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ABSTRACT

We prove Gronwall-type estimates for the distance of integral curves of smooth
vector fields on a Riemannian manifold. Such estimates are of central impor-
tance for all methods of solving ODEs in a verified way, i.e., with full control
of roundoff errors. Our results may therefore be seen as a prerequisite for the
generalization of such methods to the setting of Riemannian manifolds.
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Introduction

Suppose that X is a complete smooth vector field on R"”, let pg, ¢o € R™ and denote
by p(t), ¢(t) the integral curves of X with initial values pg resp. go. In the theory of
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ordinary differential equations it is a well known consequence of Gronwall’s inequality
that in this situation we have

p(t) = a(t)] < |po — qole“™*  (t €[0,T)) (1)

with Cr = || DX g (k) (K7 some compact convex set containing the integral curves
t+— p(t) and t — ¢(t)) and DX the Jacobian of X (cf., e.g., [1, 10.5]).

The aim of this paper is to derive estimates analogous to (1) for integral curves
of vector fields on Riemannian manifolds. Apart from a purely analytical interest in
this generalization, we note that Gronwall-type estimates play an essential role in the
convergence analysis of numerical methods for solving ordinary differential equations
(cf. [5]). Concerning notation and terminology from Riemannian geometry our basic
references are [2-4].

1. Estimates

The following proposition provides the main technical ingredient for the proofs of our
Gronwall estimates. Here and in what follows, for X € X(M) (the space of smooth
vector fields on M) we denote by VX its covariant differential and by ||[VX (p)|, the
mapping norm of VX(p) : (T, M, ||-lg) = (T, M, [|-llg), Yp = Vy, X

Proposition 1.1. Let [a,b] > 7 — ¢o(7) =: ¢(0,7) be a smooth regular curve in a
Riemannian manifold (M, g), let X € (M) and set ¢(t,7) := FI1.X¢(0,7) where FI*
is the flow of X. Choose T > 0 such that FI* is defined on [0,T] x co([a,b]). Then
denoting by l(t) the length of T+ c(t,T), we have

I(t) < 1(0)eCTt (te[0,7)) (2)
where Cr = sup{ [|[VX (p)|lq : p € ¢([0,T] X [a,b]) }.

Proof. Let 7 — ¢(0,7) be parameterized by arc length, 7 € [0,1(0)]. Since FI* is a
local diffeomorphism, ¢(9,¢,d;¢) > 0 on [0,T] X [a,b]. Furthermore, since the Levi-
Civita connection V is torsion free, we have Vg, ¢, = Vy_c;, where ¢; = Oic, ¢ = 0rc,
see [3, 1.8.14]. Then

s 10

O):/Satl(t)dt:/at /)||cT(t,T)||ngdt
0

// Og(cr(t,7), cr(t,T) d g — // 9((Vo,cr)(t,7),c-(t,7)) dr dt
2ller(t, 7)lg llez (£, 7)llg

0
s 1(0) s 1(0)
v 9 y T t7
// 9((Vo, Tt ))C( 2) drdtg//||(VaTct)(t,T)qu7-dt
C‘r ) '
0 0 g 0 0
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s 1(0) s 1(0)

z//||Vcr(t7T)X||ngdt§CT/ /||cT(t,7')||ngdt
0 O 0 0
:cT/ (1) di.
0

The claim now follows by applying Gronwall’s inequality. O
We may utilize this proposition to prove our first main result:

Theorem 1.2. Let (M, g) be a connected smooth Riemannian manifold, X € X(M)
a complete vector field on M and let po, o € M. Let p(t) = FLX (po), q(t) = FL* (qo)
and suppose that C' := sup,c | VX (p)lly < 0o. Then

d(p(t), Q(t)) < d(p(), QO)eCt (t € [Oa OO))’ (3)

where d(p,q) denotes Riemannian distance.

