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ABSTRACT

This is an expository paper about constructions of locally compact, Hausdorff,
scattered spaces whose Cantor-Bendixson height has cardinality greater than
their Cantor-Bendixson width.

2000 Mathematics Subject Classification: 54A25, 54A35, 54G12,03E05, 06E15.
Key words: Scattered space, thin-tall, partitions, Δ-functions, walks, forcing, con-
structibility

0. Introduction

The terminology used in this paper is standard. Undefined set-theoretic terms can be
found in [6] or [12]. Undefined topological terms can be found in [5].

The Cantor-Bendixson process for topological spaces is defined as follows. Suppose
that X is a topological space. Then, for every ordinal α we define the α-derivative
of X by: X0 = X; if α = β + 1, Xα is the set of accumulation points of Xβ ; and if
α is a limit, Xα =

⋂{Xβ : β < α}. We say that X is scattered, if Xα = ∅ for some
ordinal α.

The Cantor-Bendixson process permits us to split a scattered space into levels.
Suppose that X is a scattered space. We define the height of X by

ht(X) = the least ordinal α such that Xα is finite.

For α < ht(X), we write Iα(X) = Xα \ Xα+1. If x ∈ Iα(X), we say that α is
the level of x and we write ρ(x) = α. Note that ρ(x) = α means that x is an

1The preparation of this paper was supported by DGI Project BFM2002-01034.
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accumulation point of Iβ(X) for any β < α but x is not an accumulation point of
Xα =

⋃{Iβ(X) : β ≥ α}. Then, it is natural to define the width of X as

wd(X) = sup{|Iα(X)| : α < ht(X)}.

Assume that X is a scattered space, x ∈ X and U is a neighbourhood of x. We
say that U is a cone on x, if x is the only point in U of level ≥ ρ(x). Clearly, if U is
a neighbourhood basis of x, we may assume that every U ∈ U is a cone on x.

Here is an example. Suppose that α is an infinite ordinal. We denote by T (α) the
ordinal α equipped with the order topology. Then, if we put X = T (α) we have that
I0(X) is the set of all non-limit ordinals of α and for β > 0, Iβ(X) = {ξ ∈ α : ξ =
η + ωβ for some η < α}. So, if we put X = T (ωα) where α is an infinite countable
ordinal, we have that X is a locally compact, T2, scattered space such that ht(X) = α
and wd(X) = ω. However, if we take X = T (ω1), we have ht(X) = wd(X) = ω1. In
general, if X = T (κ) for an uncountable cardinal κ, we have ht(X) = wd(X) = κ.

By an LCS space, we mean a locally compact, T2, scattered space. Suppose that
κ is an infinite cardinal and α is a nonzero ordinal. Let X be a locally compact, T2,
scattered space. We say that X is a (κ, α)-LCS space, if ht(X) = α and wd(X) = κ.
X is κ-thin-tall, if X is a (κ, α)-LCS space for some ordinal α ≥ κ+. X is κ-thin-very
tall, if X is a (κ, α)-LCS space for some ordinal α ≥ κ++.

The problem of the existence of an (ω, ω1)-LCS space was raised by Telgárski in
1968. After several positive solutions using additional set-theoretic hypotheses, the
problem was solved in [16] by Rajagopalan, who showed that such a space exists in
ZFC. A more simplified proof for this result was given by Juhász and Weiss in [8],
where they even proved that there is an (ω, α)-LCS space for every ordinal α < ω2.

However, it is not possible to prove in ZFC that there is an (ω, ω2)-LCS space.
For this, assume that we have an (ω, ω2)-LCS space X. For every x ∈ X, consider a
cone Ux on the point x. Let ax be the subset of isolated points of Ux. Clearly, x �= y
implies ax �= ay. Hence, we can identify every point of X with a subset of I0(X).
Thus, under CH there is no (ω, ω2)-LCS space. On the other hand, it is consistent
that the continuum is large and (ω, ω2)-LCS spaces do not exist (see [9] and [17]).

Nevertheless, it was shown by Baumgartner and Shelah in [1] that the existence
of an (ω, ω2)-LCS space is consistent with ZFC. In [15], this result was generalized,
showing that it is consistent with ZFC that there is an (ω, α)-LCS space for every
ordinal α < ω3. It is not known whether the existence of an (ω, ω3)-LCS space is
consistent with ZFC.

The problem of the existence of (κ, κ+)-LCS spaces for generic κ was mentioned
in [21]. Some consistency results on the existence of thin-tall spaces of uncountable
width were shown in [10], [13] and [14] . However, it is not known whether there is in
ZFC an (ω1, ω2)-LCS space. Also, it is unknown whether the existence of a thin-very
tall space of uncountable width is consistent with ZFC.

The organization of this paper is as follows. In Section 1, we outline the construc-
tion of an (ω, α)-LCS space for α < ω2 due to Juhász and Weiss. In Section 2, we
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consider some combinatorial tools introduced in [1], which are used in the forcing con-
structions of thin-very tall spaces. In Section 3, we describe the forcing construction
of Baumgartner and Shelah. In Section 4, we outline the extension of this construc-
tion from ω2 to any ordinal α < ω3. And in Section 5, we describe some constructions
of (κ, κ+)-LCS spaces for κ uncountable.

