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1. Introduction

One has known that spaces of homogeneous type introduced by Coifman and Weiss
in [2] include the Euclidean space, the n-torus in R

n, the C∞-compact Riemannian
manifolds, the boundaries of Lipschitz domains and, in particular, the Lipschitz man-
ifolds introduced recently by Triebel in [17] and the d-sets in R

n. It has been proved
by Triebel in [15] that the d-sets in R

n include various kinds of fractals; see also
[16]. Recently, some new Besov and Triebel-Lizorkin spaces, their characterizations
and their applications were given in [11, 12] and [18]. In particular, in [18], it was
proved that the Besov spaces on d-sets introduced by Triebel via traces in [15] and,
equivalently, via quarkonial decompositions in [16] are the same as those Besov spaces
introduced in [7] by regarding d-sets as special spaces of homogeneous type.

The main purpose of this paper is to establish the localization principle for Triebel-
Lizorkin spaces on spaces of homogeneous type. Such localization principle for these
spaces on R

n is well-known; see [14, p. 124]. This localization principle was proved
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to be very useful; see [14] and [17]. In fact, in [14, p. 286] and [17], this property
was taken to introduce the Triebel-Lizorkin spaces on C∞-Riemannian manifolds, Lie
groups and Lipschitz manifolds.

Let us now recall some definitions and notation on spaces of homogeneous type.
A quasi-metric ρ on a set X is a function ρ : X × X → [0,∞) satisfying

(i) ρ(x, y) = 0 if and only if x = y;

(ii) ρ(x, y) = ρ(y, x) for all x, y ∈ X;

(iii) There exists a constant A ∈ [1,∞) such that for all x, y and z ∈ X,

ρ(x, y) ≤ A[ρ(x, z) + ρ(z, y)].

Any quasi-metric defines a topology, for which the balls

B(x, r) = {y ∈ X : ρ(y, x) < r}

for all x ∈ X and all r > 0 form a basis.
The spaces of homogeneous type defined below, which was first introduced in [11],

are the variants of the spaces of homogeneous type introduced by Coifman and Weiss
in [2]. In what follows, we set

diam X = sup{ρ(x, y) : x, y ∈ X},

and A ∼ B means that there is a constant C > 0 independent of the main parameters
such that C−1 < A/B < C. Throughout the paper, we will denote by C a positive
constant which is independent of the main parameters, but it may vary from line to
line. Constants with subscripts, such as C1, do not change in different occurrences.
We denote N∪{0} simply by Z+ and for any q ∈ [1,∞], we denote by q′ its conjugate
index, namely, 1/q + 1/q′ = 1.

Definition 1.1. Let d > 0 and θ ∈ (0, 1]. A space of homogeneous type (X, ρ, μ)d,θ is
a set X together with a quasi-metric ρ and a nonnegative Borel regular measure μ on
X with suppμ = X and there exists a constant C > 0 such that for all 0 < r < diam X
and all x, x′, y ∈ X,

μ(B(x, r)) ∼ rd (1)

and
|ρ(x, y) − ρ(x′, y)| ≤ Cρ(x, x′)θ[ρ(x, y) + ρ(x′, y)]1−θ. (2)

Throughout this paper, we have no restriction on diamX. In particular, when
diam X < ∞, spaces of homogeneous type appearing in Definition 1.1 cover bounded
Lipschitz domains and their boundaries, Lipschitz manifolds of compact case in [17],
and compact d-sets which include various kinds of fractals; see [15], [16] and [18]; while
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when diamX = ∞, spaces of homogeneous type in Definition 1.1 specifically include
Euclidean spaces and Lipschitz manifolds of non-compact case in [17]. Moreover, in
Definition 1.1, if we choose d = 1, then Macias and Segovia in [13] have proved that,
in the sense of topological equivalence, the spaces (X, ρ, μ)d,θ are just the spaces of
homogeneous type in the sense of Coifman and Weiss, whose definitions only require
that ρ is a quasi-metric without (2) and μ satisfies the following doubling condition
which is weaker than (1): there is a constant A′ > 0 such that for all x ∈ X and all
r > 0,

μ(B(x, 2r)) ≤ A′μ(B(x, r)).

We now recall the definition of the spaces of test functions on X in [10]; see also [6].

Definition 1.2. Fix γ > 0 and θ ≥ β > 0. A function f defined on X is said to be
a test function of type (x0, r, β, γ) with x0 ∈ X and r > 0, if f satisfies the following
conditions:

(i) |f(x)| ≤ C
rγ

(r + ρ(x, x0))d+γ
;

(ii) |f(x) − f(y)| ≤ C

(
ρ(x, y)

r + ρ(x, x0)

)β
rγ

(r + ρ(x, x0))d+γ

for ρ(x, y) ≤ 1
2A

[r + ρ(x, x0)].

If f is a test function of type (x0, r, β, γ), we write f ∈ G(x0, r, β, γ), and the norm of
f in G(x0, r, β, γ) is defined by

‖f‖G(x0,r,β,γ) = inf{C : (i) and (ii) hold }.
Here and in what follows, θ is the same as in (2).

Now fix x0 ∈ X and let G(β, γ) = G(x0, 1, β, γ). It is easy to see that

G(x1, r, β, γ) = G(β, γ)

with the equivalent norms for all x1 ∈ X and r > 0. Furthermore, it is easy to check
that G(β, γ) is a Banach space with respect to the norm in G(β, γ). Also, let the dual
space (G(β, γ))′ be all linear functionals L from G(β, γ) to C with the property that
there exists a finite constant C ≥ 0 such that for all f ∈ G(β, γ),

|L(f)| ≤ C‖f‖G(β,γ).

We denote by 〈h, f〉 the natural pairing of elements h ∈ (G(β, γ))′ and f ∈ G(β, γ).
It is also easy to see that for all h ∈ (G(β, γ))′, 〈h, f〉 is well defined for all f ∈
G(x0, r, β, γ) with x0 ∈ X and r > 0. Moreover, in what follows, we will denote by
G̊(β, γ), for 0 < β, γ < θ, the completion of G(θ, θ) in G(β, γ).
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To state the definition of the inhomogeneous Triebel-Lizorkin spaces F s
pq(X) stud-

ied in [7], we need the following approximations to the identity which were first
introduced in [6].

