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ABSTRACT

A nonlinear elliptic system involving the p-Laplacian is considered in the whole
R

N . Existence of nontrivial solutions is obtained by applying critical point the-
ory; also a regularity result is established.
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1. Introduction

In this paper, we give some existence and regularity results concerning the following
class of nonlinear elliptic systems in R

N , N ≥ 2

(S)

⎧⎨
⎩

−Δpu + a(x) | u |p−2 u = f(x) | u |α−1 u | v |β+1 in R
N

−Δqv + b(x) | v |q−2 v = f(x) | u |α+1| v |β−1 v in R
N

lim|x|→∞ u(x) = lim|x|→∞ v(x) = 0

where 1 < p < N, 1 < q < N and α, β are real constants satisfying

(1.1) 0 < α ≤ p − 1, 0 < β ≤ q − 1 and max (N−p
N , N−q

N ) < α+1
p∗ + β+1

q∗ < 1.

f and the perturbations a and b are measurable functions satisfying some conditions
which ensure the existence and regularity of solutions.
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Let us mention that many results in the scalar case have appeared for this kind of prob-
lems involving Laplacian and p-Laplacian operators in unbounded domains. Costa in
[3], among others, obtained a nontrivial solution to the problem−Δu+a(x)u = f(x, u)
in R

N , under the assumption that a is coercive and that the potential F (x, u) =∫ u

0
f(x, s) ds is nonquadratic at infinity. In [4], this result was generalized by the

same author to a class of elliptic systems with respect to the potential and subcritical
growth.
Other problems have been considered in this direction, see e.g. P. Drabek [5] and Lao
Sen Yu in [10].
Concerning systems of the type (S), several studies have been devoted to investiga-
tion recently both in bounded and unbounded domains-we refer to [2, 4, 6, 7, 13, 15,
17]. The case of unbounded domains becomes more complicate, generally the main
difficulty lies in the loss of Sobolev compact imbedding.
In this paper, by establishing sufficient condition, we give an extension and we com-
plement some results of the scalar case to a system of elliptic equations. In particular,
to treat variationally this class of problems, we assume a lower regularity condition
on the function f (not necessary in L∞, see assumption (H2) below), so that a non-
trivial solution can be obtained via Mountain Pass Theorem and local minimization
of energy functional associated to our problem respectively in connection with cases
α+1

p + β+1
q > 1 and α+1

p + β+1
q < 1.

On the other hand, to overcome the lack of compactness that has arisen from the
critical exponent and the unboundedness of the domain, we use a compact imbedding
result essentially given by the coerciveness of the perturbations a and b (see assump-
tion (H1)).
In the second section, we establish a regularity result, more precisely, we prove that
such solutions (u, v) belong to Lp1 × Lq1 for any p1 ∈ [p∗,∞[ and q1 ∈ [q∗,∞[. In
general, this regularity cannot reach the space �L∞ × �L∞ taking into account our ar-
gument developed here.

Through this paper, we use standard notation:
W 1,p := W 1,p(RN ) is the ordinary Sobolev space, Lp = Lp(RN ) is the Lebesgue space
equipped with the norm || . ||p and p∗ = Np

N−p is the critical Sobolev exponent, the
Lebesgue integral in R

N will be denoted by the symbol
∫

whenever the integration
is carried out over all R

N ; C∞
0 := C∞

0 (RN ) is the space of all functions with compact
support in R

N with continuous derivatives of arbitrary order.

Let us formulate the assumptions on the perturbations a and b and on the func-
tion f = f(x).
(H1) a, b : R

N → R are continuous functions satisfying

a(x) ≥ a0 > 0, b(x) ≥ b0 > 0, i.e. in R
N ,
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which are coercive, that is

lim
|x|→+∞

a(x) = lim
|x|→+∞

b(x) = +∞,

(H2) the function f : R
N → R is a nonnegative and

f ∈ Lω ∩ L
ω

1−δ , with ω =
p∗q∗

p∗q∗ − (α + 1)q∗ − (β + 1)p∗
.

Here 0 < δ < 1 is a small positive real. We introduce the following function space

E = {(u, v) ∈ W 1,p × W 1,q/

∫
(| ∇u |p +a(x) | u |p + | ∇v |q +b(x) | v |q) dx < ∞}

endowed with the norm

|| (u, v) ||E = (
∫

| ∇u |p +a(x) | u |p dx)
1
p + (

∫
| ∇v |q +b(x) | v |q dx)

1
q

= || u ||1 + || v ||2
where || u ||1= (

∫ | ∇u |p +a(x) | u |p dx)1/p and || v ||2= (
∫ | ∇v |q +b(x) | v |q

dx)1/q.