It is a well-known fact that the one-point compactification of a locally compact,
T2, scattered space is a Boolean space. So, the one-point compactification of a (κ, α)-
LCS space is a Boolean space of height α and width κ. On the other hand, it is
known that a Boolean algebra is hereditarily atomic iff its Stone space is scattered
(see [11]). So, the results we mention in this paper can be immediately transferred to
the context of hereditarily atomic Boolean algebras.

For basic facts and further results and problems on scattered Boolean spaces, we
refer the reader to [11] and [18].

1. Constructions in ZCF

For α < ω2, we write Zα = {α} × ω. The proof for the next result is similar to the
one given in [8].

Theorem 1. There is an (ω, ω1)-LCS space.

Proof. We construct an (ω, ω1)-LCS space X whose underlying set is
⋃{Zα : α <

ω1}. For this, we construct by transfinite induction on α < ω1 a space Xα satisfying
the following:

(1) The underlying set of Xα is
⋃{Zβ : β ≤ α}.

(2) Xα is an (ω, α+1)-LCS space with Iβ(Xα) = Zβ for β ≤ α and Iα+1(Xα) = ∅.
(3) If β < α and x ∈ Xβ , then a neighbourhood basis of x in Xβ is also a

neighbourhood basis of x in Xα.

We define X0 as the set Z0 with the discrete topology. Suppose α > 0. We
put Y = Xβ if α is a successor ordinal β + 1, and we define Y as the direct union
of {Xβ : β < α} if α is a limit. Then, the underlying set of Xα is the union of
the underlying set of Y and Zα. So, our aim is to define a neighbourhood basis for
each point of Zα. As Y is countable infinite and non compact, Y is the union of an
infinite family U formed by pairwise disjoint compact clopen cones on points of Y .
For this, let {xk : k < ω} be an enumeration of Y . Let U0 be a compact clopen
cone on x0. For n > 0, let yn be the first element in the enumeration {xk : k < ω}
such that yn �∈ U0 ∪ · · · ∪ Un−1. We take a compact clopen cone Un on yn such that
Un ∩ (U0 ∪ · · · ∪ Un−1) = ∅. Clearly, U = {Un : n < ω} is as required. Then, we can
take a family {Vn : n < ω} ⊆ U such that:

(1) If α = β + 1, each Vn is a cone on a point of Iβ(Y ).
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(2) If α is a limit, then for some strictly increasing sequence of ordinals 〈αn : n < ω〉
cofinal in α, we have Iαn

(Y ) ∩ Vn �= ∅ for each n.

Let {zn : n < ω} be an enumeration of Zα. Consider a partition {an : n < ω} of ω in
infinite subsets. Fix n < ω. Then, we define a basic neighbourhood of zn as a set of
the form {zn} ∪

⋃{Vm : m ∈ an \ k} where k < ω.

We define the desired space X as the direct union of {Xα : α < ω1}.
Now, we outline the main construction carried out in [8].

Theorem 2. For every nonzero ordinal α < ω2, there is an (ω, α)-LCS space.

Sketch of proof. When we want to extend the construction given in the proof of
Theorem 1 to an ordinal α with ω1 < α < ω2, the problem we find is that, in general,
an uncountable approximation of the space we want to construct can not be expressed
as an infinite union of pairwise disjoint compact clopen cones. However, we can show
by transfinite induction that for every α < ω2 there is a Lindelöf, locally compact,
T2, scattered space Xα such that ht(Xα) = α + 1, Iβ(Xα) = Zβ for β ≤ α and
Iα+1(Xα) = ∅. Assume α = ω1. Let Y be the one-point compactification of the space
constructed in the proof of Theorem 1. Then, we define Xω1 as the topological sum
of ω disjoint copies of Y .

Now, assume ω1 < α < ω2. First, suppose that α = β + 1 is a successor ordinal.
Note that Xβ can not be the union of finitely many cones. Then since Xβ is Lindelöf,
there is an infinite countable cover of Xβ formed by compact clopen cones on points
of Xβ . Thus, Xβ can be expressed as an infinite union of pairwise disjoint compact
clopen cones. So, we can take a discrete family {Vn : n < ω} of compact clopen sets
in Xβ such that each Vn is a cone on a point of Iβ(Xβ). Then, proceeding as in the
proof of Theorem 1, we define from the family {Vn : n < ω} a neighbourhood basis
for each point of Zα. Note that because of {Vn : n < ω} is discrete, the resulting
space Xα is Hausdorff.

Next, suppose that α is a limit. Without loss of generality, we may assume that
cf(α) = ω1. Let 〈αγ : γ < ω1〉 be a closed strictly increasing sequence of ordinals

cofinal in α. Then, by using again the Lindelöfness property, we can refine the con-
struction given in the proof of Theorem 1 and construct by transfinite induction on
γ < ω1 an approximation Yγ satisfying the following:

(1) The underlying set of Yγ is
⋃{Zβ : β ≤ αγ}.

(2) Yγ is a Lindelöf, locally compact, T2, scattered space such that Iβ(Yγ) = Zβ

for each β ≤ αγ and Iαγ+1(Yγ) = ∅.
(3) If β < γ and x ∈ Yβ , then a neighbourhood basis of x in Yβ is also a neigh-

bourhood basis of x in Yγ .

