Entropy Solution for Anisotropic
Reaction-Diffusion-Advection Systems
with L' Data

Mostafa BENDAHMANE and Mazen SAAD

Mathématiques Appliquées de Bordeaux
Université Bordeaux |
351, cours de la Libération, F-33405 Talence Cedex

mostafa@math.u-bordeaux.fr saad@math.u-bordeaux.fr

Recibido: 12 de Noviembre de 2003
Aceptado: 13 de Mayo de 2004

ABSTRACT

In this paper, we study the question of existence and uniqueness of entropy
solutions for a system of nonlinear partial differential equations with general
anisotropic diffusivity and transport effects, supplemented with no-flux bound-
ary conditions, modeling the spread of an epidemic disease through a heteroge-
neous habitat.
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1. Introduction

Let us first consider p = u+wv a simple population, where u = u(t) and v = v(t) are the
respective densities of susceptible and infected individuals at time t. When no spatial
consideration is involved the dynamics of the propagation of Feline Immunodeficiency
Virus (F.I.V.) within a population of cats is governed by the following system of

ordinary differential equations

u = —o(u,v) +b(u+v) — (m+k(u+v))u, u(0) >0,
v =o0(u,v) —av— (m+ k(u+v))v, v(0) > 0,

Rev. Mat. Complut. 49

2005, 18; Ntm. 1, 4967 ISSN: 1139-1138
http://dx.doi.org/10.5209/rev_REMA.2005.v18.n1.16707



M. Bendahmane/M. Saad Entropy solution for anisotropic. . .

where b is the (linear) natural birth rate, m is natural death rate and k > 0 is a positive
constant yielding a density dependent death rate d(p) = m+kp. For b—m > 0, K, =
b=m s the carrying capacity and p(t) — K, as t — +oo. Let o(u, v) be the incidence
function, i.e. the recruitment of newly infected cats and « the disease induced death
rate in the infected class. The incidence term is a mathematical expression describing
the loss of individuals from the susceptible class and their entry into the latently
infected class. Two commons of the incidence terms are proportionate mixing and
mass action. In the case of mass action we have a term of the form o(u,v) = ojuv
with o1 > 0, while a proportionate mixing term has the form o(u,v) = o2;%; with
o9 > 0. More details concerning the propagation of F.I.V. may be found in [15] and
the references therein.

Actually we shall be concerned with spatial densities and the total population of

our subclass will be given by

Ult) = /Q u(t,z) de and V(t) = /Q o(t, ) da

where  in RY (N > 1) is a bounded domain representing the habitat under consid-
eration. With this in mind the total population density p(¢,x) is given by

p(t,z) = u(t,z) +v(t, z),
with total population

P(t) = /Qp(t,:c) dz.

Here, u(t,z) and v(t,z) represent the spatial densities at time ¢ and location = € 2
of susceptible and infectious individuals. We are led to consider spatially dependent
birth rate b(t, x), death rate m(t,z) and the additional disease induced death rate in
the infected class a(t,z). We denote by A;, K; and r;, for i = 1,2 respectively the
diffusivity terms, the transport field and the density dependent mortality rates terms
(we see later the dependence of these functions on solutions).

A prototype of a nonlinear system that governs the spreading of F.I.V. through a
cat population in a heterogeneous spatial domain with seasonal variations and external
supply is given by the following reaction-diffusion-advection system

Opu(t, z) — div(Aq (¢, 2, Vu(t, z)) + u(t, 2 ) K (t, x)) + r1(t, v, u,0) =
—o(t,z,u,v) + b(t, z)(u(t,x) + v(t, x)) — m(t,x)u(t, z) + f(t,x),
O(t, z) — div(Asq(t,z, Vu(t,z)) + v(t, )Ka(t, ©)) + ra(t, x,u,v) =
o(t,z,u,v) — (m(t,z) + a(t, z))v(t, z) + g(t, x);

(1)

in Qr = (0,7) x Q, together with no-flux boundary conditions on (0,7") x 92
(A (t, 2, Vu(t, z)) + u(t, ) K (t, 2)) - n(z) =0,
(Ag(t,z,Vv(t,z)) +’U(t,I)K2(t7x)) U(x) =0, (2>
K;(t,x) -n(x) >0 fori=1,2,
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and initial distributions in €
u(0,2) = up(x) and v(0,z) = vo(z), (3)

where 7 denote the outward normal to 2 on 0.