Since a(x) ≥ a0 > 0 and b(x) ≥ b0 > 0, we clearly see that the Banach space E is
continuously embedded in W 1,p × W 1,q. We also conclude from Sobolev’s Theorem
the continuous imbedding E ↪→ Lp1 × Lq1 , for all p ≤ p1 ≤ p∗ and q ≤ q1 ≤ q∗.

Definition 1.1. We say that a pair (u, v) ∈ E is a weak solution of (S) if

(SV )
{ ∫ | ∇u |p−2 ∇u∇ϕdx +

∫
a(x) | u |p−2 uϕdx =

∫
f(x) | u |α−1 uϕ | v |β+1 dx∫ | ∇v |q−2 ∇v∇ψ dx +

∫
b(x) | v |q−2 vψ dx =

∫
f(x) | u |α+1| v |β−1 vψ dx

holds for all (ϕ,ψ) ∈ E.

Let us remark that the assumptions (H1) and (H2) guarantee that integrals given
in (SV ) are well defined.

Now, we state the main results of this paper.

Theorem 1.1. Suppose 1 < p, q < N, (1.1), (H1) and (H2) are satisfied. Then the
system (S) has at least one nontrivial weak solution (u, v) ∈ E.

Theorem 1.2. Let (u, v) be a solution of (S). Then (u, v) ∈ Lσ1×Lσ2 , with p∗ ≤ σ1 <
∞ and q∗ ≤ σ2 < ∞. Moreover u, v > 0 in R

N and lim|x|→∞ u(x) = lim|x|→∞ v(x) =
0.
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2. Preliminaries

Let us consider the functional I : E → R given by

I(u, v) =
α + 1

p

∫
| ∇u |p +a(x) | u |p dx +

β + 1
q

∫
| ∇v |q +b(x) | v |q dx

− ∫
f(x) | u |α+1| v |β+1 dx.

By assumption (H2) and Sobolev’s inequality, we can see that the functional K defined
by

K(u, v) =
∫

f(x) | u |α+1| v |β+1 dx

is indeed well defined and of class C1 on the space E with

< K ′(u, v); (ϕ,ψ) >= (α + 1)
∫

f(x) | u |α−1 uϕ | v |β+1 dx

+(β + 1)
∫

f(x) | u |α+1| v |β−1 vψ dx,

for all (u, v) and (ϕ,ψ) ∈ E; where <;> denotes the duality symbol from E to
E∗.

Therefore, a weak solution of a system (S) is a critical point (u, v) of I, i.e

I ′(u, v)(ϕ,ψ) = 0 ∀(ϕ,ψ) ∈ E.

In order to prove our main result, we will use the following basic properties.

Lemma 2.1. There exists constant C > 0 such that

f(x) | u |α+1| v |β+1≤ C(f(x)
ω

1−δ + | u |m1 + | v |m2)

with m1 ∈]1, p∗[ and m2 ∈]1, q∗[.

Proof. Since α + 1 < p∗ and β + 1 < q∗, there exists 0 < δ < 1 small enough such
that

p∗ > p̄ and q∗ > q̄,

where
p̄ = α + 1 +

δ

ω( 1
p∗ + 1

q∗ )
, q̄ = β + 1 +

δ

ω( 1
p∗ + 1

q∗ )
.

Then the lemma follows from Young’s inequality with

m1 =
p∗

p̄
and m2 =

q∗

q̄
.
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2003, 16; Núm. 2, 483-494

486



Said El Manouni and Abdelfattah Touzani On some nonlinear elliptic systems. . .

Lemma 2.2. Suppose (H1) and (H2), then
i) E is compactly embedded in Lp × Lq.
ii) K ′ is a compact map from E to E∗.

Proof. i) Without loss of generality, we will show that (un, vn) → (0, 0) strongly in E
for such sequence (un, vn) ∈ E which converges weakly to (0, 0).
Indeed, we have || (un, vn) ||E≤ C for some constant C > 0. From (H1), for a given
ε > 0 and R > 0 such that

a(x) ≥ 4
Cp

ε
and b(x) ≥ 4

Cq

ε
for all | x |≥ R,

we have
(un, vn) ⇀ (0, 0) weakly in W 1,p(BR) × W 1,q(BR),

where BR is the Ball of radius R centered at origin. By using the compact imbedding
W 1,p(BR) × W 1,q(BR) ↪→ Lp(BR) × Lq(BR), we get

(2.1)
∫

BR

(| un |p + | vn |q) dx ≤ ε

2
∀n ≥ n0

for some n0 ∈ N. We also have

(2.2)
4
ε

∫
RN−BR

(| un |p + | vn |q) dx ≤
∫

RN−BR

(
a(x)
Cp

| un |p +
b(x)
Cq

| vn |q) dx ≤ 2

since || (un, vn) ||pE≥
∫

RN−BR
| un |p dx and || (un, vn) ||qE≥

∫
RN−BR

| vn |q dx.

