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ABSTRACT

We study the Poincaré inequality in Sobolev spaces with variable exponent.
Under a rather mild and sharp condition on the exponent p we show that the
inequality holds. This condition is satisfied e. g. if the exponent p is continuous
in the closure of a convex domain. We also give an essentially sharp condition
for the exponent p as to when there exists an imbedding from the Sobolev space
to the space of bounded functions.
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1. Introduction

There has recently been a surge of interest in Sobolev spaces with variable exponent,
cf. [4–7, 9–11, 17, 22]. These spaces, introduced in [17], are the natural generalization
of Sobolev spaces to the non-homogeneous situation; they have been used e. g. in mod-
eling electrorheological fluids, see the book of M. Růžička, [22]. Lebesgue and Sobolev
spaces with variable exponent share many properties with their classical equivalents,
but there is also some crucial differences. For instance the Hardy-Littlewood maximal
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operator is bounded on Lp(·) if the exponent is 0-Hölder continuous (i. e. satisfies (10))
and 1 < ess inf p � ess sup p < ∞, [5]. If the exponent is not 0-Hölder continuous,
then the maximal operator need not be bounded on Lp(·), [21].

The Poincaré inequality, although of great importance in classical non-linear po-
tential theory (especially in metric spaces) has not been previously studied in the case
of variable exponent Sobolev spaces. Our first result, Theorem 2.2, is the following:
If D ⊂ R

n is smooth domain, say a John domain, and the essential supremum of p
is less than the Sobolev conjugate of the essential infimum of p then the Poincaré
inequality

‖u − uB‖Lp(·)(D) � C‖∇u‖Lp(·)(D)

holds for every u ∈ W 1,p(·)(D), where uB = –
∫

u(x)dx. Here the constant C depends
on n, p, diam(D) and the John constant of D. We give an example which shows that
the condition for p is sharp even in a ball. It follows from this that if p is continuous
in the closure of a convex domain then the Poincaré inequality holds (Corollary 2.7).

In classical theory the constant of the Poincaré inequality is C diam(D). It is
possible to achieve this also for variable exponent Sobolev spaces, as we prove in
Corollary 2.10. The price we have to pay is that the exponent p has to be 0-Hölder
continuous.

Sobolev imbeddings in variable exponent Sobolev spaces have been studied by
many authors in the case when p is less than the dimension, see [6, 9–11]. We give
two results in the case when p is greater than the dimension. We prove a result for
continuity of the Sobolev functions, namely that every Sobolev function is continuous
if the exponent is locally bounded away from the dimension. We show that if a
domain satisfies a uniform interior cone condition and p(x) � n + f(d(x, ∂G)) for
every x and a certain increasing function f then there exists an imbedding from the
variable exponent Sobolev space to L∞. Our condition is essentially sharp.

Notation

We denote by R
n the Euclidean space of dimension n � 2. For x ∈ R

n and r > 0 we
denote an open ball with center x and radius r by B(x, r).

Let A ⊂ R
n and p : A → [1,∞) be a measurable function (called a variable

exponent on A). We define p+
A = ess supx∈A p(x) and p−A = ess infx∈A p(x). If A = R

n

we write p+ = p+
Rn and p− = p−

Rn .
Let Ω ⊂ R

n be an open set. We define the generalized Lebesgue space Lp(·)(Ω) to
consist of all measurable functions u : Ω → R such that

�p(·)(λ u) =
∫

Ω

|λ u(x)|p(x) dx < ∞

for some λ > 0. The function �p(·) : Lp(·)(Ω) → [0,∞) is called the modular of the
space Lp(·)(Ω). One can define a norm, the so-called Luxemburg norm, on this space
by the formula ‖u‖p(·) = inf{λ > 0 : �p(·)(u/λ) � 1}. Notice that if p ≡ p0 then
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Lp(·)(Ω) is the classical Lebesgue space, so there is no danger of confusion with the
new notation.

The generalized Sobolev space W 1,p(·)(Ω) is the space of measurable functions
u : Ω → R such that u and the absolute value of the distributional gradient ∇u =
(∂1u, . . . , ∂nu) are in Lp(·)(Ω). The function �1,p(·) : W 1,p(·)(Ω) → [0,∞) is defined
as �1,p(·)(u) = �p(·)(u) + �p(·)(|∇u|). The norm ‖u‖1,p(·) = ‖u‖p(·) + ‖∇u‖p(·) makes
W 1,p(·)(Rn) a Banach space.

See [17] for basic properties of variable exponent Lebesgue and Sobolev spaces.