Now, we precise the assumptions on the given functions which appears in the
system (1). We confine ourselves to a model where the diffusivity A;, i = 1,2, is a
Carathéodory function in (0,7) x Q x RY whose components are ay; forl=1,...,N
and i = 1,2, satisfying for £ € RV:

There exists p; > 1, a;(t,z,§) = B1.4(t, ) |6 [P 2. (4)

Herein the nonnegative function (3 ; is bounded on Q). We assume there exists a real
positive constant a, such that for i = 1,2 and for any & € RV:

N
Ai(t,z,8) - E>a) [¢, ae. (t,z) € Qr.

1=1
The transport vector K; (i = 1,2) is bounded on Q7 and satisfies

K; € (L>(Qr))N and div(K;) € L>=(Qr) for i = 1,2.
The functions m, b, and « are defined on Qp with values in Ry and satisfy
m, b, € L%(Qr).

The density dependent mortality rates have the following form:

ro(t, z,u,v) = ka(t,x) vju + v[Pr—!

{rl(t,a:,u,w = ka(t, @) ulu + vfPe,

where pg, for 6 = u, v, satisfies

pg > max (

1
= B 1,pl) > 1

and the functions k;, i = 1,2, defined on Q7 with values in R satisfy
k; € LOO(QT) and k}i(t,l‘) > ko >0 a.e.(t,x) € Qp fori=1,23.

Last, 0 : Qpr x R x R x R — R, is measurable on @7, continuous with respect to
u and v, a.e. in Qr and satisfies a growth condition:

there exists two bounded functions L, M : (0,00) x RY — (0, c0),
and ', s, € Ry such that

P N (5)
< m — _—_—
1_s<1§z?§v(p (p N+1),pu,pu> and
o (t, 2, u,0)| < L(t, ) (Ju]*" [v]*) + M(t,z) ae. (t,z) € Qr,
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N
1 1 1
where — = — —, and a nonnegativity condition
p N lz:: P

o(t,z,0,v) =0 if v>0
o(t,x,u,0) >0 if w>0 (6)
o(t,x,u,v) >0 if w>0and v >0.

Before we discuss the concept of solution, we need to go into the functional setting
especially the anisotropic Sobolev space. Set W'7!(Q) = {u € W'(Q) | % €
LP(Q) } the anisotropic Sobolev space, with

o
lullwiri@) = llullwrig) + Hu
81‘[

Lr(Q)

We denote
LL(Q) = {ue L' (Q),u >0 ae. in Q},

and CL([0,T) x Q) the set of all C'-functions with compact support in [0,T) x Q.
For given constant v > 0 we define the cut function 7%, as the real-valued Lipschitz
function

T"/(Z) = min(’y’ max(z, 7’7))

By the Stampacchia Theorem ([10]), if v € W(Q) (¢ > 1), we have VT, (u) =
1{juj<~} Vu, where 17«4} denotes the characteristic function of a measurable set

{lu] <~} € (0,T) x Q. We denote S, (z) = / T, (1) dr, ¢5 = Ty41 — T and we set
0

w,:) = [ 6,0 dr.

We note that T, and ¢ are continuous Lipschitz functions, satisfying 0 < |¢(2)| <1
and |¥,(z)| < || for v > 0 and z € R.

The usual weak formulation of parabolic problems, in the case where the data are
in L', does not ensure the uniqueness of the solution, some counterexamples are given
in [17,20]. Then, for an isotropic parabolic equation with L' data, without nonlinear,
reaction and advection terms, in [16] the author introduced a entropy formulation
which allows to achieve existence and uniqueness. For the corresponding anisotropic
parabolic equations with measure data or elliptic equations with L' data, existence
of weak solutions is proved in [8] and [7] respectively. In [12], an existence result of
entropy solutions to some parabolic equations is established. The data is considered
in L' and no growth assumption is made on the lower-order term in divergence form.
Another concept in terms of renormalized solutions permitting to ensure the unique-
ness of the solution, can be found in [6,18,19]. Existence and uniqueness of renor-
malized solutions for a linear parabolic equation involving a first order term with
free divergence coefficient is discussed in [14]. Also, in [9], existence and uniqueness
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of entropy solutions for linear parabolic equations involving 0" and 1¢ order terms
with L' data are proved.

In this paper, we extend the results of [8,16] to anisotropic reaction-diffusion-
advection systems arising in population dynamics and modeling the propagation of
Feline Immunodeficiency Virus.