Let Y be the one-point compactification of the direct union of {Yγ : γ < ω1}. Let Xα

be the topological sum of ω disjoint copies of Y . Then, Xα is as required.
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By means of a refinement of the construction given in the proof of Theorem 1,
Dow and Simon proved in [4] that there are 2ω1 (as many as possible) pairwise non-
homeomorphic (ω, ω1)-LCS spaces. The proof of this result can be immediately gen-
eralized to any ordinal α with ω1 ≤ α < ω2. Briefly, the idea of the proof is as follows.
We fix an ordinal α with ω1 ≤ α < ω2. The underlying set of the spaces we want
to construct is α × ω. For every n < ω, we put Cn = ω1 × {n}. Suppose that X is
an LCS space of underlying set α × ω such that Iξ(X) = {ξ} × ω for any ξ < α and
Cn is closed in the subspace X \ Xω1 for any n < ω. If S is an stationary subset
of ω1, we say that S is associated to X if for every n < ω and every limit ordinal
ξ < ω1, if ξ ∈ S then for every neighbourhood U of (ξ, n) there is a ζ < ξ such that
{(μ, n) : ζ < μ ≤ ξ} ⊆ U , and if ξ �∈ S then there is a neighbourhood U of (ξ, n) such
that U ∩Cn = {(ξ, n)}. By refining the constructions carried out above, we can show
that every stationary subset of ω1 is associated to some LCS space. And it can be
checked that if S, S′ are stationary subsets of ω1 with |S \S′| = ω1 and X,Y are LCS
spaces such that S is associated to X and S′ is associated to Y , then X and Y are
not homeomorphic. Let {Sξ : ξ < 2ω1} be a collection of stationary subsets of ω1 such
that if μ < ξ < 2ω1 , then Sξ \ Sμ is stationary. Consider a collection {Xξ : ξ < 2ω1}
of LCS spaces such that Sξ is associated to Xξ for ξ < 2ω1 . If μ < ξ < 2ω1 , we deduce
that Xμ and Xξ are not homeomorphic. So, we have the following result.

Theorem 3. For every ordinal α with ω1 ≤ α < ω2, there are 2ω1 pairwise non-
homeomorphic (ω, α)-LCS spaces.

It was also proved in [4] that for every countable group G there exist 2ω1 pairwise
non-homeomorphic (ω, ω1)-LCS spaces for which G is the non-trivial autohomeomor-
phism group.

2. LCS structures

The following definition is an immediate generalization of the notion of partial order
introduced in [1].

Let γ be a nonzero ordinal. Suppose that T =
⋃{Tα : α < γ} where each Tα is a

nonempty set and Tα ∩Tβ = ∅ for α < β < γ. If s ∈ Tα for α < γ, we write π(s) = α.
Suppose that ≤ is a partial ordering on T . Assume that i : [T ]2 → [T ]<ω. Then, we
say that (T,≤, i) is an LCS structure (on T ) if the following conditions are satisfied:

(/)(1) If s < t, then π(s) < π(t).

(2) If α < β and t ∈ Tβ , then {s ∈ Tα : s < t} is infinite.

(3) For all {s, t} ∈ [T ]2 the following holds:

(a) If s < t, then i{s, t} = {s}.
(b) For all v ∈ i{s, t}, v ≤ s, t.

565 Revista Matemática Complutense
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(c) For every u ≤ s, t there is a v ∈ i{s, t} with u ≤ v.

Note that, intuitively, π(s) denotes the level of s in T , and i{s, t} is an analogue of
the notion of infimum of s, t, if i{s, t} is nonempty.

The following result, which will be used without explicit mention, permits us to
construct LCS spaces from LCS structures in a natural way.

Proposition 1. Suppose that (T,≤, i) is an LCS structure with T =
⋃{Tα : α < γ}.

Then, we can define a topology σ on T such that (T, σ) is a locally compact, T2,
scattered space with Iα((T, σ)) = Tα for each α < γ.

Proof. For every t ∈ T , let C(t) = {s ∈ T : s ≤ t}. We infer from (/)(3) that if s, t
are different elements of T , then C(s) ∩ C(t) =

⋃{C(u) : u ∈ i{s, t}}. Let

B = {C(t) \ (C(t1) ∪ · · · ∪ C(tn)) : n < ω, t1, . . . , tn < t}.

We have that B is a clopen base for a Hausdorff topology σ on T . Clearly, C(t) is
compact for every t ∈ T . And we deduce from (/)(1) − (2) that (T, σ) is a scattered
space such that Iα((T, σ)) = Tα for each α < γ.

It is not known whether every LCS space can be constructed from an LCS struc-
ture.

On the other hand, a class of LCS structures satisfying additional properties, the
so-called PCF structures, have interest in the theory of cardinal arithmetic, concerning
Shelah’s result that if ωω is a strong limit cardinal, then 2ωω < ωω4 (see [20]). Suppose
that (T,, i) is an LCS structure. Let σ be the topology associated to (T,) in
Proposition 1. If S ⊆ T , we denote by S the closure of S in (T, σ). Then we say that
(T,, i) is a PCF structure, if the following conditions hold:

(1) T is an infinite successor ordinal.

(2) For every μ, ξ ∈ T , μ ≺ ξ implies μ ∈ ξ.

(3) ω = T .

(4) If I ⊆ T is an interval, then I is also an interval.

(5) If μ is an ordinal of uncountable cofinality contained in T , then there is a
closed unbounded set Cμ ⊆ μ such that Cμ ⊆ μ + 1.

(6) (T, σ) is compact.