2. The Poincaré inequality

In this section we give a relatively mild condition on the exponent for the Poincaré
inequality to hold. We also show that this condition is, in a certain sense, the best
possible. For Sobolev functions with zero boundary values the Poincaré inequality
was given in [10, Lemma 3.1] and considerably generalized in [14].

Recall the following well known Sobolev-Poincaré inequality. By q∗ we denote the
Sobolev conjugate of q < n, q∗ = nq/(n − q).

Lemma 2.1. Let D ⊂ R
n be a bounded John domain. Let 1 � p < n and p � q � p∗

be fixed exponents. Then

‖u − uD‖q � C(n, p, λ)|D|1/n+1/q−1/p‖∇u‖p

for all functions u ∈ W 1,p(D), where λ is the John constant.
If p � n and q < ∞ then

‖u − uD‖q � C(n, q, λ)|D|1/n+1/q−1/p‖∇u‖p

for all functions u ∈ W 1,p(D).

Proof. The case p < n and q = p∗ is by B. Bojarski [3, (6.6)]. The case q < p∗ follows
from this by standard arguments: we choose s ∈ [1, n) such that s∗ = q (or s = 1 if
q < 1∗). By Hölder’s inequality and Bojarski’s result we obtain

(
–
∫
D

|u − uD|qdx

) 1
q

� |D|− 1
s∗

(∫
D

|u − uD|s∗
dx

) 1
s∗

� C|D|− 1
s∗

(∫
D

|∇u|sdx

) 1
s

= C|D| 1s− 1
s∗

(
–
∫
D

|∇u|sdx

) 1
s

� C|D|
(
–
∫
D

|∇u|pdx

) 1
p

,

which is clearly equivalent to the inequalities in the theorem.
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Theorem 2.2. Let D ⊂ R
n be a bounded John domain, with constant λ. If p+

D �
(p−D)∗ or p−D � n and p+

D < ∞ then there exists a constant C = C(n, p−D, p+
D, λ) such

that

‖u − uD‖p(·) � C(1 + |D|)2|D|
1
n+

1
p+

D

− 1
p−

D ‖∇u‖p(·) (1)

for every u ∈ W 1,p(·)(D).

Proof. Assume first that p+
D � (p−D)∗. Since p(x) � p+

D � (p−D)∗ we obtain by [17,
Theorem 2.8] and Lemma 2.1 that

‖u − uD‖p(·) � (1 + |D|) ‖u − uD‖p+
D

� C(n, p−D, λ) (1 + |D|) |D|
1
n+

1
p+

D

− 1
p−

D ‖∇u‖p−
D

� C(n, p−D, λ) (1 + |D|)2 |D|
1
n+

1
p+

D

− 1
p−

D ‖∇u‖p(·).

The case p−D � n is similar, the only difference is that the constant in the second
inequality in the above chain of inequalities is C(n, p+

D, λ).

Remark 2.3. John domains are almost the right class of irregular domains for the
classical Sobolev-Poincaré inequality, see [3], [1] and [2, Theorem 4.1].

Previous results on Sobolev imbeddings in the variable exponent setting have
been derived in domains whose boundary is locally a graph of a Lipschitz continuous
function, see [9–11]. It is therefore of interest to note that every domain, whose
boundary is locally the graph of a Lipschitz continuous function, is a John domain,
see [19]. In particular every ball is a John domain.

If D is a ball in Theorem 2.2, then the constant in inequality (1) is the classical
Sobolev-Poincaré inequality in a ball, see for example [18, Corollary 1.64, p. 38].

The next example shows that if p−D < n and p+
D > (p−D)∗ then there need not exist

a constant C > 0 such that inequality (1) holds for every u ∈ W 1,p(·)(D).
Recall that the variational capacity for fixed p, capp(E,F ; D), is defined for sets

E,F and open D by

capp(E,F ; D) = inf
u∈L(E,F ;D)

∫
D

|∇u|pdx,

where L(E,F ; D) is the set of continuous functions u that satisfy u|E∩D = 1, u|F∩D =
0 and |∇u| ∈ Lp(·)(D). We use the short-hand notation cap(E,F ) for cap(E,F ; Rn),
similarly for L(E,F ). For more information on capacities see [15, Chapter 2] or [20].
The following lemma will be used several times to estimate the gradient of variable
exponent functions.
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Lemma 2.4 ([15, Example 2.12, p. 35]). For fixed p 	= 1, n, arbitrary x ∈ R
n and

R > r > 0 we have

capp(R
n \ B(x,R), B(x, r)) = ωn−1

∣∣∣∣p − n

p − 1

∣∣∣∣
p−1 ∣∣R(p−n)/(p−1) − r(p−n)/(p−1)

∣∣1−p
.