2. Main results

Definition 2.1. Let 1 < ¢ < %(]37 N—H) Il =1,...,N. An entropy solu-
tion of (1)—(3) is a couple (u,v) of nonnegative functlons, with 8 = u,v belong-
ing to (L, L« (0,T; What(Q)) N LPe(0,T; LPe(Q)) N C([0,T]; L*(2)), such that
o(-,,u,v) and 74(-, -, u,v), for i = 1,2, belong to L*(Qr), T (u) and T, (v) belong to
N, L7 (0, T; WhPrl(Q)), and satisfying

T
/Q Sy (u — o)(T, ) di — /Q 8, (un(z) — (0, 2)) da + / (Orip. T (u — o)) dt

T
+ /0 /Q(Al(t.%‘, Vu) +uKi(t,x)) - VTW(u — @) dxdt

T T
+/O /er(t,x,u,v)T,y(ufcp)d:cdt+/0 /Qo(t,x,u,v)Tfy(ufga)d:cdt
T T
—/ /b(u+v) Tﬁ,(u—gp)da:dt—i—/ /muTW(u—cp)dxdt
0o Ja o Jo
T
< / /Q ITy(u— ) dzat, (7)

T
/ S, (v — ) (T, ) da: — / S (vo(2) — (0, 2)) dz + / (O, T (v — ) dt
Q Q

0

+/0 /(Ag(t,x,Vv)—i—vKg(t,m)) -VT,(v—1)

—|—/0T/ 2(t, z,u,v) Ty (v — ) de dt — // (t, z,u,v)Ty(v— ) dxdt
//m+ v Ty (v — d:cdt</ /gT (v — o) dedt, (8)

forall v > 0 and ¢, ¢ € ﬂl L LP 0, T; WhPel(Q)) N L2 (Qr) N C([0,T]; L(£2)) such
that 0w, ) € lel Lo (0,T; (Whpet())".
The results proved here are summarized in two theorems, the first one concerns

the existence of entropy solutions and the second one establishes the uniqueness of
these solutions.
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Theorem 2.2. Assume that (4)—(6) hold. Let ug, vo € LL(Q) and f, g € LL(Qr),
then the system (1)—(3) has an entropy solution.

The uniqueness of entropy solution is established in the case where the incidence
terms and the density dependent mortality rates are Lipschitz functions with respect
to u and v.

Theorem 2.3. Assuming that

A6(t,x) > 0, a.e. (t,x) € Qr,0 € L>®(Qr), such that
lo(t, x,ur,v1) — o(t, @, u2,v2)| < B(t, @) (Jur — uz| + [v1 — va) )
|ri(t, 2, uy,v1) — ri(t, @, ue, v2)| < Bt x)(Jup — us| + |v1 — va|) fori=1,2,

then the entropy solution defined by (7)—(8) is unique.

Remark 2.4. Under Dirichlet boundary conditions, Theorem 2.2 and Theorem 2.3 re-
main valid by considering an adequate functional space. Precisely, the space W 1-1(Q)
in Definition 2.1 is replaced by Wy ' (Q) = {u € Wha1(Q), u|yq = 0}

The plan of the paper is as follows. Section 3 is devoted to explain how the solution

of system (1) is obtained and to precise its regularity. In the last two sections, we
show existence and uniqueness of the entropy solution.

3. Approximate Solutions

The method used in [3] for showing the existence of a solution for ug, vo € L1 ()
and f, g € L1 (Qr) consists in :

e introducing a measurable may on @7, ¢ continuous with respect to v and v,
a.e. in Qr,

e regularizing the following data f, g, up and vy with nonnegative smooth se-
quences (fs)sa (gs)s (UO,6)67 and (UO,E)E-

Then, classical results (see e.g. [13], [11]) provide the existence of a sequence u., v. €
ﬂllil LPH0, T; WHPLL(Q)) N LPmaz (Qp) N C([0, T); L2(R)), Prmaz = max(py,py), with
O, Opve € Zl]il LPL(0, T; (W21 (Q))), of solutions of (1)-(3) where ug, vy and
f, g are replaced by up., vo. and f., g. respectively, and o is replaced by &,
SV L0, T; (WhPHL(Q))') denotes the dual space of (-, LP*(0, T; Whrrh(Q)) with
p; = pp—ll'

In lorder to obtain estimates on solutions independent of the parameter e, the
authors in [3] introduced a new parameter A > 0 satisfying

A > max(b(t, z),b(t, z) —m(t, ) +div(Ky (¢, ), div(Kz(t, 2))) a.e. (t,2) € Qr. (10)
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We often omit the dependence of functions in (¢,2) when no confusion is possible
We set u. = eMii. and v, = e, then @, and 0. satisfy