Definition 1.3. A sequence {Sk}∞k=0 of linear operators is said to be an approxima-
tion to the identity of order ε ∈ (0, θ] if there exist C1, C2 > 0 such that for all k ∈ Z+

and all x, x′, y and y′ ∈ X, Sk(x, y), the kernel of Sk is a function from X × X into
C satisfying

(i) Sk(x, y) = 0 if ρ(x, y) ≥ C12−k and ‖Sk‖L∞(X×X) ≤ C22dk;

(ii) |Sk(x, y) − Sk(x′, y)| ≤ C22k(d+ε)ρ(x, x′)ε;

(iii) |Sk(x, y) − Sk(x, y′)| ≤ C22k(d+ε)ρ(y, y′)ε;

(iv) |[Sk(x, y) − Sk(x, y′)] − [Sk(x′, y) − Sk(x′, y′)]| ≤ C22k(d+2ε)ρ(x, x′)ερ(y, y′)ε;

(v)
∫

X
Sk(x, y) dμ(y) = 1;

(vi)
∫

X
Sk(x, y) dμ(x) = 1.

Here, that Sk(x, y) is the kernel of Sk means that for suitable functions f ,

Skf(x) =
∫

X

Sk(x, y)f(y) dμ(y).

We point that by a similar Coifman’s construction to that in [3], one can construct
an approximation to the identity with compact supports as in Definition 1.3 for those
spaces of homogeneous type in Definition 1.1.

We also need the following construction of Christ in [1], which provides an analogue
of the grid of Euclidean dyadic cubes on a space of homogeneous type.

Lemma 1.4. Let (X, ρ, μ)d,θ be a space of homogeneous type. Then there exists a
collection {Qk

α ⊂ X : k ∈ Z+, α ∈ Ik} of open subsets, where Ik is some (possibly
finite) index set, and constants δ ∈ (0, 1), a0 > 0 and C3 > 0 such that

(i) μ(X \ ∪αQk
α) = 0 for each fixed k and Qk

β ∩ Qk
α = ∅ if α �= β;

(ii) for any α, β, k, l with l ≥ k, either Ql
β ⊂ Qk

α or Ql
β ∩ Qk

α = ∅;

(iii) for each (k, α) and each l < k there is a unique β such that Qk
α ⊂ Ql

β;

(iv) diamQk
α ≤ C3δ

k;

(v) each Qk
α contains some ball B(zk

α, a0δ
k), where zk

α ∈ X.
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In fact, we can think of Qk
α as being essentially a cube of diameter rough δk with

center zk
α. In what follows, we always suppose δ = 1/2. See [10] for how to remove

this restriction. Also, we will denote by Qk,ν
τ , ν = 1, 2, . . . , N(k, τ), the set of all

cubes Qk+j
τ ′ ⊂ Qk

τ , where j is a fixed large positive integer. Denote by yk,ν
τ a point in

Qk,ν
τ . For any dyadic cube Q and any f ∈ L1

loc (X), we set

mQ(f) =
1

μ(Q)

∫
Q

f(x) dμ(x),

and we also let a+ = max(a, 0) for any a ∈ R.
Now we can state the definition of the Triebel-Lizorkin spaces F s

pq(X) in [12].

Definition 1.5. Let s ∈ (−θ, θ), {Sk}∞k=0 be as in Definition 1.3 with order θ, D0 = S0

and Dk = Sk − Sk−1 for k ∈ N. Suppose β and γ satisfying

max(0,−s + d(1/p − 1)+) < β < θ and 0 < γ < θ. (3)

Let j ∈ N be fixed and large enough and {Q0,ν
τ : τ ∈ I0, ν = 1, . . . , N(0, τ)} be as

above. The inhomogeneous Triebel-Lizorkin space F s
pq(X) for

max (d/(d + θ), d/(d + θ + s)) < p < ∞

and max (d/(d + θ), d/(d + θ + s)) < q ≤ ∞ is the collection of all f ∈
(
G̊(β, γ)

)′

such that

‖f‖F s
pq(X) =

⎧⎨⎩∑
τ∈I0

N(0,τ)∑
ν=1

μ(Q0,ν
τ )

[
mQ0,ν

τ
(|D0(f)|)

]p

⎫⎬⎭
1/p

+

∥∥∥∥∥∥
{ ∞∑

k=1

[
2ks|Dk(f)|]q}1/q

∥∥∥∥∥∥
Lp(X)

< ∞.

It was proved in [12] that Definition 1.5 is independent of the choices of large
positive integers j, approximations to the identity and the pairs (β, γ) as in (3).

To state our main theorem, we need a resolution of unity {ψα}α on X satisfying:

(a) 0 ≤ ψα ≤ 1, suppψα ⊂ B(zα, C4) = {x ∈ X : ρ(x, zα) < C4}, C4 > 0 is a
constant and

B(zα, C4/2) ∩ B(zβ , C4/2) = ∅ if �= β;

(b) Let U = ∪αB(zα, C4/2), then μ(X \ U) = 0 and ψα ∈ Lipθ(U) with a uniform
Lip constant in α;

(c)
∑

α ψα(x) = 1 on U .
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We will show the existence of such a resolution of unity in the next section. Here
is our main theorem.

Theorem 1.6. Let {ψα}α satisfy (a), (b) and (c) as above. Let s ∈ (−θ, θ),
max (d/(d + θ), d/(d + θ + s)) < p < ∞ and max (d/(d + θ), d/(d + θ + s)) < q ≤ ∞,
then {∑

α

‖ψαf‖p
F s

pq(X)

}1/p

is an equivalent quasi-norm in F s
pq(X).

The proof of Theorem 1.6 will be given in the next section. We remark that our
proof is essentially different from the proof of Theorem 2.4.7 in [14] on the localization
principle for the Triebel-Lizorkin spaces on R

n, since there is no theory of Fourier
transforms and differentiations on spaces of homogeneous type. The new ingredient
in our proof is the applications of the inhomogeneous Calderón reproducing formulae
in [9].