Example 2.5. Our aim is construct a sequence of functions in B = B(0, 1) ⊂ R
2

for which the constant in the Poincaré inequality (1) goes to infinity. Let Bi =
B(2−ie1,

1
42−i) ⊂ R

2 and B′
i = B(2−ie1,

1
82−i2) ⊂ R

2 for every i = 1, 2, . . . and let
1 < p1 < 2. Choose a function ui ∈ C∞

0 (Bi) with ui|B′
i
= 1 be such that

(
2 capp1

(B′
i, R

2 \ Bi)
) 1

p1 � ‖∇ui‖Lp1 (Bi). (2)

Let p2 > 2 and define p(x) = p1χBi\B′
i
(x) + p2χB′

i
(x) for x ∈ B with positive first

coordinate. Since ∇ui = 0 in B′
i we obtain

‖∇ui‖Lp(·)(Bi) = ‖∇ui‖Lp1 (Bi). (3)

Let B̃i = B(−2−ie1,
1
42−i). We extend ui to B as an odd function of the first

coordinate in B̃i and by zero elsewhere. We also extend p to B as an even function of
the first coordinate. We denote the extensions by ũi and p̃. By (2) and (3) we obtain

21+ 1
p1

(
capp1

(B′
i, R

2 \ Bi)
) 1

p1 � ‖∇ũi‖Lp̃(·)(B).

By Lemma 2.4 this yields

‖∇ũi‖Lp̃(·)(B) � C(p1)
∣∣∣ 1
42−i

p1−2
p1−1 − 1

82−i2
p1−2
p1−1

∣∣∣ 1−p1
p1

. (4)

For large i the right hand side is approximately equal to C(p1)2
−i2

2−p1
p1 .

Since (ũi)B = 0, we obtain

‖ũ − (ũi)B‖Lp̃(·)(B) = ‖ũ‖Lp̃(·)(B) � |B′
i|

1
p2 ≈ 2−i2 2

p2 . (5)

By inequalities (4) and (5) we find that

‖ũ − (ũi)B‖Lp̃(·)(B)

‖∇ũi‖Lp̃(·)(B)

� C(p1)2
i2( 2

p1
−1− 2

p2
) → ∞

as i → ∞ if 2
p1

− 1 − 2
p2

> 0, that is, if p2 > 2p1
2−p1

= p∗1.

We next show that the condition p+
D � (p−D)∗ in Theorem 2.2 can be replaced by

a set of local conditions.
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Theorem 2.6. Let D ⊂ R
n be a bounded John domain. Assume that there exist

John domains Gi, i = 1, . . ., j, so that Gi ⊂ D for every i, D = ∪j
i=1Gi and either

p+
Gi

� (p−Gi
)∗ or p−Gi

� n for every i. Then there exists a constant C > 0 such that

‖u − uD‖p(·) � C‖∇u‖p(·) (6)

for every u ∈ W 1,p(·)(D). The constant C depends on n, diam(D), |Gi|, p and the
John constants of D and Gi, i = 1, . . ., j.

Proof. Using the triangle inequality of the norm we obtain

‖u − uD‖Lp(·)(D) �
j∑

i=1

‖u − uD‖Lp(·)(Gi)

�
j∑

i=1

‖u − uGi
‖Lp(·)(Gi) +

j∑
i=1

‖uD − uGi
‖Lp(·)(Gi).

(7)

We estimate the first part of the sum using Theorem 2.2. This yields

‖u − uGi
‖Lp(·)(Gi) � C(n, pGi

, |Gi|, λi)‖∇u‖Lp(·)(Gi)

� C(n, pGi
, |Gi|, λi)‖∇u‖Lp(·)(D)

(8)

for every i = 1, . . . , j. Here λi is the John constant of Gi. We next estimate the
second part of the sum in (7) using the classical Poincaré inequality for the third
inequality. We obtain

‖uD − uGi
‖Lp(·)(Gi) � ‖1‖Lp(·)(Gi) –

∫
Gi

|u(x) − uD|dx

� ‖1‖Lp(·)(Gi)|Gi|−1

∫
D

|u(x) − uD|dx

� C(n, diam(D), λ)|Gi|−1‖1‖Lp(·)(Gi)‖∇u‖L1(D)

� C(n, diam(D), λ)(1 + |D|)|Gi|−1‖1‖Lp(·)(Gi)‖∇u‖Lp(·)(D)

(9)

for every i = 1, . . . , j. Here λ is the John constant of D. Now inequality (6) follows
by inequalities (7), (8) and (9).