By a result of Foreman and Magidor, it is known that if (T,, i) is a PCF structure
with T =

⋃{Tα : α < γ}, then |Tα| ≤ |α + ω| for each α < γ (see [19]).
The interest of the notion of a PCF structure lies in the fact that for the proof

of Shelah’s theorem stated above, it is shown by means of a combinatorial argument
that no PCF structure of size ≥ ω4 exists. Then, the non existence of PCF structures
of size ω3 would improve Shelah’s bound, and so we would have 2ωω < ωω3 provided
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ωω is a strong limit cardinal. However, it is not known whether the non existence of
PCF structures of size ω3 can be proved in ZFC. Nevertheless, it was shown in [19]
that the existence of a PCF structure of size ω2 is consistent with ZFC, and so we
can not hope to improve the bound on 2ωω to ωω2 , at least by using the argument
given in the proof of Shelah’s theorem.

In what follows, we shall construct LCS spaces from LCS structures. Then, in
order to construct by forcing thin-very tall spaces of countable width, we consider an
ordinal γ with ω2 ≤ γ < ω3 and we put T =

⋃{Tα : α < γ} where each Tα = {α}×ω.
We can define a natural notion of forcing Pγ for adding a partial ordering ≤ on T and
a function i : [T ]2 → [T ]<ω such that (T,≤, i) is an LCS structure. For this, let Pγ

be the set of all p = (xp,≤p, ip) such that the following holds:

(∗)(1) xp is a finite subset of T .

(2) ≤p is a partial ordering on xp such that for every s, t ∈ xp, s <p t implies
π(s) < π(t).

(3) ip : [xp]2 → [xp]<ω such that for all {s, t} ∈ [xp]2 the following holds:

(a) If s <p t, then ip{s, t} = {s}.
(b) For all v ∈ ip{s, t}, v ≤p s, t.

(c) For every u ≤p s, t there is a v ∈ ip{s, t} such that u ≤p v.

If p, q ∈ Pγ , we put p ≤γ q iff xp ⊇ xq, ≤p� xq =≤q and ip � [xq]2 = iq.

We put Pγ = (Pγ ,≤γ).

Proposition 2. Pγ adjoins an LCS structure on T .

Proof. Suppose that G is Pγ-generic. Clearly, for each t ∈ T , {p ∈ Pγ : t ∈ xp} is
dense in Pγ . So, T =

⋃{xp : p ∈ G}. Now, let ≤=
⋃{≤p: p ∈ G} and i =

⋃{ip :
p ∈ G}. We immediately obtain condition (/)(1) from (∗)(2), and (/)(3) from (∗)(3).
Also, by using (∗)(1), it is easy to check that for α < β, t ∈ Tβ and n < ω, the set
{p ∈ Pγ : there is an s = (α,m) for some m > n with s <p t} is dense in Pγ . So,
condition (/)(2) holds too.

However, we shall need to use a special function F : [γ]2 → [γ]≤ω in order to refine
the forcing Pγ and obtain a notion of forcing that preserves cardinals.

If p = (xp,≤p, ip) ∈ Pγ and s, t ∈ xp, we say that s, t are comparable in p, if either
s ≤p t or t ≤p s.

Let F : [γ]2 → [γ]≤ω. We define PF
γ as the set of all p ∈ Pγ such that the following

additional condition holds:

(∗)(4) If s, t ∈ xp are not comparable in p, then π[ip{s, t}] ⊆ F{π(s), π(t)}.
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We define the partial ordering ≤ on PF
γ in the same way we defined the partial

ordering on Pγ . We put PF
γ = (PF

γ ,≤).

Then, we need to strengthen the partial order PF
γ in order to obtain the desired

cardinal-preserving notion of forcing. For this, we introduce the following combina-
torial notion.

Let Z be a set of ordinals of order type ω2. Let F : [Z]2 → [Z]≤ω such that
F{α, β} ⊆ min{α, β} for every {α, β} ∈ [Z]2. Let A be an uncountable set of finite
subsets of Z. We say that A is admissible for F , if the following condition holds:

(#) For every a, b ∈ A with a �= b, α ∈ a \ b, β ∈ b \ a and τ ∈ a ∩ b we have:

(1) τ < α, β implies τ ∈ F{α, β}.
(2) τ < β implies F{α, τ} ⊆ F{α, β}.

Then, we say that F is a Δ-function on Z, if any uncountable set of finite subsets of
Z contains an admissible subset for F .

A weaker form of the notion of a Δ-function was used in [1] to prove the consistency
of the existence of an (ω, ω2)-LCS space. In [1], Baumgartner and Shelah obtained the
weaker Δ-function by forcing. However, by using Todorc̆ević’s ρ function, Velic̆ković
proved the following result (see [2]).

Proposition 3. �ω1 implies the existence of a Δ-function on ω2.

Clearly, a Δ-function on ω2 can be transferred to a Δ-function on any set of
ordinals of order type ω2.

Then, by using this combinatorial notion, we can define a c.c.c. partial order Qγ

that adjoins an (ω, γ)-LCS space. In order to show that Qγ is c.c.c., we can find in
any uncountable set D of forcing conditions in Qγ an uncountable subset E ⊆ D such
that {xp : p ∈ E } is a Δ-system and any pair of conditions in E are isomorphic by
means of a bijection that fixes the elements of the root of the Δ-system. So, we shall
need the following two definitions.

For p, q ∈ Pγ , suppose that f : xp → xq is a bijection. We say that f is adequate,
if the following holds:

(1) For every s, t ∈ xp, π(s) < π(t) iff π(f(s)) < π(f(t)).