Note that R
n with the Lebesgue measure and the standard Euclidean metric | · | is

a space of homogeneous type in the sense of Definition 1.1, that is, the homogeneous
space, (Rn, | · |,m)n,1; see [11]. By this fact and Theorem 2.4.7 in [14], one can not
expect that we have the localization principle for the Besov spaces Bs

pq(X) similar to
Theorem 1.6. See [14] for more details.

2. Proof of Theorem 1.6

Let us first show the existence of resolutions of unity satisfying (a), (b) and (c). To
do so, we need to use Lemma 1.4, (i).

Let U = ∪αQ0
α, then μ(X \ U) = 0 by Lemma 1.4, (i). We now choose a function

ϕ ∈ C∞(R), ϕ ≥ 0, suppϕ ⊂ (0, 2C3) and ϕ(x) = 1 if x ∈ (0, C3). Let ϕα =
ϕ(ρ(x, z0

α)) and for x ∈ U , let

ψα(x) =
ϕα(x)∑

α

ϕα(x)
.

Then it is easy to see that {ψα}α satisfies (a), (b) and (c).
As pointed above, one important tool for us to show Theorem 1.6 is the following

inhomogeneous Calderón reproducing formulae in [9].

Lemma 2.1. Suppose that {Dk}∞k=0 is the same as in Definition 1.5. Then there exist
functions D̃Q0,ν

τ
, τ ∈ I0 and ν = 1, . . . , N(0, τ), and D̃k(x, y), k ∈ N, such that for

any fixed yk,ν
τ ∈ Qk,ν

τ , k ∈ N, τ ∈ Ik and ν ∈ {1, . . . , N(k, τ)} and all f ∈ (G(β1, γ1))′
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with 0 < β1 < θ and 0 < γ1 < θ,

f(x) =
∑
τ∈I0

N(0,τ)∑
ν=1

μ(Q0,ν
τ )mQ0,ν

τ
(D0(f))D̃Q0,ν

τ
(x)

+
∞∑

k=1

∑
τ∈Ik

N(k,τ)∑
ν=1

μ(Qk,ν
τ )Dk(f)(yk,ν

τ )D̃k(x, yk,ν
τ ),

(4)

where the series converge in (G(β′
1, γ

′
1))

′ for β1 < β′
1 < θ and γ1 < γ′

1 < θ; for any
given ε ∈ (0, θ), D̃k(x, y), k ∈ N, satisfies that

(i) |D̃k(x, y)| ≤ C
2−kε

(2−k + ρ(x, y))d+ε
,

(ii) |D̃k(x, y) − D̃k(x′, y)| ≤ C

(
ρ(x, x′)

2−k + ρ(x, y)

)ε 2−kε

(2−k + ρ(x, y))d+ε

for ρ(x, x′) ≤ 1
2A

(2−k + ρ(x, y)),

(iii)
∫

X
D̃k(x, y) dμ(x) =

∫
X

D̃k(x, y) dμ(y) = 0;

diam(Q0,ν
τ ) ∼ 2−j for τ ∈ I0 and ν = 1, . . . , N(0, τ) for some j ∈ N; D̃Q0,ν

τ
(x) for

τ ∈ I0 and ν = 1, . . . , N(0, τ) satisfies that

(iv)
∫

X
D̃Q0,ν

τ
(x) dμ(x) = 1,

(v) for any given ε ∈ (0, θ), there is a constant C > 0 such that

|D̃Q0,ν
τ

(x)| ≤ C
1

(1 + ρ(x, y))d+ε

for all x ∈ X and y ∈ Q0,ν
τ and

(vi)

|D̃Q0,ν
τ

(x) − D̃Q0,ν
τ

(z)| ≤ C

(
ρ(x, z)

1 + ρ(x, y)

)ε 1
(1 + ρ(x, y))d+ε

for all x, z ∈ X and all y ∈ Q0,ν
τ satisfying ρ(x, z) ≤ 1

2A
(1 + ρ(x, y)).

Moreover, j can be any fixed large positive integer and the constant C in (i), (ii), (v)
and (vi) is independent of j.

We also need the following lemma which can be found in [5, pp. 147–148] for R
n

and [10, pp. 93] for spaces of homogeneous type.
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Lemma 2.2. Let 0 < r ≤ 1, k, η ∈ Z with η ≤ k and for any dyadic cube Qk,ν
τ ,

|fQk,ν
τ

(x)| ≤ (1 + 2ηρ(x, yk,ν
τ ))−d−γ ,

where yk,ν
τ is any point in Qk,ν

τ and γ > d(1/r − 1). Then

∑
τ∈Ik

N(k,τ)∑
ν=1

|λQk,ν
τ

||fQk,ν
τ

(x)| ≤ C2(k−η)d/r

⎡⎣M

⎛⎝∑
τ∈Ik

N(k,τ)∑
ν=1

|λQk,ν
τ

|rχQk,ν
τ

⎞⎠ (x)

⎤⎦1/r

,

where C is independent of x, k and η, and M is the Hardy-Littlewood maximal oper-
ator on X.

Now we can prove Theorem 1.6.

Proof of Theorem 1.6. We first prove that

‖f‖F s
pq(X) ≤ C

{∑
α

‖ψαf‖p
F s

pq(X)

}1/p

. (5)

Let {Dk}∞k=0 be as in Definition 1.5. By (c), (b) and Definition 1.5, we have⎧⎨⎩∑
τ∈I0

N(0,τ)∑
ν=1

μ(Q0,ν
τ )

[
mQ0,ν

τ
(|D0(f)|)

]p

⎫⎬⎭
1/p

≤
⎧⎨⎩∑

τ∈I0

N(0,τ)∑
ν=1

μ(Q0,ν
τ )

[∑
α

mQ0,ν
τ

(|D0(f)|)
]p
⎫⎬⎭

1/p

≤
⎧⎨⎩∑

τ∈I0

N(0,τ)∑
ν=1

μ(Q0,ν
τ )

∑
α

[
mQ0,ν

τ
(|D0(f)|)

]p

⎫⎬⎭
1/p

≤ C

{∑
α

‖ψαf‖p
F s

pq(X)

}1/p

,

(6)

where, to get the second-to-last inequality, when p ≤ 1, we have used the following
inequality: (∑