Corollary 2.7. Let D ⊂ R
n be a bounded convex domain and let p : D → [1,∞) be

a continuous exponent. Then there exists a constant C > 0 such that

‖u − uD‖p(·) � C‖∇u‖p(·)

for every u ∈ W 1,p(·)(Rn).
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Proof. Since p is continuous we find for every x ∈ D a constant r(x) > 0 such that
either

p+
B(x,r(x))∩D � (p−B(x,r(x))∩D)∗ or p−B(x,r(x))∩D � n.

Since D is compact it is possible to find finite covering of D with balls B(x, r(x)).
It is easy to see that each B(x, r(x)) ∩ D is a John domain and hence the corollary
follows by Theorem 2.6.

Sometimes it is useful to have better control over the constant in the Poincaré
inequality as the domain D changes than we have in (1). In the fixed exponent case the
constant of the Poincaré inequality is C diam(D). We show that this kind of constant
is also possible for variable exponent Sobolev spaces. The price we have to pay for
this is that the exponent p has to satisfy a much stronger condition in Theorem 2.8
than in Theorem 2.2; in Theorem 2.2 the exponent p could be discontinuous even in
every point, but in Theorem 2.8 the exponent is 0-Hölder continuous.

Theorem 2.8. Let D ⊂ R
n be a bounded uniform domain. Let p : D → R be such

that 1 < p−D � p+
D < ∞. Assume that there exists a constant C > 0 such that

|p(x) − p(y)| � C

− log |x − y| (10)

for every x, y ∈ D with |x − y| � 1
2 . Then the inequality

‖u − uD‖p(·) � C diam(D)
(
1 + max

{
|D|1/p+

D−1/p−
D , |D|1/p−

D−1/p+
D

})
‖∇u‖p(·), (11)

holds for every u ∈ W 1,p(·)(D). Here the constant C depends on the dimension n, the
uniform constant of D and p.

Proof. Since W
1,p(·)
0 (D) ↪→ W 1,1(D) we obtain as in the proof of [12, Theorem 11]

for every u ∈ W 1,p(·)(D) that

|u(x) − u(y)| � C|x − y|(M∇u(x) + M∇u(y)) (12)

for almost every x, y ∈ D. Here M is the Hardy-Littlewood maximal operator:

M∇u(x) = sup
r>0

–
∫

B(x,r)

|∇u(y)|dy,

with the understanding that ∇u = 0 outside D. The constant C depends on the
dimension n and the uniform constants of D.

Integrating inequality (12) over y we obtain∣∣∣u(x) − –
∫
D

u(y)dy
∣∣∣ � –

∫
D

|u(x) − u(y)|dy

� C diam(D)
(
M∇u(x) + –

∫
D

M∇u(y)dy
)
.
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By Hölder’s inequality [17, Theorem 2.1] this yields

|u(x) − uD| � C diam(D)
(
M∇u(x) +

C(p)‖1‖Lp′(·)(D)

|D| ‖M∇u‖p(·)
)
.

Since the previous inequality holds point-wise, it is clear that we have an inequality
also for the Lebesgue norms of both sides:

‖u − uD‖p(·) � C diam(D)
(
‖M∇u‖p(·) +

C

|D| ‖1‖p′(·)‖1‖p(·)‖M∇u‖p(·)

)

� C diam(D)
(
1 + |D|−1 max{|D|1+1/p+

D−1/p−
D , |D|1+1/p−

D−1/p+
D}

)
‖M∇u‖p(·)

By [5, Theorem 3.5] (see also [7, Remark 2.2]) the Hardy-Littlewood maximal
operator is bounded, and so we obtain

‖u − uD‖p(·) � C diam(D)
(
1 + max

{
|D|1/p+

D−1/p−
D , |D|1/p−

D−1/p+
D

})
‖∇u‖p(·),

where the constant C depends on the dimension n, the uniform constant of D
and p.

Remark 2.9. We refer to [19] for basic properties of uniform domains: Every uniform
domain is a John domain. Every domain, whose boundary is locally a graph of a
Lipschitz continuous function, is a uniform domain. In particular if D is a ball then
the constant in (11) depends on the dimension n and p.

Corollary 2.10. Let p be as in the previous theorem. If B is a ball with |B| � 1 then

‖u − uB‖p(·) � C diam(B)‖∇u‖p(·),

where the constant C does not depend on B.

Proof. Since |B| � 1 we have

max
{
|B|1/p+

B−1/p−
B , |B|1/p−

B−1/p+
B

}
= |B|1/p+

B−1/p−
B .