(2) For all s = (α, n) ∈ xp, f(α, n) = (β,m) implies n = m.

We say that an uncountable set E ⊆ Pγ is separated, if the following conditions
are satisfied:

(1) {xp : p ∈ E } forms a Δ-system with root x.
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(2) For each α < γ, either xp ∩Tα = x∩Tα for every p ∈ E, or there is at most one
p ∈ E such that xp ∩ Tα �= ∅.

(3) For every p, q ∈ E there is an adequate bijection hpq : xp → xq such that:

(a) For any s ∈ x, hpq(s) = s.

(b) For all s, t ∈ xp, s ≤p t iff hpq(s) ≤q hpq(t).

(c) For all {s, t} ∈ [xp]2, hpq[ip{s, t}] = iq{hpq(s), hpq(t)}.

By means of a standard combinatorial argument, we can show that every uncount-
able subset of Pγ contains a separated subset.

3. Baumgartner-Shelah’s theorem

In this section, we show the following result.

Theorem 4. Con (ZFC) → Con (ZFC + “there is an (ω, ω2)-LCS space”).

Assume that �ω1 holds. Let F be a Δ-function on ω2. Then, we define Q = PF
ω2

.

Proposition 4. Q is c.c.c.

Proof. Let D be an uncountable subset of forcing conditions in Q. By thinning out
D if necessary, we may assume that D is separated. We denote by x the root of the
Δ-system {xp : p ∈ D}. Since D is separated and each F{α, β} is countable, we infer
by (∗)(4) that ip � [x]2 = iq � [x]2 for all p, q ∈ D.

We put ap = π[xp] for p ∈ D, and a = π[x]. By the definition of a Δ-function,
there is an uncountable subset E of D such that {ap : p ∈ E} is admissible for the
function F . Now, we can show that E is linked. For this, suppose that p, q are
different elements of E. In order to show that p, q are compatible in Q, we define the
condition r = r(p, q, F ) = (xr,≤r, ir) as follows. We put xr = xp ∪ xq. If s, t ∈ xr,
we define s ≤r t iff s ≤p t or s ≤q t or there is a u ∈ x such that either s <p u <q t
or s <q u <p t. Now we define ir by: ir � [xp]2 = ip, ir � [xq]2 = iq; and if s ∈ xp \ xq

and t ∈ xq \ xp, then ir{s, t} = {u ∈ xr : u <r s, t and π(u) ∈ F{π(s), π(t)}} if s, t
are not comparable in r, ir{s, t} = {s} if s <r t and ir{s, t} = {t} if t <r s.

To show that r ∈ Q, it is immediate to check all the conditions in the definition of
Q except condition (∗)(3)(c). It is also easy to verify (∗)(3)(c), if s, t ∈ xp or s, t ∈ xq.
So, assume that s ∈ xp \ xq and t ∈ xq \ xp. Without loss of generality, we may
assume that s, t are not comparable in r. So, suppose u <r s, t. Our aim is to find a
v ∈ xr such that u ≤r v <r s, t and π(v) ∈ F{π(s), π(t)}. Suppose that u ∈ xp (the
case u ∈ xq is parallel). As u <r t, there is a w ∈ x such that u ≤p w <q t. Since s, t
are not comparable in r, we have s �≤p w. Assume w <p s. We obtain from (#)(1)
that π(w) ∈ F{π(s), π(t)}. Thus, since we have u ≤p w <r s, t, we are done. Now,
assume that w �<p s. Let v ∈ ip{s, w} such that u ≤p v. We infer from (∗)(4) and
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(#)(2) that π(v) ∈ F{π(s), π(w)} ⊆ F{π(s), π(t)}. Thus, as we have u ≤p v <r s, t,
we are done.

Now, proceeding as in Proposition 2, we infer that Q adjoins an (ω, ω2)-LCS space.

4. Constructions of height greater than ω2

Suppose that M is a model of ZFC in which there exists an (ω, ω2)-LCS space. Note
that the argument given in the proof of Theorem 2 can not be carried out to construct
in M an (ω, α)-LCS space for every α < ω3. For example, for α = ω2 · ω2 we would
need ω2 approximations of the required space, but then we can not assume that the
β-approximations of the space are Lindelöf for β ≥ ω1.

Then, our purpose in this section is to describe a forcing for adding an (ω, α)-LCS
space for any α < ω3.

By an ordinal interval we mean a half-open interval [α, β) where α, β are ordinals
with α < β. If I = [α, β) is an ordinal interval, we write I− = α and I+ = β.

To develop our forcing construction we need to introduce the combinatorial notion
of a tree of intervals. Basically, the idea for this notion is as follows. For an ordinal γ
with ω2 < γ < ω3, we have a collection of ordinal intervals such that each interval in
the collection has a (finite) level. We define [0, γ) as the only interval at level 0. If I
is an interval at level n with more than one element, we take a partition {Iα : α < λ}
of I in ordinal intervals with Iα < Iβ for α < β < λ such that λ is finite if I+ is a
successor ordinal and λ = cf(I+) if I+ is a limit. Now, we consider that the intervals
Iα are at level n + 1. So, we get the following notion.

Let γ be a nonzero ordinal. A tree of intervals on γ is a collection I =
⋃

n<ω In

of ordinal intervals such that:

(1) I0 = {[0, γ)}.
(2) In is a partition of [0, γ) for each n < ω.

(3) In+1 is a refinement of In for each n < ω.