α

|aα|
)p

≤
∑
α

|aα|p (7)

for all aα ∈ C; while when 1 < p < ∞, we have used the following fact: noting that
supp D0(ψαf) ⊂ {x : ρ(x, zα) ≤ A(3C1 + C4)}, for giving τ and ν, we obtain

#{α : Q0,ν
τ ∩ B(zα, A(3C1 + C4) �= ∅} ≤ C. (8)
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Again, noting that for k ∈ N, suppDk(ψαf) ⊂ {x : ρ(x, zα) ≤ A(3C1 + C4)} and∑
α

χB(zα,A(3C1+C4))(x) ≤ C, (9)

by (c), (b) and Definition 1.5, we have∥∥∥∥∥∥
{ ∞∑

k=1

[
2ks|Dk(f)|]q}1/q

∥∥∥∥∥∥
Lp(X)

≤
∥∥∥∥∥∥
{ ∞∑

k=1

[
2ks

∑
α

|Dk(ψαf)|
]q}1/q

∥∥∥∥∥∥
Lp(X)

≤ C

∥∥∥∥∥∥
{∑

α

∞∑
k=1

[
2ks|Dk(ψαf)|]q}1/q

∥∥∥∥∥∥
Lp(X)

(when q > 1, by (9) and the Hölder inequality; when q ≤ 1, by (7))

≤ C

⎛⎜⎝∑
α

∥∥∥∥∥∥
{ ∞∑

k=1

[
2ks|Dk(ψαf)|]q}1/q

∥∥∥∥∥∥
p

Lp(X)

⎞⎟⎠
1/p

(when p/q > 1, by (9) and the Hölder inequality; when p/q ≤ 1, by (7))

=

{∑
α

‖ψαf‖p
F s

pq(X)

}1/p

. (10)

Estimates (6), (10) and Definition 1.5 imply (5).
Let us now establish the converse of (5). By Lemma 2.1, we have

D0(ψαf)(x) =
∫

X

D0(x, y)ψα(y)f(y) dμ(y)

=
∑

τ ′∈I0

N(0,τ ′)∑
ν′=1

μ(Q0,ν′
τ ′ )m

Q0,ν′
τ′

(D0(f))
∫

X

D0(x, y)ψα(y)D̃
Q0,ν′

τ′
(y) dμ(y)

+
∞∑

k′=1

∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

μ(Qk′,ν′
τ ′ )Dk′(f)(yk′,ν′

τ ′ )

×
∫

X

D0(x, y)ψα(y)D̃k′(y, yk′,ν′
τ ′ ) dμ(y) = E1 + E2.
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By (a), the support of D0 and the estimate (v) satisfied by D̃
Q0,ν′

τ′
in Lemma 2.1, we

can estimate E1 by

|E1| ≤ C
∑

τ ′∈I0

N(0,τ ′)∑
ν′=1

μ(Q0,ν′
τ ′ )m

Q0,ν′
τ′

(|D0(f)|)χB(zα,A(C1+C4))(x)

× 1

(1 + ρ(y0,ν
τ , y0,ν′

τ ′ ))d+ε

∫
X

|D0(x, y)| dμ(y)

≤ C
∑

τ ′∈I0

N(0,τ ′)∑
ν′=1

μ(Q0,ν′
τ ′ )m

Q0,ν′
τ′

(|D0(f)|)χB(zα,A(C1+C4))(x)

× 1

(1 + ρ(y0,ν
τ , y0,ν′

τ ′ ))d+ε
,

where we choose ε > 0 such that p > d/(d + ε). From this, it follows that

⎧⎨⎩∑
α

∑
τ∈I0

N(0,τ)∑
ν=1

μ(Q0,ν
τ )

[
mQ0,ν

τ
(|E1|)

]p

⎫⎬⎭
1/p

≤ C

⎧⎨⎩∑
τ∈I0

N(0,τ)∑
ν=1

μ(Q0,ν
τ )

⎡⎣∑
τ ′∈I0

N(0,τ ′)∑
ν′=1

μ(Q0,ν′
τ ′ )m

Q0,ν′
τ′

(|D0(f)|)

× 1

(1 + ρ(y0,ν
τ , y0,ν′

τ ′ ))d+ε

1
μ(Q0,ν

τ )

∫
Q0,ν

τ

∑
α

χB(zα,A(C1+C4))(x) dμ(x)

]p}1/p

(by (8))

≤ C

⎧⎨⎩∑
τ∈I0

N(0,τ)∑
ν=1

μ(Q0,ν
τ )

⎡⎣∑
τ ′∈I0

N(0,τ ′)∑
ν′=1

μ(Q0,ν′
τ ′ )m

Q0,ν′
τ′

(|D0(f)|)
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× 1

(1 + ρ(y0,ν
τ , y0,ν′

τ ′ ))d+ε

]p}1/p

(by (9))

≤ C

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎨⎩∑
τ∈I0

N(0,τ)∑
ν=1

μ(Q0,ν
τ )

⎛⎝∑
τ ′∈I0

N(0,τ ′)∑
ν′=1

μ(Q0,ν′
τ ′ )

[
m

Q0,ν′
τ′

(|D0(f)|)
]p

1

(1 + ρ(y0,ν
τ , y0,ν′

τ ′ ))d+ε

)(∫
X

1
(1 + ρ(y0,ν

τ , y))d+ε
dμ(y)

)p/p′}1/p

,

1 < p < ∞ (by the Hölder inequality)⎧⎨⎩∑
τ ′∈I0

N(0,τ ′)∑
ν′=1

μ(Q0,ν′
τ ′ )

[
m

Q0,ν′
τ′

(|D0(f)|)
]p

×
∫

X

1

(1 + ρ(x, y0,ν′
τ ′ ))(d+ε)p

dμ(x)

}1/p

, p ≤ 1

(by (7) and μ(Q0,ν′
τ ′ ) ∼ C)

≤ C

⎧⎨⎩∑
τ ′∈I0

N(0,τ ′)∑
ν′=1

μ(Q0,ν′
τ ′ )

[
m

Q0,ν′
τ′

(|D0(f)|)
]p

⎫⎬⎭
1/p

≤ C‖f‖F s
pq(X). (11)