T
/ (O, )dt+/ /A1 (t,x,Va) - Vgodwdt—i—/ /uEKl Vo dx dt
0

/ /7"1)\ Ue, Ve cpdxdt+/ /

(M., eMo.)pdx dt

T
+/ /()\—l—m—b)ﬂgapdmdt—/ /bf)g(pdazdt:/ /e_’\tfggpdmdt, (11)
0o Ja 0o Ja 0o Ja

T T
/ (040, ) dt+/ /Ag t,z, Vi) - Vq/)dxdt—i—/ UKo - Vo da dt
0 Q

/ /Tg,\ Ue, Ve )thda dt — / / (eMiiz, e o) da dt
Q Q

+/O /Q()\—km—ka)ﬁgwdxdt:/OT/

e Mgpdrdt, (12)
Q
for all ¢, ¢ € N,2, LP (0, T; WhPrH(Q)) N L= (Qr)
Herein

(t,2,&) = e MA(t,z, M), for £ € RY,
and

ri,)\(taxvaeaﬁa) = 6_ i(t,l’,@Athg,B)\t@g
It is shown in [3] that the solutions satisfy

).

(i) @e >0, 0. > 0 ae. (t,x) € Qr,

(ii) 3 ¢1 > 0, c2 > 0 not depending on ¢ such that

|te + Dc | Loo (0,7 Ll(Q)) < ¢,

(13)
75,2 (e, Oe) || L1 (@r) + ||0'(6 ue,e UE)||L1(QT) <o fori=1,2.

(iii) Let p < N + NLH, then for every 1 < ¢, <
such that

where z. = U, 0. and p satlsfy =

_ N o
0%
8:@

N, des >0

+ 12l 2.y < 3,
L (Qr)

NZl 1Pl
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Let go = minj<;<ny{q}, then (@.). and (9.). are bounded in L% (0,T; W% (Q)),
this implies that (dyic)e, (040e )e are bounded in L (0, T; (W (Q2))")+ LY (Qr); there-
fore, possibly at the cost of extracting subsequences still denoted (@ ). and (v:). (see
Corollary 4 in [21]) we can assume that

{ﬂs — w  strongly in L% (Qr) and a.e. in Qr, (15)

0. — 0 strongly in L% (Qr) and a.e. in Qp.
Finally, to treat the nonlinear terms and to prove the continuity in time of the solution
, it is shown in [3] that

o(eMi., eMv.) — o(eMi, eMd) a.e. in Qp and strongly in L' (Qr),

At ~ (
ria(Ue, V) — 1A (@, D), a.e. in Qr and strongly in LI(QT)7 fori=1,2, (17
(Vie(t, z), Vo (t,z)) — (Va(t,z), Vo(t,x)) a.e. in (t,z) € (0,T) x €, (

)
)
)
(e, De) — (@, D) strongly in (C(0,T; L*(2)))2. (19)

©

Now, to complete the above estimates and the convergence results, we are con-
cerned with the sequences (T (tc)). and (T (T¢))e.-
Proposition 3.1. Let (4)—~(6) hold. Then the sequences

N
(Ty(te))e and (T (0:))e are uniformly bounded in ﬂ LP(0, T; Whreh(Q)).  (20)
=1

Proof. Let us choose ¢ = T, (.) as test function in (11), we have

/ S, (i) (T,0)dz — | S, ()0, ) do
Q Q

+ Al(t,:c,vag)-VTW(ag)dxle—/ K, - VT, (i) dx dt
Qr T

+ / e Mo (eMic, M) Ty (i) de dt + / (A +m = b)uc T, () d df
T

T

| b (i) dedt + / ro(iie, 8.)T, (i3, da dt
Qr T

_ / e LT (3) dedt, (21)

T

Using the positivity of solutions, the estimates (13), (14), the fact that |T,(a.)| <~
and |S, (t.)| < v|t.|, we deduce from (21)

A (t,x, Vi) - VT, (i) dx dt +/ .K; - VT, (i) dr dt
QT T

+ / (A+m —b)u.Ty(a.)dedt < Cy (22)
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where C' is a positive constant independent of . Define F(z fo yT" (y)dy, then
one gets F'(z) < zT5(z). Using now the following equality,

div(F(.)K,) = div(K, ) F(i.) + K, - VF(i.),
from (2) we have Ky -7 >0 on (0,T) x 01, thus

/ ﬂEKl-VTW(ﬂE)da:dt+/ (A +m — b).T, (i) da dt

T T
> / (A+m —b—div(Ky))F(t) dz dt > 0.
T
Consequently, from (22) we have
A (t,x, Vi) - VT, (i )dz dt < Cv, (23)

