 1/p − σ1/n. (35)

Now (34) and (35) lead to

bkσ
p,q ↪→ (1 − σ)−awk−1Lrσ1

,q,

which together with Lemma 2.6 and Lemma 1.1 give (31). The proof is complete.

As observed earlier, when k = 1, q = p ≥ 1, these results were proved in [5], [18]
and [15]; the cases k = n/p ≥ 2, q ≥ 1 and k 	= n/p, q > 0 are covered by [11] if
p ≥ 1. The proof here is different. Note also that when p = 1 and k = n the following
better result is proved in [11]:

Theorem 2.8. Let k = n and put 1/rσ = 1 − σ, 0 < σ < 1. Then

bnσ
1,q ↪→ Lrσ,q.
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Now we can give the promised sharp estimates for the rates of blow up of the
embedding constants b1 and b2, defined in (8) and (9), for the case k = n/p.

Corollary 2.9. Let 1 < p < ∞, 1 ≤ q ≤ p, k = n/p, 0 < σ < 1 and 1/r = (1−σ)k/n.

Then as r → ∞,

b1 ≈ r1−1/p

and

b2 ≈ r1−2/p.

Proof. The estimates from above follow from Theorem 2.7 and (2). For the rest, we
use the test function f , where f(x) = φ(|x|k−λ), 0 < λ < k = n/p, λ → k, where
φ is a smooth function supported in { t ∈ R : |t| ≤ 2 } and φ(t) = t for |t| < 1.
Then we have (20); and the derivatives of f of order k behave like (k − λ)|x|−λ for
0 < |x| < 21/(k−λ). In particular,

‖f‖wk
p

� (k − λ)1−1/p.

Hence

ωk
p(t, f) �

{
tk(k − λ)1−1/p if 0 < t < 1

1 if t > 1.

Thus

‖f‖bλ
p,q

� (k − λ)1−1/p−1/q. (36)

Taking λ = σk we see that (36) and (20) give

b1 � r1−1/p, b2 � r1−2/p as r → ∞, if k = n/p. (37)

This finishes the proof.

Note that (37) holds for 0 < q ≤ ∞ and 1 < p < ∞. This is needed in the proof
of Corollary 2.13 below.

When p = 1 we have a complete result, valid for all q > 0, due to Theorem 2.8:

Corollary 2.10. Let k = n, p = 1, 0 < q ≤ ∞ and 1/r = 1− σ, 0 < σ < 1. Then as

r → ∞,

b1 ≈ 1 and b2 ≈ r−1.

It follows that when 1 ≤ q ≤ p, the results are sharp. We now try to improve
Theorem 2.7 for the case q > p > 1, interpolating the sharp result given by that
Theorem for q = p. To this end we need the following uniform reiteration theorem.

Theorem 2.11. Let (A0, A1) be a quasi-Banach pair. Let

0 < θ0 < θ1 < 1, λ := θ1 − θ0 ≈ 1 − θ0 ≈ 1 − θ1 (38)
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and suppose that 0 < σ < 1, q > p > 1. Then(
�Aθ0,p, �Aθ1,p

)
σ,q

= λ1/q−1/p �Aθ,q, (39)

where θ = (1 − σ)θ0 + σθ1, uniformly with respect to λ → 0.

Proof. Step 1. Here we show that the usual reiteration formula of Holmstedt (see [4,
p. 52]) for the K-functional is uniform with respect to λ → 0 under the conditions (38):

Kp(t, f ; �Aθ0,p, �Aθ1,p) ≈

∫ t1/λ

0

u−θ0pKp(u, f)
du

u
+ tp

∫ ∞

t1/λ

u−θ1pKp(u, f)
du

u
, (40)

where K(u, f) = K(u, f ;A0, A1). Indeed, if f = f0 + f1, then

Ip
0 : =

∫ t1/λ

0

u−θ0pKp(u, f)
du

u

�

∫ t1/λ

0

u−θ0pKp(u, f0)
du

u
+

∫ t1/λ

0

uλpu−θ1pKp(u, f1)
du

u
,

and so
I0 � ‖f0‖ �Aθ0,p

+ t‖f1‖ �Aθ1,p
.

Analogously,

Ip
1 := tp

∫ ∞

t1/λ

u−θ1pKp(u, f)
du

u

satisfies
I1 � ‖f0‖ �Aθ0,p

+ t‖f1‖ �Aθ1,p
.

The upper estimate implicit in (40) now follows.
For the reverse inequality, choose a representation f = f0 + f1 such that

K(t1/λ, f) ≈ ‖f0‖A0
+ t1/λ‖f1‖A1

.

Then

K(s, f0) ≤ ‖f0‖A0
� K(t1/λ, f) and K(s, f1) � st−1/λK(t1/λ, f).

It follows that

‖f0‖
p
�Aθ0,p

�

∫ t1/λ

0

u−θ0pKp(u, f)
du

u
+

∫ t1/λ

0

u−θ0pKp(u, f1)
du

u

+

∫ ∞

t1/λ

u−θ0pKp(t1/λ, f)
du

u
.
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Since ∫ t1/λ

0

u−θ0pKp(u, f1)
du

u
�

∫ t1/λ

0

u(1−θ0)pt−p/λKp(t1/λ, f)
du

u

� (1 − θ0)
−1t−θ0p/λKp(t1/λ, f),

we see that
‖f0‖

p
�Aθ0,p

� Ip
0 + {θ0(1 − θ0)}

−1t−θ0p/λKp(t1/λ, f). (41)

Analogously,

tp‖f1‖
p
�Aθ1,p

� Ip
1 + {θ1(1 − θ1)}

−1t−θ0p/λKp(t1/λ, f). (42)

Noticing that
Ip
0 � (1 − θ0)

−1t−θ0p/λKp(t1/λ, f),

we see that under the conditions (38), the estimates (41) and (42) become

‖f0‖
p
�Aθ0,p

� Ip
0 and tp‖f1‖

p
�Aθ1,p

� Ip
1 + Ip

0 .