By the supports of D0 and ψα and the vanishing moment satisfied by D̃k′ , we can
estimate E2 by

|E2| =

∣∣∣∣∣∣
∞∑

k′=1

∑
τ ′∈Ik′

N(k,τ)∑
ν′=1

μ(Qk′,ν′
τ ′ )Dk′(f)(yk′,ν′

τ ′ )
∫

X

D0(x, y)ψα(y)D̃k′(y, yk′,ν′
τ ′ ) dμ(y)

∣∣∣∣∣∣
≤

∞∑
k′=1

∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

μ(Qk′,ν′
τ ′ )

∣∣∣Dk′(f)(yk′,ν′
τ ′ )

∣∣∣χB(zα,A(C1+C4))(x)

×
∣∣∣∣∫

X

[
D0(x, y)ψα(y) − D0(x, yk′,ν′

τ ′ )ψα(yk′,ν′
τ ′ )

]
D̃k′(y, yk′,ν′

τ ′ ) dμ(y)
∣∣∣∣

≤
∞∑

k′=1

∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

μ(Qk′,ν′
τ ′ )

∣∣∣Dk′(f)(yk′,ν′
τ ′ )

∣∣∣χB(zα,A(C1+C4))(x)

×
[∫

{y∈X: ρ(y,yk′,ν′
τ′ )≤ 1

2A (1+ρ(x,yk′,ν′
τ′ ))}

∣∣∣[D0(x, y)ψα(y) − D0(x, yk′,ν′
τ ′ )ψα(yk′,ν′

τ ′ )
]
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2004, 17; Núm. 1, 229–249



Dachun Yang Localization Principle

× D̃k′(y, yk′,ν′
τ ′ )

∣∣∣ dμ(y) +
∫
{y∈X: ρ(y,yk′,ν′

τ′ )> 1
2A (1+ρ(x,yk′,ν′

τ′ ))}
· · ·

]

=
∞∑

k′=1

∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

μ(Qk′,ν′
τ ′ )

∣∣∣Dk′(f)(yk′,ν′
τ ′ )

∣∣∣χB(zα,A(C1+C4))(x)
[
E1

2 + E2
2

]
.

From the support satisfied by D0, the regularities satisfied by D0 and ψα and the size
condition satisfied by D̃k′ , it follows that

E1
2 =

∫
{y∈X: ρ(y,yk′,ν′

τ′ )≤ 1
2A (1+ρ(x,yk′,ν′

τ′ ))}

∣∣∣([D0(x, y) − D0(x, yk′,ν′
τ ′ )

]
ψα(y)

+D0(x, yk′,ν′
τ ′ )

[
ψα(y) − ψα(yk′,ν′

τ ′ )
])

D̃k′(y, yk′,ν′
τ ′ )

∣∣∣ dμ(y)

≤ Cχ
B(yk′,ν′

τ′ ,C)
(x)

∫
X

ρ(y, yk′,ν′
τ ′ )ε1

∣∣∣D̃k′(y, yk′,ν′
τ ′ )

∣∣∣ dμ(y)

≤ Cχ
B(yk′,ν′

τ′ ,C)
(x)

∫
X

ρ(y, yk′,ν′
τ ′ )ε1

2−k′ε(
2−k′ + ρ(y, yk′,ν′

τ ′ )
)d+ε

dμ(y)

≤ C2−k′ε1χ
B(yk′,ν′

τ′ ,C)
(x) ≤ C2−k′ε1 1(

1 + ρ(x, yk′,ν′
τ ′ )

)d+ε1
,

where ε ∈ (0, θ) and ε1 ∈ (0, ε) which will be determined later. For the same ε and
ε1, we have

E2
2 ≤

∫
{y∈X: ρ(y,yk′,ν′

τ′ )> 1
2A (1+ρ(x,yk′,ν′

τ′ ))}
[|D0(x, y)ψα(y)|

+
∣∣∣D0(x, yk′,ν′

τ ′ )ψα(yk′,ν′
τ ′ )

∣∣∣] ∣∣∣D̃k′(y, yk′,ν′
τ ′ )

∣∣∣ dμ(y)

≤
∫
{y∈X: ρ(y,yk′,ν′

τ′ )> 1
2A (1+ρ(x,yk′,ν′

τ′ ))}
|D0(x, y)| 2−k′ε(

2−k′ + ρ(y, yk′,ν′
τ ′ )

)d+ε
dμ(y)

+ χ
B(yk′,ν′

τ′ ,C)
(x)2−k′ε1

∫
X

2−k′(ε−ε1)(
2−k′ + ρ(y, yk′,ν′

τ ′ )
)d+ε−ε1

dμ(y)

≤ C2−k′ε1 1(
1 + ρ(x, yk′,ν′

τ ′ )
)d+ε1

.
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2004, 17; Núm. 1, 229–249

240



Dachun Yang Localization Principle

Thus,

|E2| ≤ C
∞∑

k′=1

∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

2−k′ε1μ(Qk′,ν′
τ ′ )

∣∣∣Dk′(f)(yk′,ν′
τ ′ )

∣∣∣χB(zα,A(C1+C4))(x)

× 1(
1 + ρ(x, yk′,ν′

τ ′ )
)d+ε1

,

where ε1 can be any positive number in (0, θ).
From this, it follows that⎧⎨⎩∑
α

∑
τ∈I0

N(0,τ)∑
ν=1

μ(Q0,ν
τ )

[
mQ0,ν

τ
(|E2|)

]p

⎫⎬⎭
1/p

≤ C

⎧⎨⎩∑
τ∈I0

N(0,τ)∑
ν=1

μ(Q0,ν
τ )

⎡⎣ ∞∑
k′=1

∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

2−k′ε1μ(Qk′,ν′
τ ′ )

∣∣∣Dk′(f)(yk′,ν′
τ ′ )

∣∣∣
× 1(

1 + ρ(y0,ν
τ , yk′,ν′

τ ′ )
)d+ε1

1
μ(Q0,ν

τ )

∫
Q0,ν

τ

∑
α

χB(zα,A(C1+C4))(x) dμ(x)