QT
which yields

/ Z e B ( ‘ 7 (1) pldmdt<C’ (24)
Q Iy =

T =1

It follows that (T, (i.)). is bounded sequence in ()Y, L” (0,T; W'P-L(Q)). In the
same way, one gets that the above estimate remains valid on solution v. and conse-
quently the proof of estimate (20) is complete. O

4. Existence of entropy solution

Let us derive the entropy formulation for the regularized sequence (). Let ¢ €
ML, LPH(0, T; WhPel(Q)) N L (Qr) N C([0, T); L1 (€)) such that

N P
dep € S LT (0,T5 (WhH(Q))),
=1

At

Consider now ¢ = T, (u. —¢) as test function in (11). Since u. = eMa. and v, = e,

we have

T
/S T,z da:—/S )(0, ac)dx—i—/ (Orp, Ty (ue — ) dt
0
+ A(t,z,Vu.) - VT (ue — @) dxdt—i—/ uKy - VT, (ue — @) da dt
Qr Qr

+ / 0 (ue,ve)Ty (ue — @) da dt + muTy (ue — @) dz dt
T Qr
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- / b(ue + ve) Ty (us — @) do dt + / 71 (e, ve) Ty (ue — @) dx dt
T T

= fsT'y(ue - 50) dx dt, (25)
Qr

Thus, using the fact that (u.). converges to u almost everywhere in Qr, it follows
from Proposition 3.1 that

N
T, (ue) — Ty (u) weakly in (1) L' (0,T; WP (), (26)
=1

as € goes to zero. Let us now study the limit for & goes to 0 of each term of equal-
ity (25).

Since S, is y-Lipschitz continuous and that u. converges to u in C(0,T, L*(Q))
(see (19)), when € goes to 0, one gets

/S Tx)dx—»/ (u—)(T,z)dx

and

/S’ Ox)dx—>/5 u— )(0,z) de.

We now pass to the limit in fOT@t(p, T, (us — ¢))dt. Notice now that, setting k =
Hgo||Loo(QT), one has

Ty (ue — ) = T, (Tv+k(u6> — ) and TW(U —p) = T’Y(T’YJrk(u) — ).
Since for [ =1,..., N

0 0
%(TW(TWM(%) —p)= 1{|Tw+k(u5 —|< 7}8 ( ~y+k( ) — ),

the weak convergence of T4 (uc) from (26) and T4 (u.) converges almost every-
where, moreover 9, in Y| LPi(0,T; (WHPH1(€))). Hence

T
/ (Orp, Ty (T (12) — 0)) dt — / (Orps T, (T, () — ) d,
0

which is equivalent to

T T
/ (Orp. T, (e — o)) dt — / (Orp. T, (u— o)) dt.
0 0
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One observes that
A (t,z,Vue) - VT (ue — @) dadt
Qr

= [ Ai(t,z, VTyk(ue)) - Vi (ua) {7,y (u)—p|<y} du dl
Qr

— 0 Aq(t,z, VT'erk(us)) . chl{ T 0 (u)— | <7 } dx dt.
T

Indeed, from the Proposition 3.1, the convergence (18), and the assumption (4), we
deduce, when e goes to 0, that a;(t,z, VT, (u:)) — ay1(t,z, VT, (u)) weakly in

p
LTL(QT), for I =1,..., N, where a;; are components of A;. Using the dominated

convergence theorem and the convergence of gTil{lka(us)ﬂplé'y} in LP'(Qr), for each
l=1...N, we deduce

; Ayt 2, VTk(ue)) - VOlgn uo)—pl<yy —
T

o At 2, VT ik (u) - VOl (w)—pl<n }-
T

Thus from Fatou’s Lemma, we have
o Al(t, x, VT,H_]C(U)) : VT,H_]C(U)]_{ | Tk (w)—p| <7} dx dt
T

< liin i(I)lf Aq(t,z, VTyir (ug) - VT ik (ug)l{ T x (ue)—o| <7 } dx dt.

Next,

/ uK1-VT, (ue—p)da dt = / Tyvk (us)Kl'V(TW-HC(UE)_‘P)1{|Tw+k(us)ﬂ0\ﬁv}dx dt.

T T

Since (ue)e converges to u almost everywhere in Q7 and convergence result (26), one
gets

/ Ty (ue) Ky - V(T (e) = 0)1{17, yu(ue)-gl<y} d dt
T
— /Q Ty (WK - V(T (w) = )11, ()=l <y } d di
T

= / uKy - VT, (u — ¢) dx dt,

T
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when € goes to zero.