Since p is 0-Hölder continuous, (10), we obtain by [5, Lemma 3.2] that there exists a
constant C > 0, depending only on the dimension n and the constant in (10), such
that |B|1/p+

B−1/p−
B � C for every ball B. Hence |B| � 1 implies that the constant in

(11) is less than C diam(B).
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3. Continuity

The functions in the classical Sobolev space W 1,p are continuous if p > n. In this
section we consider when functions in variable exponent Sobolev space are continuous.

Theorem 3.1. Suppose that p > n is locally bounded away from n in D. Then
W 1,p(·)(D) ⊂ C(D).

Proof. Let x ∈ D and consider the ball B = B(x, δ(x)/2). Define q = ess infy∈B p(y).
Then, by [17, Theorem 2.8],

W 1,p(·)(B) ↪→ W 1,q(B) ⊂ C(B).

Therefore every function in W 1,p(·)(D) is continuous at x, and since x was arbitrary,
the claim follows.

The following corollary is immediate.

Corollary 3.2. Suppose that p is continuous in D. Then W 1,p(·)(D) ⊂ C(D) if
p(x) > n for every x ∈ D.

We next use a classical example to show that the assumption that p is locally
bounded away from n in D is not superfluous when p is not continuous.

Example 3.3. Let B = B(0, 1/16), ε > 0 and suppose that

p(x) � p(|x|) = n + (n − 1 − ε)
log2 log2(1/|x|)

log2(1/|x|)
for x ∈ B \ {0} and p(0) > n. We show that then W 1,p(·)(B) 	⊂ C(B).

Define u(x) = cos(log2 | log2|x||) for x ∈ B \ {0} and u(0) = 0. Clearly u is not
continuous at the origin. So we have to show that u ∈ W 1,p(·)(B). It is clear that u
has partial derivatives, except at the origin.

Since u is bounded it follows that u ∈ Lp(·)(B). We next estimate the gradient:

|∇u(x)| =
∣∣∣ sin(log2|log2|x||) ·

1
|x| log2|x|

∣∣∣ �
∣∣∣ 1
|x| log2|x|

∣∣∣.
We therefore find that∫

B

|∇u(x)|p(x)dx �
∫

B

dx

(|x||log2|x||)p(x)

= ωn−1

∫ 1/16

0

rn−1dr

(r|log2 r|)p(r)

= ωn−1

∞∑
i=5

∫ 2i

2−i−1

rn−1dr

(r|log2 r|)p(r)
.

137 Revista Matemática Complutense
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Since 1/(r|log2 r|) > 1 we may increase the exponent p for an upper bound. In the
annulus B(0, 2−i) \ B(0, 2−i−1) we have i � log2(1/|x|) � i + 1. Since y → log2(y)/y
is decreasing we find that

p(x) � n + (n − 1 − ε)
log2 i

i

in the same annulus. We can therefore continue our previous estimate by

∫
B

|∇u(x)|p(x)dx �
∞∑

i=5

∫ 2−i

2−i−1

rn−1dr

(r|log2 r|)n+(n−1−ε) log2(i)/i

� C
∞∑

i=5

∫ 2−i

2−i−1

2−i(n−1)dr

(i2−i)n+(n−1−ε) log2(i)/i

= C
∞∑

i=5

2(n−1−ε) log2(i)i−n−(n−1−ε) log2(i)/i

= C
∞∑

i=5

i−1−εi−(n−1−ε) log2(i)/i � C
∞∑

i=5

i−1−ε < ∞.

4. Sobolev imbedding theorems

We start by introducing a relative variational p(·)-pseudocapacity, and proving some
basic properties for it. This capacity is quite similar to the Sobolev p(·)-capacity
studied by P. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen in [13].

Let F,E ⊂ R
n be closed disjoint sets and D be a domain in R

n. The variational
p(·)-pseudocapacity is defined as

ψp(·)(F,E; D) = inf
u∈L(F,E;D)

‖∇u‖Lp(·)(D),

where L(F,E; D) is as before (see Section 2). For L(F,E; D) = ∅ we define
ψp(·)(F,E; D) = ∞. We write L(E, x; D) for L(F, {x}; D) etc.

Remark 4.1. Including C(D) in the definition of the capacity is somewhat strange
in this context, since we do not, in general, know whether continuous functions are
dense in W 1,p(·)(D), but see [8]. However, since we are interested in the case when
p > n, the assumption makes sense, by Theorem 3.1.

The reason for calling the function ψp(·)(F,E; D) a pseudocapacity is that it is
defined as a capacity but using the norm instead of the modular. This corresponds
to introducing an exponent 1/p to the capacity in the fixed exponent case. Because
of this we cannot expect the pseudocapacity to have all the usual properties of a
capacity. It nevertheless has many of them:
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Theorem 4.2. Let F,E ⊂ R
n be closed sets and D be a domain in R

n. Then the set
function (F,E) �→ ψp(·)(F,E; D) has the following properties:

(i) ψp(·)(∅, E; D) = 0.