⎤⎥⎦
p⎫⎪⎬⎪⎭

1/p

≤ C

⎧⎨⎩∑
τ∈I0

N(0,τ)∑
ν=1

μ(Q0,ν
τ )

⎡⎣ ∞∑
k′=1

∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

2−k′ε1μ(Qk′,ν′
τ ′ )

∣∣∣Dk′(f)(yk′,ν′
τ ′ )

∣∣∣
× 1(

1 + ρ(y0,ν
τ , yk′,ν′

τ ′ )
)d+ε1

⎤⎥⎦
p⎫⎪⎬⎪⎭

1/p

(by (9))

≤ C

⎧⎨⎩∑
τ∈I0

N(0,τ)∑
ν=1

∫
X

χQ0,ν
τ

(x)

⎡⎣ ∞∑
k′=1

∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

2−k′ε1μ(Qk′,ν′
τ ′ )

∣∣∣Dk′(f)(yk′,ν′
τ ′ )

∣∣∣
× 1(

1 + ρ(x, yk′,ν′
τ ′ )

)d+ε1

⎤⎥⎦
p

dμ(x)

⎫⎪⎬⎪⎭
1/p

(by ρ(x, yk′,ν′
τ ′ ) ∼ ρ(y0,ν

τ , yk′,ν′
τ ′ ) for x ∈ Q0,ν

τ )

≤ C

⎧⎨⎩
∫

X

⎡⎣ ∞∑
k′=1

2k′(d/r−ε1)

⎛⎝M

⎡⎣ ∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

μ(Qk′,ν′
τ ′ )r
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×
∣∣∣Dk′(f)(yk′,ν′

τ ′ )
∣∣∣r χ

Qk′,ν′
τ′

]
(x)

)1/r
]p

dμ(x)
}1/p

(by Lemma 2.2)

= C

⎧⎨⎩
∫

X

⎡⎣ ∞∑
k′=1

2k′(d/r−ε1−d−s)

⎛⎝M

⎡⎣ ∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

2ksr

×
∣∣∣Dk′(f)(yk′,ν′

τ ′ )
∣∣∣r χ

Qk′,ν′
τ′

]
(x)

)1/r
]p

dμ(x)
}1/p

≤ C

∥∥∥∥∥∥∥∥
⎧⎪⎨⎪⎩

∞∑
k′=1

⎛⎝M

⎡⎣ ∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

2ksr
∣∣∣Dk′(f)(yk′,ν′

τ ′ )
∣∣∣r χ

Qk′,ν′
τ′

⎤⎦⎞⎠q/r
⎫⎪⎬⎪⎭

1/q
∥∥∥∥∥∥∥∥

Lp(X)

(when q > 1, by the Hölder inequality; when q ≤ 1, by (7))

≤ C‖f‖F s
pq(X). (12)

where we choose ε1 ∈ (0, θ) and r ∈ (0, 1] such that d/(ε1 + d + s) < r < min(p, q),
which is possible by the conditions of Theorem1.6, and in the last step, we have used
the Fefferman-Stein vector-valued maximal inequality in [4].

Estimates (11) and (12) imply that

⎧⎨⎩∑
α

∑
τ∈I0

N(0,τ)∑
ν=1

μ(Q0,ν
τ )

[
mQ0,ν

τ
(|D0(ψαf)|)

]p

⎫⎬⎭
1/p

≤ C‖f‖F s
pq(X). (13)

Now, by (13) and Definition 1.5, to finish the proof of Theorem 1.6, we need to
show

⎧⎪⎨⎪⎩
∑
α

∥∥∥∥∥∥
{ ∞∑

k=1

[
2ks |Dk(ψαf)|]q}1/q

∥∥∥∥∥∥
p

Lp(X)

⎫⎪⎬⎪⎭
1/p

≤ C‖f‖F s
pq(X). (14)
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To do so, by Lemma 2.1, we write

Dk(ψαf)(x) =
∫

X

Dk(x, y)ψα(y)f(y) dμ(y)

=
∫

X

Dk(x, y)ψα(y)f(y) dμ(y)χB(zα,A(3C1+C4))(x)

=

⎧⎨⎩∑
τ ′∈I0

N(0,τ ′)∑
ν′=1

μ(Q0,ν′
τ ′ )m

Q0,ν′
τ′

(D0(f))
∫

X

Dk(x, y)ψα(y)D̃
Q0,ν′

τ′
(y) dμ(y)

+
∞∑

k′=1

∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

μ(Qk′,ν′
τ ′ )Dk′(f)(yk′,ν′

τ ′ )

×
∫

X

Dk(x, y)ψα(y)D̃k′(y, yk′,ν′
τ ′ ) dμ(y)

}
χB(zα,A(3C1+C4))(x)

= (G1 + G2)χB(zα,A(3C1+C4))(x).

To estimate G1, by the vanishing moment condition of Dk, we have

∣∣∣∣∫
X

Dk(x, y)ψα(y)D̃
Q0,ν′

τ′
(y) dμ(y)

∣∣∣∣
=
∣∣∣∣∫

X

Dk(x, y)
[
ψα(y)D̃

Q0,ν′
τ′

(y) − ψα(x)D̃
Q0,ν′

τ′
(x)

]
dμ(y)

∣∣∣∣
≤
∫
{y∈X: ρ(x,y)≤ 1

2A (6AC12−k+ρ(x,y0,ν′
τ′ ))}

∣∣∣Dk(x, y)
(
[ψα(y) − ψα(x)] D̃

Q0,ν′
τ′

(y)

+ψα(x)
[
D̃

Q0,ν′
τ′

(y) − D̃
Q0,ν′

τ′
(x)

])∣∣∣ dμ(y)

≤ C

∫
{y∈X: ρ(x,y)≤ 1

2A (6AC12−k+ρ(x,y0,ν′
τ′ ))}

[
|Dk(x, y)| ρ(x, y)θ

∣∣∣D̃
Q0,ν′

τ′
(y)

∣∣∣
+ρ(x, y)ε 1

(1 + ρ(x, y0,ν′
τ ′ ))d+2ε

]
dμ(y)

≤ C2−kε 1

(1 + ρ(x, y0,ν′
τ ′ ))d+ε

,

where ε can be any positive number in (0, θ) and will be determined later. From this,
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it follows that⎛⎜⎝∑
α