We complete the existence part of Theorem 2.2 by using the dominated conver-
gence theorem to obtain that T, (u. — ¢) converges to . (u — ¢) weak * in L=(Qr)
and from the strong convergence results (15), (16), (17) in L'(Qr), hence, when &
goes to 0,

/ 0 (e, ve) Ty (ue — @) dxdt — o(u,v)Ty(u — ¢)dzdt,
T Qr

/ ((m —b)us — bvs )Ty (ue — @) de dt — ; ((m —=b)u —bv)T,(u — ¢) dx dt,

/ 1 (ue, ve) Ty (ue — @) dodt — r1(u, v)Ty(ue — @) dx dt,
Qr Qr

feTy(ue — ) dezdt — [Ty (u— @) dzdt.
Qr Qr

Now passing to the limit as e goes to zero on the formulation (25) we obtain that
the limit u satisfies (7). In the same way, one gets v entropy solution.

Remark 4.1. Note that, one can prove, when ¢ tends to 0,

/OT /Q Ay (t, 2, VT, (ue)) - VT, (ue) do dt

T
. / Aty VT, (w)) - VT, (u) da dt,
0 Q
T
/ /Ag(t,amVTﬂ,(vE))~VT,Y(vg)dxdt
0 Q

— [ [ Aatta 9T @) T ) o
0 Q

and
T, (2:) — T,(2) strongly in LP'(0, T; W'PrH(Q)) for I = 1,..., N,

where z. = u., v. and z = u,v, (see [1]). Then, the inequalities in (7) and (8)
are equalities, however the inequality in the entropy formulation is sufficient to have
uniqueness.

5. Uniqueness of entropy solution

In this section, we study the uniqueness question of the entropy solutions constructed
in this paper. The method we adopt, to prove Theorem 2.3, is rather close to those
introduced in [4,9,16]. However, new difficulties arise essentially related to the influ-
ence of the transport terms and nonlinear terms. For that, we prove the uniqueness
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of the solutions (@, ) defined by @ = e *u and o = e~*v, where (u,v) is the entropy
solution defined by (7)-(8) and A is defined by (10).
We often write

F(u,v) = e M(f — o(eMu, eMv) — ri(eMu, e*v)) — blu + v) + mu,
and
G(u,v) = e (g + o(eMu, eMv) — ry(eMu, o)) — (m + a)v.

Recall that (@, ) satisfies the following relations

/S (a—p)(T,z dx—/S (uo(x) — (0, z)) dx

—|—/ (O, Ty (4 — ¢ dt—|—/ (A (t,x, Vi) + aK, (t,2)) - VT, (0 — @) dadt
0 Q

+ /0 /Q)\QT,Y(fL —@)drdt < -/0 /QF(a, 0)Ty(a— ) dzdt, (27)

/S (0 —Y)(T,x dm—/S (vo(x) — ¢ (0,2)) dz

—|—/0 (O, Ty (0 — 1)) dt+/ /Agthv)—i—vKg(t x)) - VT, (0 — o) dx dt

+ /0 /Q NoT (5 — ) da dt < /0 /Q G, 8)T, (5 — &) dedt, (28)

for all v > 0 and the test functions ¢ and 1 are defined in the definition 2.1.

The proof of Theorem 2.3 is divided in two steps. The first step consists in estab-
lishing Lemma 5.1. This lemma proves that entropy solutions are limit of solutions
obtained by approximation. And the second step is devoted to prove the uniqueness
of entropy solutions in general. This result is a consequence of this lemma.

Lemma 5.1. Let (g, U2) be the entropy solution solution of system defined by (27)—
(28). Let (u1,01) be the limit of solution obtained by approximation of (t1,e)e, (U1,¢)e
solution of equations (11) and (12). Then (ua,02) = (41,701) almost everywhere
n (0,T) x Q.

Proof. According to [17], we introduce the functions 7}' and R} in C?(R,R), such
that for h > %,

(1) (5) = 0if |s] > h,
(TPY(s) = Lif [s| < h— L,
n
0< (17 (s) <1 for all s,

Ry (0) =0, (R}) (s) =1—(T})" and R} (—s) = R} (s),for all s > 0.
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Note that T} (3;..) and (T}")' (71, are in ()}, LP1(0,T; WhPrH(Q)) N L=(Qr).