(ii) ψp(·)(F,E; D) = ψp(·)(E,F ; D).

(iii) Outer regularity, i. e. ψp(·)(F,E1; D) � ψp(·)(F,E2; D).

(iv) If E is a subset of R
n, then

ψp(·)(F,E; D) = inf
E⊂U

U open

ψp(·)(F,U ; D).

(v) If K1 ⊃ K2 ⊃ . . . are compact, then

lim
i→∞

ψp(·)(F,Ki; D) = ψp(·)

(
F,

∞⋂
i=1

Ki; D
)

.

(vi) Suppose that p > n is locally bounded away from n. If Ei ⊂ R
n for every

i = 1, 2, . . ., then

ψp(·)

(
F,

∞⋃
i=1

Ei; D
)

≤
∞∑

i=1

ψp(·) (F,Ei; D) .

Proof. Assertion (i) is clear since we may use a constant function. Assertion (ii) is
clear since if u ∈ L(F,E; D) then 1 − u ∈ L(E,F ; D). Assertion (iii) follows since
L(F,E2; D) ⊂ L(F,E1; D).

Next we prove (iv). It is clear that

ψp(·)(F,E; D) � inf
E⊂U

U open

ψp(·)(F,U ; D).

Let ε > 0. Assume that u ∈ L(F,E; D) is such that

‖∇u‖p(·) � ψp(·)(F,E; D) + ε.

Since u is continuous, {u > 1 − ε} is an open set containing E. Hence we obtain

inf
E⊂U

U open

ψp(·)(F,U ; D) � ψp(·)(F, {u > 1 − ε}; D)

�
∥∥∥∇min{ u

1 − ε
, 1}

∥∥∥
p(·)

≤ (1 − ε)−1‖∇u‖p(·)

� (1 − ε)−1ψp(·)(F,E; D) +
ε

1 − ε
.
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Letting ε → 0 yields assertion (iv).
We then prove (v). It is clear that

ψp(·)(F,∩∞
i=1Ki; D) � lim

i→∞
ψp(·)(F,Ki; D)

Let ε > 0. Assume that u ∈ L(F,∩∞
i=1Ki; D) is such that

‖∇u‖p(·) � ψp(·)(F,∩∞
i=1Ki; D) + ε.

When i is large the set Ki lies in the closed set {u � 1 − ε}; therefore

lim
i→∞

ψp(·)(F,Ki; D) � ψp(·)(F, {u � 1 − ε}; D)

�
∥∥∥∇min{ u

1 − ε
, 1}

∥∥∥
p(·)

≤ (1 − ε)−1‖∇u‖p(·)

� (1 − ε)−1ψp(·)(F,∩∞
i=1Ki; D) +

ε

1 − ε
.

Letting ε → 0 yields assertion (v).
To prove (vi) let ε > 0 and choose functions ui ∈ L(F,Ei; D) such that

‖∇ui‖p(·) � ψp(·)(F,Ei; D) + ε/2i,

for i = 1, . . .. Let vi = u1+. . .+ui. Then (vi) is a Cauchy sequence, and so it converges
to a function v ∈ W 1,p(·)(D). Define ṽ(x) = min{v(x), 1}, so that |ṽ| ∈ Lp(·)(D) by
[13, Theorem 2.2]. It is clear that ṽ|F∩D = 0 and ṽ|E∩D = 1, where E = ∪Ei. Since
p > n is locally bounded away from n, it follows from Theorem 3.1 that every function
in W 1,p(·)(D) is continuous, and so we have ṽ ∈ L(F,

⋃
Ei; D), from which the claim

easily follows, since

‖∇ṽ‖p(·) �
∞∑

i=1

‖∇ui‖p(·) �
∞∑

i=1

ψp(·)(F,Ei; D) + ε.

Using the pseudocapacity we can start our study of Sobolev-type imbeddings. The
following result is the direct generalization of [20, 5.1.1, Theorem 1].

Theorem 4.3. If p+ < ∞, then the following two conditions are equivalent:

(i) W 1,p(·)(D) ∩ C(D) ↪→ L∞(D).

(ii) There exist r, k > 0 such that ψp(·)(D \ B(x, r), x; D) � k for every x ∈ D.