∥∥∥∥∥∥
{ ∞∑

k=1

[
2ks |G1|χB(zα,A(3C1+C4))

]q}1/q
∥∥∥∥∥∥

p

Lp(X)

⎞⎟⎠
1/p

≤

⎛⎜⎝
∥∥∥∥∥∥
∑
α

χB(zα,A(3C1+C4))

{ ∞∑
k=1

[
2ks|G1|

]q}1/q
∥∥∥∥∥∥

p

Lp(X)

⎞⎟⎠
1/p

(by (a))

≤ C

⎧⎪⎨⎪⎩
∥∥∥∥∥∥
[ ∞∑

k=1

2ksq|G1|q
]1/q

∥∥∥∥∥∥
p

Lp(X)

⎫⎪⎬⎪⎭
1/p

(by (9))

≤ C

⎧⎨⎩
∫

X

[ ∞∑
k=1

2k(s−θ)q

]p/q
⎡⎣∑

τ ′∈I0

N(0,τ ′)∑
ν′=1

μ(Q0,ν′
τ ′ )m

Q0,ν′
τ′

(|D0(f)|)

× 1

(1 + ρ(x, y0,ν′
τ ′ ))d+ε

]p

dμ(x)

}1/p

≤ C

⎧⎨⎩
∫

X

⎡⎣∑
τ ′∈I0

N(0,τ ′)∑
ν′=1

μ(Q0,ν′
τ ′ )m

Q0,ν′
τ′

(|D0(f)|) 1

(1 + ρ(x, y0,ν′
τ ′ ))d+ε

⎤⎦p

dμ(x)

⎫⎬⎭
1/p

≤ C

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎨⎩∑
τ ′∈I0

N(0,τ ′)∑
ν′=1

μ(Q0,ν′
τ ′ )

[
m

Q0,ν′
τ′

(|D0(f)|)
]p

×
∫

X

1

(1 + ρ(x, y0,ν′
τ ′ ))(d+ε)p

dμ(x)

}1/p

, p ≤ 1

(by (7) and μ(Q0,ν′
τ ′ ) ∼ C)

⎧⎨⎩
∫

X

⎛⎝∑
τ ′∈I0

N(0,τ ′)∑
ν′=1

μ(Q0,ν′
τ ′ )

[
m

Q0,ν′
τ′

(|D0(f)|)
]p 1

(1 + ρ(x, y0,ν′
τ ′ ))d+ε

⎞⎠
×
[∫

X

1
(1 + ρ(x, y))d+ε

dμ(y)
]p/p′

dμ(x)

}1/p

, 1 < p < ∞

(by the Hölder inequality)

≤ C

⎧⎨⎩∑
τ ′∈I0

N(0,τ ′)∑
ν′=1

μ(Q0,ν′
τ ′ )

[
m

Q0,ν′
τ′

(|D0(f)|)
]p

⎫⎬⎭
1/p

≤ C‖f‖F s
pq(X), (15)
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which is a desired estimate for G1, where we choose ε ∈ (0, θ) such that p > d/(d+ ε).
To estimate the terms relative to G2, we first establish the following estimate∣∣∣∣∫

X

Dk(x, y)ψα(y)D̃k′(y, yk′,ν′
τ ′ ) dμ(y)

∣∣∣∣
≤ C2−|k−k′|ε 2−(k∧k′)ε

(2−(k∧k′) + ρ(x, yk′,ν′
τ ′ ))d+ε

, (16)

where a ∧ b = min(a, b) for any a, b ∈ R and ε can be any positive number in (0, θ).
Let us first consider the case k ≥ k′ of (16). In this case, by the vanishing moment
of Dk, we can write∣∣∣∣∫

X

Dk(x, y)ψα(y)D̃k′(y, yk′,ν′
τ ′ ) dμ(y)

∣∣∣∣
=
∣∣∣∣∫

X

Dk(x, y)
[
ψα(y)D̃k′(y, yk′,ν′

τ ′ ) − ψα(x)D̃k′(x, yk′,ν′
τ ′ )

]
dμ(y)

∣∣∣∣
=
∣∣∣∣∫

X

Dk(x, y)
(
[ψα(y) − ψα(x)] D̃k′(y, yk′,ν′

τ ′ )

+ψα(x)
[
D̃k′(y, yk′,ν′

τ ′ ) − D̃k′(x, yk′,ν′
τ ′ )

])
dμ(y)

∣∣∣
≤ C2−kθ

∫
X

|Dk(x, y)|
∣∣∣D̃k′(y, yk′,ν′

τ ′ )
∣∣∣ dμ(y)

+ C

∫
X

|Dk(x, y)| 2−kερ(x, y)ε

(2−k′ + ρ(x, yk′,ν′
τ ′ ))d+2ε

dμ(y)

≤ C2−(k−k′)ε 2−k′ε

(2−k′ + ρ(x, yk′,ν′
τ ′ ))d+ε

,

which is a desired estimate. We now consider the case k < k′ of (16). In this case,
by the vanishing moment of D̃k′ , we have∣∣∣∣∫

X

Dk(x, y)ψα(y)D̃k′(y, yk′,ν′
τ ′ ) dμ(y)

∣∣∣∣
=
∣∣∣∣∫

X

[
Dk(x, y)ψα(y) − Dk(x, yk′,ν′

τ ′ )ψα(yk′,ν′
τ ′ )

]
D̃k′(y, yk′,ν′

τ ′ ) dμ(y)
∣∣∣∣

≤
∫
{y∈X: ρ(y,yk′,ν′

τ′ )≤ 1
2A (2−k+ρ(x,yk′,ν′

τ′ ))}

∣∣∣[Dk(x, y)ψα(y) − Dk(x, yk′,ν′
τ ′ )ψα(yk′,ν′

τ ′ )
]

× D̃k′(y, yk′,ν′
τ ′ )

∣∣∣ dμ(y) +
∫
{y∈X: ρ(y,yk′,ν′

τ′ )> 1
2A (2−k+ρ(x,yk′,ν′

τ′ ))}
· · ·

= H1 + H2.
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On H1, from the support of Dk and the regularities of Dk and ψα, it follows that