Let us substitute ¢ = T}'(01,) in equation (28) where @ and ¢ are replaced
respectively by ue and v,. We have

[ 862~ T @)t do
— [ 8, 0@) = T (o @) da+ [ @i (TR (50,07, 52 = Ty 01
/ /A2 (t,x,V2) - VI, (0 — T} (01,¢)) dx dr
//v2 Ky - VT, (0 — T} (01,¢)) dde—i—/ /)\ng — T} (1)) dx dr
< /0 /Q s, )T, (5 — TP (51..)) dudr.  (29)

Hence, let ¢ € ﬂl]\il LPe(0, T; WEhPeH(Q)) N L (Qr), and take (T7) (D1,)1 as test
function in (12), where @, and . are replaced respectively by i . and 91 .. we get

t t
/(6t17175,(T,§‘)’(171,8)w> dT—i—/ /(Tﬁ)”(@l,a)wAg(t,x,val,g)~va1,5dxdr
0 0 Q
t t
+/ /(T];l),(’f]l’e)AQ(t,(E,V?’}Lg)'V'LDd(EdT-F/ /(T;;L)N(’[]LE)”LZ) '[~)1’5 KQ'V’[)LE d(EdT
0 Q 0 Q
t t
+/ /(T,?)’(ﬁl,s) b Kg-dexdT—i—/ /A@LE(T;)'(@LE)MMT
0 Q 0 Q
t
:/ /G(ﬂlys,@175)(Tﬁ)/(5175)wd$d7ﬂ
0 Q

Now, choosing ¢ = T, (02 — T} (01,)) in the above inequality, the entropy formula-
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tion (29) is equivalent to
/ Sy (02 — T3 (01,2)) (¢, ) da:—/ Sy (vo(x) — T3 (vo o (x))) da
7/0 /Q(T,?)”(T;LE)TW(@ — T (01.0)) (As(t, 2, Vi o) + 01,c Ka) - Vi dodr
- /Ot /Q(T,‘;L)’(ﬁl,s)(Az(t,x,vm,s) + 91, Ka) - VT, (5 — Tj' (1)) da dr
+/0t/Q(A2(t,1:,V€)2) + ¥y Ko) - VI, (09 — T (91,c)) dw dr

+/0 /Q)\(ﬁz —171,5(T}?)/(171,5))TW(52 — TP (#1.)) dw dr
< /0 /Q(G(ﬂa, ?72) - G(al,e,ﬁl,e)(T;;)’(ﬂLg))T,y(f]Q — T;zl(ﬁl,a)) dz dr. (30)

Let us denote the six integrals of the left hand side as L to Lg and the integral of the
right hand side as L;. In order to obtain an estimate on L, we take ¢ = (R})(?1,¢)
in equation (12). We have

R (6, o(t, x)) di — / R (v (x)) da
Q Q
t
+ / / (RZ)I/(6175)<A2(15, Z, Vﬁl,s) + 17175 Kz) . V’El,a d{,C dT
0 Q

t t
+ / Xovo (R (61,2 )da dr = / Gii.c, 1) (RY) (91.0) dudr.  (31)
0 Q Q

Note that from the choice of A in (10) and the fact that Kas(¢,x) - n(x) > 0 on
(0,T) x 02, we have

//)\’015 R (91 ¢ dCEdT+/ /vlsKQ (R}) (01.e) dwdT > 0. (32)

We deduce from the definition of the function R} and estimate (32) that
¢
Ll < [ [ 1) @At V510) - Vorc+ (1) (01,001« Ka Vo | dodr
0 Jo
T ~
= 7/ / |(RZ>”(’DLE)A2(1€7 €, Vﬁl,a) . Vﬁl,a + (RZ)H(QNJLE)’Z}LEKQ . Vf)175| d:l? dT
0 Ja
T ~
< ’)’/ / (R} (01,2)Aa(t,z, V1) - Ve + A0y (RE) (012)
0o Jo

T
+( Z)”(f)l,s)szEKg-Vf/175|dxd7'—|—'y)\/ /\17175(RZ)’(61,5)|dxdT,
0 Q
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and using the equation (31) one gets

T
|Ls| SC’7</ /Q|G(ﬂ1,5751,e)|1{al,szh—;}d$d7+/ﬂ|vo,e1{|v0,5|2h—i}d$),
0

T
+C')// /|1~1175|1{|1~)15|2h_%}d$d7', (33)
0 Q

where C' denotes a positive constant independent of €. Using the Dominated Conver-
gence Theorem and estimate (33), it follows after letting n go to +oco in estimate (30)
that