This completes the proof of (40).
Step 2. Here we prove (39), assuming that q > p. By (40) we have

A :=

∫ ∞

0

t−σqIq
0

dt

t
= λ

∫ ∞

0

t−λσqgq/p(t)
dt

t
,

where g(t) :=
∫ t

0
u−θ0pKp(u, f) du

u . Integrating by parts and using the facts that

g′(t) = t−θ0p−1Kp(t, f), g(t) ≥ (1 − θ0)
−1t−θ0pKp(t, f),

we obtain

‖f‖ := ‖f‖( �Aθ0,p, �Aθ1,p)σ,q
� (1 − θ0)

1/q−1/p‖f‖ �Aθ,q
, θ = (1 − σ)θ0 + σθ1. (43)

For the reverse estimate, we write

A = λ

∫ ∞

0

t−λσq

(∫ 1

0

(tu)−θ0pKp(tu, f)
du

u

)q/p
dt

t
.

By Minkowski’s inequality (see, for example, p. 530 of [8]),

A ≤ λ

(∫ 1

0

(∫ ∞

0

(tu)−θ0qKq(tu, f)t−λσq dt

t

)p/q
du

u

)q/p

= λ

(∫ 1

0

(∫ ∞

0

v−θqKq(v, f)
dv

v

)p/q

uλσp−1du

)q/p

= λ‖f‖q
�Aθ,q

(∫ 1

0

uλσp−1du

)q/p

= (σp)−q/p‖f‖q
�Aθ,q

λ1−q/p (44)
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Let

B = λ

∫ ∞

0

t(1−σ)λq

(∫ 1

0

(tu)−θ1pKp(tu, f)
du

u

)q/p
dt

t
.

By Minkowski’s inequality again,

B � λ1−q/p‖f‖q
�Aθ,q

.

Together with (44) this gives

‖f‖ � λ1/q−1/p‖f‖ �Aθ,q
. (45)

Finally, (39) follows from (43) and (45).

Theorem 2.12. Let 1 < p < q ≤ ∞, 0 < σ < 1, 1/r = (1−σ)/p and k = n/p. Then

as σ → 1,
bkσ
p,q ↪→ (1 − σ)1−1/pLr,q.

Proof. Let θ0 = 2σ − 1, θ1 = (1 + σ)/2. Then Theorem 2.7 gives

(Lp, w
k
p)θj ,p ↪→ (1 − σ)1−1/p(Lp, L∞)

θj,p
, j = 0, 1.

Applying Theorem 2.11 with σ = 2/3 we have

(Lp, w
k
p)σ,q ↪→ (1 − σ)1−1/p(Lp, L∞)

σ,q
.

Since (see [11]) (Lp, L∞)σ,q = Lr,q, uniformly with respect to σ ≈ 1, the desired
embedding follows.

As a consequence of this we have

Corollary 2.13. Let 1 < p < ∞, p < q, 1 ≤ q ≤ ∞, k = n/p, 0 < σ < 1 and

1/r = (1 − σ)k/n. Then as r → ∞,

b1 ≈ r1−1/p and b2 ≈ r1−2/p.

The case 0 < q < 1 remains to be settled.

3. Sharp embedding constants for Besov spaces, the supercrit-

ical case

It is well known (see [24]) that if s > n/p, then

Bs
p,q ↪→ L∞,

where Bs
p,q is the inhomogeneous Besov space, defined by means of Fourier decomposi-

tions. The problem of finding sharp rates of blow up for the corresponding embedding
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constants as s → (n/p)+ was considered quite recently by Triebel [25]. In fact, he
dealt not only with Besov but also with Lizorkin-Triebel spaces, both types of spaces
being considered on bounded Lipschitz domains. Here we consider the same problem
for the slightly larger Besov spaces b̃s

p,q (1 ≤ p < ∞), defined by means of the norm

‖f‖b̃s
p,q

:=

(∫ 1

0

{t−sωk+1
p (t, f)}q dt

t

)1/q

+ ‖f‖L1+L∞
, s < k + 1.

Note that using monotonicity, we can replace the above integral by a sum and then
conclude that the scale b̃s

p,q is increasing with respect to q. It is also decreasing with
respect to s. It turns out that the results concerning the embedding constants are
the same as in [25]. Let

b3 := sup
f �=0

‖f‖∞/‖f‖b̃s
p,q

.

Theorem 3.1. Let 1 ≤ p < ∞, 0 < q ≤ ∞, n/p < k + 1 and σ > 0. Then as σ → 0,

b̃n/p+σ
p,q ↪→ σ(1−1/q)+L∞.

Proof. Using (12), (26) and Lemma 1.2, we have

f∗∗(t) �

∫ 1

t

u−1/pωk+1
p (u1/n, f)

du

u
+ f∗∗(1), k < n/p + 1.

From this and monotonicity the result follows for the case q ≤ 1. If q > 1 we also
have to apply the Hölder inequality.

As a consequence we have

Corollary 3.2. Under the conditions of the last theorem,

b3 ≈ σ−(1−1/q)+ .

Part of this follows from [25], since Bs
p,q ↪→ b̃s

p,q, uniformly with respect to s →
(n/p)+ (see [24, p. 110]).
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