H1 ≤ C

{
2k(d+ε1)χ

B(yk′,ν′
τ′ ,C2−k)

(x) +
2−kθ

(2−k + ρ(x, yk′,ν′
τ ′ ))d+θ

}

×
∫

X

ρ(y, yk′,ν′
τ ′ )ε1

∣∣∣D̃k′(y, yk′,ν′
τ ′ )

∣∣∣ dμ(y)

≤ C

{
2k(d+ε1)χ

B(yk′,ν′
τ′ ,C2−k)

(x) +
2−kθ

(2−k + ρ(x, yk′,ν′
τ ′ ))d+θ

}

×
∫

X

ρ(y, yk′,ν′
τ ′ )ε1

2−k′ε

(2−k′ + ρ(y, yk′,ν′
τ ′ ))d+ε

dμ(y)

≤ C2−(k′−k)ε1
2−kε1

(2−k + ρ(x, yk′,ν′
τ ′ ))d+ε1

,

where ε and ε1 can be any positive number, respectively, in (0, θ) and in (0, ε). This
is a desired estimate for H1. For H2, by the size conditions of Dk and D̃k′ , we obtain

H2 ≤ C
2−k′ε

(2−k + ρ(x, yk′,ν′
τ ′ ))d+ε

∫
X

∣∣∣Dk(x, y)ψα(y) − Dk(x, yk′,ν′
τ ′ )ψα(yk′,ν′

τ ′ )
∣∣∣ dμ(y)

≤ C2−(k′−k)ε 2−kε

(2−k + ρ(x, yk′,ν′
τ ′ ))d+ε

,

where ε can be any positive number in (0, θ). This is also a desired estimate for H2.
Thus, (16) holds.

From (16), it follows that⎛⎜⎝∑
α

∥∥∥∥∥∥
{ ∞∑

k=1

[
2ks |G2|χB(zα,A(3C1+C4))

]q}1/q
∥∥∥∥∥∥

p

Lp(X)

⎞⎟⎠
1/p

≤ C

⎛⎝∫
X

∑
α

χB(zα,A(3C1+C4))(x)

⎧⎨⎩
∞∑

k=1

2ksq

⎡⎣ ∞∑
k′=1

∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

μ(Qk′,ν′
τ ′ )

×
∣∣∣Dk′(f)(yk′,ν′

τ ′ )
∣∣∣ 2−|k−k′|ε1 2−(k∧k′)ε1

(2−(k∧k′) + ρ(x, yk′,ν′
τ ′ ))d+ε1

]q}p/q

dμ(x)

⎞⎠1/p

(by (a))
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≤ C

(∫
X

{ ∞∑
k=1

2ksq

[ ∞∑
k′=1

2(k∧k′)d−|k−k′|ε1−k′(s+d)+[k′−(k∧k′)]d/r

×
⎛⎝M

⎡⎣ ∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

2k′sr
∣∣∣Dk′(f)(yk′,ν′

τ ′ )
∣∣∣r χ

Qk′,ν′
τ′

⎤⎦ (x)

⎞⎠1/r
⎤⎥⎦

q⎫⎪⎬⎪⎭
p/q

dμ(x)

⎞⎟⎟⎠
1/p

(by Lemma 2.2)

≤ C

⎛⎝∫
X

⎧⎨⎩
∞∑

k=1

⎡⎣ k∑
k′=1

2(k−k′)(s−ε1)

⎛⎝M

⎡⎣ ∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

2k′sr

×
∣∣∣Dk′(f)(yk′,ν′

τ ′ )
∣∣∣r χ

Qk′,ν′
τ′

]
(x)

)1/r
]q}p/q

dμ(x)

)1/p

+ C

⎛⎝∫
X

⎧⎨⎩
∞∑

k=1

⎡⎣ ∞∑
k′=k+1

2(k−k′)[s+ε1+d(1−1/r)]

⎛⎝M

⎡⎣ ∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

2k′sr

×
∣∣∣Dk′(f)(yk′,ν′

τ ′ )
∣∣∣r χ

Qk′,ν′
τ′

]
(x)

)1/r
]q}p/q

dμ(x)

)1/p

≤ C

⎧⎨⎩
∫

X

⎡⎣ ∞∑
k′=1

⎛⎝M

⎡⎣ ∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

2k′sr

×
∣∣∣Dk′(f)(yk′,ν′

τ ′ )
∣∣∣r χ

Qk′,ν′
τ′

]
(x)

)q/r
]p/q

dμ(x)

)1/p

(by (7), when q ≤ 1; by the Hölder inequality, when q > 1)

≤ C

∥∥∥∥∥∥∥
⎧⎨⎩

∞∑
k′=1

⎛⎝ ∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

2k′sq
∣∣∣Dk′(f)(yk′,ν′

τ ′ )
∣∣∣q χ

Qk′,ν′
τ′

⎞⎠⎫⎬⎭
1/q

∥∥∥∥∥∥∥
Lp(X)

(by the Fefferman-Stein vector-valued inequality in [4])
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≤ C

∥∥∥∥∥∥
{ ∞∑

k′=1

2k′sq |Dk′(f)|q
}1/q

∥∥∥∥∥∥
Lp(X)

= C‖f‖F s
pq(X), (17)

where, in the second-to-last inequality, we have used the arbitrariness of yk′,ν′
τ ′ , and

we choose ε1 > 0 and r ∈ (0, 1] such that ε1 > s and d/(d + s + ε1) < r < min(p, q).
Estimates (15) and (17) imply (14). By combining Definition 1.5, (13) with (14),

we have finished the proof of Theorem 1.6.

Acknowledgements. Part of this paper was written while the author visited the
Friedrich-Schiller University at Jena as a Humboldt research fellow. He gratefully
acknowledges the support of the Alexander von Humboldt Foundation in Germany.
Special thanks are due to Professor Hans Triebel for him to propose this problem to
the author and to share his many ideas with the author. The author is also partially
supported by NNSF (No. 10271015) and RFDP (No. 20020027004) of China.

References

[1] M. Christ, A T (b) theorem with remarks on analytic capacity and the Cauchy integral , Colloq.
Math. 60/61 (1990), 601–628.

[2] Ronald R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces
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