/QSV(% — Th(01,(t, 7)) dow — /Q S, (v — Th(vo e (x))) d
i (Atzof, 2,V72)  Aalt, 2, VTh(31.))) - VT, (55 — Th(31.)) da dr
+/O /?@2 — 01 (Ty) (01.0))Ka - VT (99 — Th(91.,0)) da dr
+/0 /Q)\(f}z — 01 (TP (01.)) Ty (B9 — T (01.0)) dae dr

: /0 /sz(G(a%ﬁQ) = G(t1,6, 01, )(Th) (01,6)) T (D2 — Th(01,c)) dw dr

t
+C’Y</ /G(al,saﬁ16)|1{|ﬁl‘s|2h}dmd’r"_/|UO,8|1{|11015Zh}dm>
0 JQ Q

T
+Cv/ /Iﬁl,ell{wl,azn}dff-
0 Q

Thanks to the monotonicity of AQ, we have by Fatou’s lemma

/0 i (Aa(t,z, Viz) — As(t, 2, VT3(01))) - VI, (02 — Th (1)) dx dr

e—0

T
S lim mf/ / (Az(t7 xZ, V’[)g) — Al(t, Z, vTh(’l’}17€))) . VT.Y(’DQ - Th(f}l,s)) d(Ed’D
0 Q

and the properties of the sequences v . and 1 . allow to pass to the limit as € — 0.
It remains to consider h — oo in the following relation:

/ Sy(Ug — Th(01(t, x))) do — / Sy(vo — Th(vo(x))) dz
Q Q
+/ /(Ag(t,x,wz) At 2, VTn(i))) - VT, (52 — Th(3n)) da dr
0 Ja
+ /0 /Q (”DQ — 1~)1(Th)/(’l~)1)) K2 . VT,Y(’DQ — Th(ﬁl)) dx dt
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+/0 /Q)\ (172 — ﬁl(Th)/(ﬁl))Toy('DQ — Th(ﬁl)) dl‘dT

< /0 /Q(G(@%f)z) — G(t1,01)(Th) (01)) Ty (02 — T (1)) d dr
+yR(h), (34)
where R(h) stands for

t T
h):/ /|G(u1avl)|1{\u1|2h}dwd7+/‘U0|1{|v0\2h}dx+/ /\”Ul|1{|v1\zh}dw,
0 Q Q 0 Q

which goes to 0 as h — oo.
Now, let us write

Gz, 02) — Gt 01)(Th)' (91) = G(a1, 01)(1 — (Th)' (91)) + (G(d2, 02) — G(t1, 1))
We have (1 — (T)'(91)) — 0 as h — oo, then the term

/ / G(ﬁl, 171)(1 - (Th),(f)l))Tfy(’Dg - Th(f}l)) drdr
0 JQ

can be included in the general expression vR(h) which tends to zero as h — oo, and
using the fact that |7, (.)| <~ and the function G is Lipschitz, we have

/ /(G(’l]g,’[)g)—G(’lll,ﬁl))TW(f)g—Th(f}l)) d{L‘dTSC’)// /(|ﬁ2—ﬁ1|+|@2—’l~}1|)d$d7ﬂ
0 JQ 0 JQ

In the classical way, by Lebesgue’s theorem and Fatou’s lemma, letting h going to oo,
we deduce from (34)

/Sﬂ,(vg —01)(t,x der/ / Ag t,x, Vi) — Ag(t, , V1)) - VT, (0p — 01) da dr

// Ug — 1)Ko - VT, (02 — 1) dde—l—// g — 1)1y (D2 — ¥1) d dT
SCv/ /(|ﬂ2*ﬂl|+\@2761|)d:1:d7.
0 Ja

Then by the choice of A in (10), the coercivity of Ay and letting v going to 0, we have

t
/\172—171|(t,x)dx§0/ /(|a2—a1|+|ﬁz—al\)(t,x)da:d7.
Q 0 Q

for every ¢t € (0,T). In the same way, we obtain for every ¢t € (0,7T)

t
/|ﬁ27ﬁ1|(f,1’)d$§€/ \/(‘7127121‘+|1~)27’(71D(t,(£)d$d7'
Q 0 JQ
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Finally, it suffices to add the last two inequalities and to apply Gronwall’s lemma,
which completes the proof of this lemma. O

The uniqueness of the entropy solutions is then a consequence of the above lemma.
Indeed, Let (@;,v1) and (ug2,02) be two entropy solutions of (27)—(28). Consider
(T3, v3) be the limit of solution obtained by approximation of (@3 )., (U3.)e solution
of equations (11) and (12). According to Lemma 5.1, we have (@1, 01) = (a3, 03) and
(tg,D2) = (U3, D3), which establishes Theorem 2.3.
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