(4) For every I ∈ In, if I+ is a limit ordinal then {J− : J ∈ In+1, J ⊆ I} is a
sequence of order type cf(I+) , and otherwise {J ∈ In+1 : J ⊆ I} is finite.

(5) {α} ∈ I for every α < γ.

We give an example. For γ = ω2 · ω2, we define the tree of intervals I =
⋃

n<ω In

on γ by I0 = { [0, ω2 ·ω2) }, I1 = { [ω2 · ξ, ω2 · (ξ + 1)) : ξ < ω2 } and In = { { ξ } : ξ <
ω2 · ω2 } for n ≥ 2.

Note that if I is a tree of intervals, we have that for every I, J ∈ I, I ⊆ J or
J ⊆ I or I ∩ J = ∅.

The following result is easy to prove.
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Proposition 5. For every nonzero ordinal γ, there is a tree of intervals on γ.

Suppose that I =
⋃

n<ω In is a tree of intervals on an ordinal γ. If α < γ and
n < ω, we denote by I(α, n) the interval of In that contains α. Then, suppose that
α < β < γ and n < ω. We say that n is the level where α, β separate (in I) if
I(α, n) = I(β, n) but I(α, n + 1) �= I(β, n + 1). Then, we write j(α, β) = n. Clearly,
any pair of different elements of γ separate at some level.

Assume that �ω1 holds. We fix an ordinal γ such that ω2 < γ < ω3 and a tree
of intervals I =

⋃
n<ω In on γ. First, we define the special function we use in our

forcing. If I ∈ In, we put ZI = {J− : J ∈ In+1, J ⊆ I}, and then we choose a
function GI : [ZI ]2 → [ZI ]≤ω as follows: if cf(I+) < ω2, we define GI{α, β} = ZI ∩ α
for α, β ∈ ZI with α < β; and if cf(I+) = ω2, we choose GI as a Δ-function on ZI .
Then, we define the function G : [γ]2 → [γ]≤ω as follows. Suppose α < β < γ. Let
n = j(α, β). Let I = I(α, n) = I(β, n), J = I(α, n + 1),K = I(β, n + 1). Then, we
define G{α, β} = GI{J−,K−} ∪ {I−}.

For each α < γ we denote by l(α) the least n such that there is an I ∈ In with
I− = α. Note that by condition (5) in the definition of a tree of intervals, this
natural number exists. Clearly, if I, J ∈ I are such that J ⊆ I and J+ < I+, then
l(J+) > l(I+).

Consider α, β with α < β < γ. Let n = j(α, β) and J = I(α, n + 1). For k < ω,
we write βk = I(β, k)−. Then, we define the walk from α to β via I by w(α, β) =
〈α, βn+1, βn+2, . . . , βl(β)−1, β〉 if α = J−, and by w(α, β) = 〈α, J+, βn+1, βn+2, . . . ,
βl(β)−1, β〉 if α �= J−. This notion resembles the notion of a walk considered by
Todorc̆ević in [22].

Now, we introduce the required forcing. We define Qγ as the set of all p = (xp,≤p,
ip) ∈ PG

γ such that the following two additional conditions hold:

(∗)(5) If s, t are different elements of xp with π(s) = π(t), then ip{s, t} = ∅.
(6) If s <p t, there are u1, . . . , un ∈ xp with s <p u1 ≤p . . . ≤p un ≤p t such that

w(π(s), π(t)) = 〈π(s), π(u1), . . . , π(un), π(t)〉.

We define the partial ordering ≤ on Qγ in the same way we defined the partial
ordering on Pγ . We put Qγ = (Qγ ,≤).

Proposition 6. Qγ is c.c.c.

Sketch of proof. Let D be an uncountable subset of Qγ . Without loss of generality,
we may assume that D is separated. We denote by x the root of the Δ-system
{xp : p ∈ D}. We write ap = π[xp] for p ∈ D, and a = π[x]. Note that since D is
separated and G : [γ]2 → [γ]≤ω, we have ip � [x]2 = iq � [x]2 for all p, q ∈ D. Also,
by means of a combinatorial argument, it is not difficult to show that there is an
uncountable set E ⊆ D such that:
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(i) For all p, q ∈ E, if s ∈ xp and s′ = hpq(s), we have l(π(s)) = l(π(s′)).

(ii) For every I ∈ In with |ZI | = ω2, if {ap ∩ ZI : p ∈ E} is uncountable, then
{ap ∩ ZI : p ∈ E} is admissible for the function GI .

Suppose that p, q are different elements of E. To verify that p, q are compatible in
Qγ , we define the condition r = r(p, q,G) = (xr,≤r, ir) as in the proof of Proposition
4 replacing the function F by the function G. Then, to show that r ∈ Qγ the crucial
step is the verification of condition (∗)(3)(c). For this, we consider the non trivial
case in which s ∈ xp \ xq, t ∈ xq \ xp and s, t are not comparable in r. We may
assume π(s) < π(t). Suppose that u <r s, t. We deal with the case u ∈ xp. The
considerations in the case u ∈ xq are analogous. Then, we need to show:

(+) There is a v ∈ xr such that u ≤r v <r s, t and π(v) ∈ G{π(s), π(t)}.
Let n = j(π(s), π(t)). Put I = I(π(s), n) = I(π(t), n), J = I(π(s), n + 1) and

K = I(π(t), n + 1). First, assume that π(u) �∈ I. Then, we can show that there is a
v ∈ xr with u <r v <r s, t and π(v) = I−, and thus since I− ∈ G{π(s), π(t)}, we are
done. For this, first we infer from u <r t that there is a w ∈ x such that u ≤p w <q t.
Suppose that π(w) �∈ I. If π(w) ∈ I, the considerations are analogous. Note that
I− is in the walk from π(u) to π(s) and also in the walk from π(w) to π(t). Thus
since u <p s and w <q t, we infer from (∗)(6) that there are v1 ∈ xp and v2 ∈ xq

with π(v1) = π(v2) = I− such that u <p v1 ≤p s and w <q v2 <q t. Thus I− ∈ a,
and therefore v1, v2 ∈ x. Then as u <p v1, v2, we infer from (∗)(3)(c) and (∗)(5) that
v1 = v2, and so we are done.