Proof. Suppose that (2) holds, with constants r, k > 0. Let u ∈ W 1,p(·)(D)∩C(D) and
let y ∈ D be a point with u(y) 	= 0. Fix a function η ∈ C∞

0 (B(0, 1)) with 0 � η � 1
and η(0) = 1. Define v(x) = η

(
(x − y)/r

)
u(x)/u(y). It is clear that v ∈ W 1,p(·)(D)
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and since v(y) = 1 and v(x) = 0 for x 	∈ B(y, r) we see that v ∈ L(D \ B(y, r), y; D).
It follows that

k � ψp(·)(D \ B(y, r), y; D) � ‖∇v‖p(·).

Then we calculate that

k|u(y)| � ‖∇(
u(x)η((x − y)/r)

)‖p(x)

� sup
x∈D

η(x)‖∇u‖p(·) +
1
r

sup
x∈D

∇η(x)‖u‖p(·)

� max
{

sup
x∈D

η(x),
1
r

sup
x∈D

∇η(x)
}
‖u‖1,p(·),

so that |u(y)| is bounded by a constant independent of y.
Suppose conversely that (1) holds and let C be a constant such that ‖u‖∞ �

C‖u‖1,p(·) for all u ∈ W 1,p(·)(D). For functions in v ∈ L(D \ B(x, r), x; D) this gives

1 = ‖v‖∞ � C‖v‖1,p(·) � C(‖χB(x,r)‖p(·) + ‖∇u‖p(·)).

Since p+ < ∞ we can choose r small enough that ‖χB(x,r)‖p(·) � 1/(2C). For such r
we have ‖∇u‖p(·) � 1/(2C). It follows that

ψp(·)(D \ B(x, r), x; D) = inf
u∈L(D\B(x,r),x;D)

‖∇u‖p(·) � 1/(2C)

for the same r.

Remark 4.4. Since we do not know whether C∞(D) is dense in W 1,p(·)(D) we have
only proved the theorem for continuous functions in W 1,p(·)(D). If p is such that
C(D) is dense in W 1,p(·)(D), for instance if p is locally bounded above n, then we
may replace condition (1) by W 1,p(·)(D) ↪→ L∞(D).

Define D = B(1/16) \ {0} and let p be as in Example 3.3. Then the standard
example u(x) = log|log(x)| shows that W 1,p(·)(D) 	↪→ L∞, the calculations being as
in the theorem. We next show that the exponent p from the theorem is almost as
good as possible. We need the following lemma.

Lemma 4.5. Let {ai} be a partition of unity and k > m − 1. Then

∞∑
i=0

am
i ik �

( ∞∑
i=0

i−k/(m−1)

)1−m

.

Proof. Fix an integer i and consider the function

a �→ (ai + a)mik + (ai+1 − a)m(i + 1)k,
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for −ai < a < ai+1. We find that this function has a minimum at a = 0 if and only if

(
ai

ai+1

)m−1

=
(

i + 1
i

)k

. (13)

Let {ai} be a minimal sequence, so that (13) holds for every i � 0. This partition
is given by ai = i−k/(m−1)a0 for i > 0 and a0 = (

∑
i−k/(m−1))−1 and so we easily

calculate the lower bound as given in the lemma.

We next give a simple sufficient condition for the imbedding W 1,p(·)(D) ↪→ L∞(D)
to hold in a regular domain:

Theorem 4.6. Suppose that D satisfies a uniform interior cone condition. If p+ < ∞
and

p(x) � n + (n − 1 + ε)
log2 log2(c/δ(x))

log2(c/δ(x))

for some fixed 0 < ε < n − 1 and constant c > 0 then W 1,p(·)(D) ↪→ L∞(D). Here
δ(x) denotes the distance of x from the boundary of D

Proof. Note first that the claim trivially holds in compact subsets of D which satisfy
the cone condition, since p is bounded away from n in such sets. Therefore it suffices
to prove the claim for δ(x) less than some constant.

By the uniform interior cone condition there exist real values 0 < α < π/2 and
r > 0 and a unit vector field vx such that for every x ∈ D the cone

Cx = {y ∈ B(x, r) : 〈x − y, vx〉 > |x − y| cos α}

lies completely in D, where 〈·, ·〉 denotes the usual inner product.
Fix z ∈ D. Consider the cone

C = {y ∈ B(z, r/2) : 〈z − y, vz〉 > |z − y| cos(α/3)}

and, for i = 2, 3, . . ., the annuli

Ai =
(
B(z, 2−i+1r) \ B(z, 2−ir)

) ∩ C.