Proof. For any given € > 0, choose a piecewise smooth regular curve 7 — ¢o(7) =:
¢(0,7) : [0,1] — M connecting py and gg such that d(pg,qo) > 1(0) — e. Using the
notation of Proposition 1.1 it follows that

d(p(t), q(t)) < U(t) < 1(0)e” < (d(po, q0) +)e”
for t € [0,00). Since € > 0 was arbitrary, the result follows. O

Ezample 1.3. (i) In general, when neither M nor X is complete, the conclusion of
Theorem 1.2 is no longer valid:

Consider M = R?\ {(0,y) | ¥y > 0}, endowed with the standard Euclidean
metric. Let X = (0,1), po = (—x0, —%0), and qo = (0, —y0) (0 > 0, yo > 0)
(cf. figure 1). Then p(t) = (—zo, —yo + ), q(t) = (20, —yo +t) and
2$0, t < Yo,
d(p(t),q(t)) =
2\/x3+ (t—yo)?, t>yo.

On the other hand, VX = 0, so (3) is violated for ¢ > yp, i.e., as soon as the
two trajectories are separated by the “gap” {(0,y) |y > 0}.

(ii) Replace X in (i) by the complete vector field (0,6’1/5’/’2*1) and set g = 1,
Yo = 0. Then C := ||[VX| 1~ ®2) = 31/3/(2¢) and

d(p(t),q(t)) = 2v/1 + t2 < d(po, qo)e®! = 2

for all ¢t € [0, 00), in accordance with Theorem 1.2.
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p(t) q(1)

Figure 1

The following result provides a sufficient condition for the validity of a Gronwall
estimate even if neither M nor X satisfies a completeness assumption.

Theorem 1.4. Let (M, g) be a connected smooth Riemannian manifold, X € X(M)
and let po, qo € M. Let p(t) = FI%X (po), q(t) = Flf((qo) and suppose that there exists
some relatively compact submanifold N of M containing po, qo such that d(po,qo) =
dn(po,qo). Fiz T > 0 such that FIX is defined on [0,T] x N and set Cp :=
supl [V X (p)l : p € FIX ([0, ) x N) }. Then

d(p(t),q(t)) < d(po, qo)e“™" (¢ € [0, 7). (4)

Proof. As in the proof of Theorem 1.2, for any given € > 0 we may choose a piece-
wise smooth curve 7 — ¢o(7) : [0,1] — N from py to go such that d(pg,qo) =
dn(po,qo) > 1(0) — e. The corresponding time evolutions (¢, -) of ¢(0,-) = ¢y then lie
in FI* ([0,T] x N), so an application of Proposition 1.1 gives the result. O

Example 1.5. Clearly such a submanifold N need not exist in general. As a simple
example take M = R?\ {(0,0)}, po = (=1,0), g = (1,0). In Example 1.3.(i)
with yo > 0 the condition is obviously satisfied with N an open neighborhood of
the straight line joining pg, ¢o and the supremum of the maximal evolution times of
such N under FI* is T = yq, coinciding with the maximal time-interval of validity
of (4). On the other hand, if there is no N as in Theorem 1.4 then the conclusion in
general breaks down even for arbitrarily close initial points pg, qo: if we set yo = 0 in
Example 1.3.(i) then no matter how small z( (i.e., irrespective of the initial distance
of the trajectories) the estimate is not valid for any 7" > 0.

Finally, we single out some important special cases of Theorem 1.4:

Corollary 1.6. Let M be a connected geodesically complete Riemannian manifold,
X € X(M), and po, qo, p(t), q(t) as above. Let S be a minimizing geodesic segment
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connecting pg, qo and choose some T > 0 such that FI¥ is defined on [0,T] x S. Then
(4) holds with Cp = sup{ |[VX(®)|l, | p € FI*([0,7] x S)}. In particular, if X is
complete then for any T > 0 we have

d(p(t),q(t)) < d(po, qo)eCTt (t€[0,7)).

Proof. Choose for N in Theorem 1.4 any relatively compact open neighborhood of S.
The value of Cp then follows by continuity. O

In particular, for M = R" with the standard Euclidean metric, Corollary 1.6
reproduces (1).
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