Now, suppose that π(u) ∈ I. As I− ∈ G{π(s), π(t)}, we may assume without loss
of generality that π(u) �= I−. Then, we can prove that π(u) �∈ J . For this, assume on
the contrary that π(u) ∈ J . As u <q t, there is a w ∈ x with u ≤p w <q t. Assume
that w ∈ J (otherwise, the argument is easier). Let t′ = hqp(t). Since w <q t and
w ∈ x, we infer that w <p t′. Note that J+ is in the walk from π(w) to π(t). Then,
we deduce from (i) and (∗)(6) that J+ is also in the walk from π(w) to π(t′), and
hence π(t′) ∈ I \ J . So, G{π(s), π(t′)} ⊆ J− if I− �= J−, and G{π(s), π(t′)} = {J−}
if I− = J−. Now as π(u) ∈ J , π(u) �= I− and u <p s, t′, it is easy to deduce that s, t′

are comparable in p by using conditions (∗)(3)(c) and (∗)(4). Then since π(s) < π(t′),
we have s <p t′. By (∗)(6), we find a v1 ∈ xp ∩ TJ+ such that s <p v1 ≤p t′. Also, as
w <q t, we deduce from (∗)(6) that there is a v2 ∈ xq ∩ TJ+ such that w <q v2 ≤q t.
Thus J+ ∈ a, and hence v1, v2 ∈ x. Now since u <p v1, v2, we infer from (∗)(3)(c)
and (∗)(5) that v1 = v2, therefore s <p v1 <q t, and hence s <r t, which contradicts
the assumption that s, t are incomparable in r. So, π(u) �∈ J .

Then, by using again condition (∗)(6), we find elements v1 ∈ xp ∩ TJ− and v2 ∈
xr ∩ TK− with u <p v1 ≤p s and u <r v2 ≤r t. Note that as π(s) < π(t), we have
π(v1) < π(v2). As π(v1) ∈ J , by the argument given in the preceding paragraph,
we infer that v1, v2 are incomparable in r. Also, by using (∗)(6), we may assume
that π(u) ∈ ZI . So, π(u), π(v1), π(v2) ∈ ZI . To show condition (+), we consider
the case in which v1 ∈ xp \ xq and v2 ∈ xq \ xp (otherwise, the situation is easier to
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handle). Without loss of generality, we may suppose that |ZI | = ω2. Since u <r v2,
there is a w ∈ x such that u ≤p w <q v2. As w <q v2 and w ∈ x, we have
w <q′ hqq′(v2) for every q′ ∈ E. Thus since π(v2) ∈ ZI , we infer from (i) and
(∗)(6) that {ap ∩ ZI : p ∈ E} is uncountable. Now, by using condition (ii), we can
proceed as in the proof of Proposition 4 (replacing ω2 by ZI), and then we obtain
a v ∈ xr ∩ ZI such that u ≤r v <r v1, v2 and π(v) ∈ GI{π(v1), π(v2)}. But since
GI{π(v1), π(v2)} ⊆ G{π(s), π(t)}, we are done.

Then, we can adapt to Qγ the argument for the proof of Proposition 2 and show
that Qγ adjoins an (ω, γ)-LCS space. Thus, since the countable chain condition is
preserved by finite support iterated forcing constructions, we obtain the following
result.

Theorem 5. Con (ZFC) → Con (ZFC + “ for every α < ω3 there is an (ω, α)-LCS
space”).

In fact, it is proved that MA+2ω > ω2+�ω1 implies the existence of an (ω, α)-LCS
space for every α < ω3.

5. Constructions of uncountable width

The situation is more difficult when we want to construct thin-tall spaces of uncount-
able width. For example, it is not known whether there is in ZFC an (ω1, ω2)-LCS
space. However, a (κ, κ+)-LCS space for a specific regular cardinal κ can be con-
structed by forcing. In this case, we have to use infinite forcing conditions and we do
not need to use any special function.

If (S,≤) is a partial order and s, t ∈ S, we say that s,t are compatible in (S,≤) if
there is a u ∈ S such that u ≤ s, t.

Let κ be an infinite cardinal. Put T =
⋃{Tα : α < κ+} where Tα = {α} × κ for

α < κ+. We define Rκ as the set of all p = (xp,≤p) such that:

(1) xp ∈ [T ]<κ .

(2) ≤p is a partial ordering on xp such that for every s, t ∈ xp, s <p t implies
π(s) < π(t).

(3) Every pair s, t of compatible elements in p has an infimum in p.