To simplify notation let us assume that z = 0, r = 1 and vz = e1; the proof in
the general case is essentially identical. Since Ai ⊂ C ⊂ D we have d(Ai, ∂D) �
d(Ai, ∂C). We can estimate the latter distance as shown in Figure 1. This gives
d(Ai, ∂D) � 2−i sin(α/3) so that

p(x) � n + (n − 1 + ε)
log2(i + c)

i + c
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z
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z

A
0

2−isin(α/3)

A
1

A
2

A
3

Figure 1: The cone C and the distance to the boundary

for x ∈ Ai and some c depending on α. Let us define qi = n+(n− 1+ ε) log2(i+c)
i+c and

a new variable exponent by

q(x) =

{
qi if x ∈ Ai for some i

p(x) otherwise

By Theorem 4.3 we know that it suffices to find a lower bound for ‖∇u‖1,p(·) with
u ∈ L(D \B(0, r), 0; D) since, by Theorem 3.1, W 1,p(·)(D) ⊂ C(D). Since ‖u‖1,p(·) �
c‖u‖1,q(·), we see that it suffices to estimate ψq(·)(D\B(0, R), 0; B(0, R)∩D) for small
R in order to prove the theorem. Moreover, by monotony, we need only consider
ψq(·)(D \ B(0, R), 0; B(0, R) ∩ C). For every function u ∈ W 1,q(·)(C) we have

‖u‖1,q(·) � min{1, �1,q(·)(u)},

by [17, Theorem 2.8]. Therefore we see that it suffices to show that �1,q(·)(u) > c for
every u ∈ L(D \B(0, R), 0; B(0, R)∩C) in order to get ψq(·)(D \B(0, R), 0; B(0, R)∩
C) � min{1, c} > 0, which will complete the proof.

It is clear that |∇u| � |∂u/∂r|, the radial component of the gradient, so that∫
Ai

|∇u|qidx ≥
∫

Ai

∣∣∣∂u

∂r

∣∣∣qi

dx.

It is then easy to see that the function minimizing the sum over the integrals should
depend only on the distance from the origin, not on the direction. For such a function
let us denote the value at any point of distance 2−i from the origin by vi.
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Consider then a function v which equals vi−1 on S(0, 2−i+1) and vi on S(0, 2−i).
Using Lemma 2.4 we find that∫

Ai

|∇v|qidx � (vi−1 − vi)qi capqi
(Rn \ B(0, 2−i+1), B(0, 2−i))

= (vi−1 − vi)qiωn−1

(
qi − n

qi − 1

)qi−1 (
2(qi−n)/(qi−1) − 1

)1−qi2i(qi−n)

� c(vi−1 − vi)qi2i(qi−n),

where the constant c does not depend on qi. It follows that

�1,q(·)(v) �
∞∑

i=2

∫
Ai

|∇u|qidx � c
∞∑

i=2

(vi−1 − vi)qi2i(qi−n).

Since the lower bound depends only on the vi, we see that

inf
u∈L

�1,q(·)(u) � c inf
{vi}

∞∑
i=2

(vi−1 − vi)qi2i(qi−n),

where the second infimum is over sequences {vi} with vi � vi−1, v0 = 1 and
limi→∞ vi = 0. Let us set ai = vi−1 − vi so that ai � 0 and

∑
ai = 1. Then

we need to estimate

inf
{ai}

∞∑
i=2

aqi

i 2i(qi−n),

with the infimum over partitions of unity {ai}. Let N be such that

ε

3
� qi − n = (n − 1 + ε)

log2(i + c)
i + c

� (n − 1 + ε/2)
log2(i)

i

for i ≥ N . Note that such an N can be chosen independent of z. Since ai � 1 we
have aqi

i � a
n+ε/3
i for such terms. Then we find that

inf
{ai}

∞∑
i=2

aqi

i 2i(qi−n) � inf
{ai}

N−1∑
i=2

aqi

i 2i(qi−n) +
∞∑

i=N

a
n+ε/3
i in−1+ε/2.

The first sum on the left-hand-side is finite, hence

N−1∑
i=2

aqi

i 2i(qi−n) �
N−1∑
i=2

aq
i � N1−q

( N−1∑
i=2

ai

)q

,

where q = max2�i�N−1 qi. It follows from Lemma 4.5 that

∞∑
i=N

a
n+ε/3
i in−1+ε/2 � c

( ∞∑
i=N

ai

)n+ε/3

.
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Combining these estimates we see that

inf
{ai}

∞∑
i=2

aqi

i 2i(qi−n) � N1−q

( N−1∑
i=2

ai

)q

+ c

( ∞∑
i=N

ai

)n+ε/3

is uniformly bounded from below by a positive constant, since the sum of the ai’s
is 1. We have thus shown that the condition of Theorem 4.3 holds, which concludes
the proof.
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