If s, t ∈ xp are compatible in p and v is the infimum of s, t in p, we write ip{s, t} =
{v}. If s, t are incompatible in p, we write ip{s, t} = ∅. Then, we define the partial
ordering ≤ on Rκ as we defined the partial ordering on Pγ , and we put Rκ = (Rκ,≤).
Also, we define the notion of a separated subset of Rκ as above.

The proof of the following result simplifies the argument given in [13].

Theorem 6. If κ<κ = κ, then Rκ is a cardinal-preserving partial order that forces
the existence of a (κ, κ+)-LCS space.
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Proof. By an argument parallel to the one given in Proposition 2, we have that if
Rκ preserves cardinals, then Rκ adjoins a (κ, κ+)-LCS space. Clearly, Rκ is κ-closed.
Then, in order to prove that Rκ is κ+-c.c. consider a subset D of Rκ of size κ+. Since
κ<κ = κ, we may assume that D is separated. Let x∗ be the root of {xp : p ∈ D}. We
put a∗ = π[x∗] and ap = π[xp] for p ∈ D. We have |ap| < κ for p ∈ D and |β \ α| ≤ κ
for all α, β ∈ a∗ with α < β. Then as κ<κ = κ, there is a subset E of D of size κ+

such that a∗ is an initial segment of ap for every p ∈ E.
Take p, q ∈ E such that if α ∈ ap \ a∗ and β ∈ aq \ a∗, then α < β. We have that

p and q are compatible in Rκ. For this, we define r = (xr,≤r) where xr = xp ∪ xq,
and s ≤r t iff s ≤p t or s ≤q t or (s ∈ xp \ x∗, t ∈ xq \ x∗ and hpq(s) ≤q t), where
hpq denotes the adequate bijection between p and q. It is easy to verify that r is an
element of Rκ that extends p and q.

In [14], by using the notion of a tree of intervals, it was proved that Theorem 6 can
be extended to ordinals between κ+ and κ++, and so we obtain the following result.

Theorem 7. If κ is an infinite cardinal with κ<κ = κ, there is a cardinal-preserving
partial order that forces the existence of a (κ, α)-LCS space for every α < κ++.

On the other hand, it was proved in [10] that thin-tall LCS spaces can be con-
structed from simplified morasses, which are combinatorial tools that permit us to
construct a mathematical object of size κ+ from approximations of size smaller than
κ. For the definition of this combinatorial notion, we refer the reader to [23].

Theorem 8. For every regular cardinal κ, the existence of a simplified (κ, 1)-morass
implies the existence of a (κ, κ+)-LCS space.

Sketch of proof. Let 〈〈θξ : ξ ≤ κ〉, 〈Fμξ : μ < ξ ≤ κ〉〉 be a simplified (κ, 1)-morass.
Again, we construct the required space from an LCS structure. For ξ ≤ κ we construct
an approximation pξ = (xξ,≤ξ) of the desired LCS structure such that the following
conditions are satisfied:

(1) For every ξ < κ, pξ is an element of Rκ with π[xξ] = θξ.

(2) xκ = κ+ × κ and ≤κ is a partial ordering on xκ.

(3) For every ξ < κ, if α, β ∈ θξ with α < β and t ∈ xξ ∩ Tβ , then there is an η > ξ
such that (α, η) <ξ t.

Also, if ξ < η ≤ κ and f ∈ Fξη, we consider a forcing condition pf
ξ = (xf

ξ ,≤f
ξ )

isomorphic to pξ such that π[xf
ξ ] = f [π[xξ]] and for every ν < κ, (α, ν) ∈ xξ iff

(f(α), ν) ∈ xf
ξ . So, pf

ξ is just the projection of pξ in the set of levels f [π[xξ]].

The approximation p0 is easy to construct. Suppose that ξ = μ + 1. Then, Fμξ is
a set formed by two functions f and g with a split point. We can amalgamate pf

μ and
pg

μ proceeding as in the proof of Theorem 6, and then we define the approximation
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2003, 16; Núm. 2, 561-576

574



Juan Carlos Mart́ınez Constructions of thin-tall Boolean spaces. . .

pξ from this amalgamation. And if ξ is a limit, we define pξ from the union of all the
forcing conditions in {pf

μ : μ < ξ, f ∈ Fμξ}.
If ξ < η ≤ κ and f ∈ Fξη, we can verify that xη ⊇ xf

ξ , ≤η� xf
ξ =≤f

ξ and pη

preserves the infimums of pairs of compatible elements in pf
ξ . Then, pκ gives rise to

an LCS structure from which we can directly construct the desired (κ, κ+)-LCS space.

The following result is an immediate consequence of Theorem 8.

Corollary 1. If V = L holds, then there is a (κ, κ+)-LCS space for every regular
cardinal κ.

However, it is unknown whether V = L implies that for every regular cardinal κ
and every ordinal α < κ++, there is a (κ, α)-LCS space.

Also, it is known that if there is no inaccessible cardinal in L, then there is a
simplified (κ, 1)-morass for every regular cardinal κ (see [3]). But obviously, the non
existence of inaccessible cardinals in ZFC would imply the non existence of inaccessible
cardinals in L. So, we obtain from Theorem 8 the following result.

Corollary 2. If there is no inaccessible cardinal in ZFC, then there is a (κ, κ+)-LCS
space for every regular cardinal κ.

It is not known whether the above existence results are true for singular cardinals.

Also, we want to remark that it has recently been proved in [7] that there is in
ZFC an LCS space X such that ht(X) = ω2 and |I0(X)| = ω1.
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