Combining (2.1) and (2.2), we obtain that
∫

RN

(| un |p + | vn |q) dx ≤ ε, ∀n ≥ n0.

ii) The compactness of K ′ follows from the estimate

< K ′(un, vn) − K ′(u0, v0); (ϕ,ψ) >= I1 − I2,

where
I1 =

∫
f(x)(| un |α−1 un | vn |β+1 − | u0 |α−1 u0 | v0 |β+1)ϕdx

and
I2 =

∫
f(x)(| un |α+1 + | vn |β−1 vn− | u0 |α+1| v0 |β−1 v0)ψ dx.

The objective is to prove that I1 → 0 and I2 → 0. On one hand, we have I1 ≤ I11+I12

where
I11 =

∫
f(x)(| un |α−1 un− | u0 |α−1 u0)(| vn |β+1 ϕ) dx
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and
I12 =

∫
f(x) | u0 |α−1 u0(| vn |β+1 − | v0 |β+1)ϕdx.

By choosing δ sufficiently small such that x = 1
α
p∗ + δ

ω

> 1 and p ≤ αx < p∗, we obtain

in view of (H2) the following estimate

I11 ≤|| f ||
L

ω
1−δ

|| | un |α−1 un− | u0 |α−1 u0 ||Lx || vn ||β+1

L
q∗

β+1
|| ϕ ||Lp∗ .

On the other hand, since the imbedding E ↪→ Lp ×Lq is compact, it follows from the
interpolation inequality i.e.

| u |Lt≤| u |σLp | u |1−σ
Lp∗ , ∀u ∈ Lp ∩ Lp∗

,

where 1
t = σ

p + 1−σ
p∗ , that the imbedding E ↪→ Lp1×Lq1 is compact for p ≤ p1 < p∗ and

q ≤ q1 < q∗. Hence, we get I11 → 0 (strongly) as n goes to infinity, since p ≤ αx < p∗.
Now we estimate I12 :

I12 =
∫

f(x) | u0 |α−1 u0(| vn |β+1 − | v0 |β+1)ϕdx

≤ || f ||
L

ω
1−δ

|| u0 ||α
L

p∗
α

|| | vn |β+1 − | v0 |β+1||Ly || ϕ ||Lp∗

where y = 1
β+1
q∗ + δ

ω

> 1. A simple calculation shows that q ≤ (β + 1)y ≤ q∗ for δ small

enough. Consequently, we conclude that I12 → 0 (strongly) as n → ∞.
Finally, using the same argument to estimate I2, we get I2 → 0 (strongly) as n → ∞.
Therefore

K ′(un, vn) → K ′(u0, v0) strongly in E∗.

as n tends to infinity.
This ends the proof of Lemma 2.2.

Recall that (un, vn) ∈ E is a Palais-Smale sequence if there exists M > 0 such
that,
I(un, vn) ≤ M and I ′(un, vn) → 0 strongly in E∗ as n goes to infinity.

Remark 2.1. 1) Let us remark that an optimal value of the generic constant δ is
taken here. This allows us also to consider more lower regularity condition on the
function f.
2) Note that the assumption (H1) gives a compact imbedding result which is used only
to prove that the Palais Smale sequence obtained by Mountain Pass type argument
converges to a weak nontrivial solution.

Lemma 2.3. Suppose α+1
p + β+1

q > 1, let (un, vn) be a Palais-Smale sequence. Then
(un, vn) possesses a subsequence which converges strongly in E.
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Proof. Let (un, vn) ∈ E be a Palais-Smale sequence. We have

I(un, vn)− < I ′(un, vn); (un

p , vn

q ) >= (−1+(α+1
p + β+1

q ))
∫

f(x) | un |α+1| vn |β+1 dx,

since

< I ′(un, vn); (
un

p
,
vn

q
) > =

α + 1
p

∫
| ∇un |p +a(x) | un |p dx

+
β + 1

q

∫
| ∇vn |q +b(x) | vn |q dx

− (
α + 1

p
+

β + 1
q

)
∫

f(x) | un |α+1| vn |β+1 dx.

Hence, we come to the conclusion that

(1 − 1
α+1

p + β+1
q

)(
α + 1

p

∫
| ∇un |p +a(x) | un |p dx

+
β + 1

q

∫
| ∇vn |q +b(x) | vn |q dx)

≤ M− < I ′(un, vn); (
un

p
,
vn

q
) > .

From this inequality, we easily find that (un, vn) is a bounded sequence in E, Since
α+1

p + β+1
q > 1. Consequently, there exists a subsequence still denoted by (un, vn)

such that (un, vn) converges weakly in E.
Now, we claim that (un, vn) converges strongly in E. Indeed, for any pair integer
(i, j), we have

∫
(| ∇ui |p−2 ∇ui − | ∇uj |p−2 ∇uj)(∇ui −∇uj)

+ (a(x) | ui |p−2 ui − a(x) | uj |p−2 uj)(ui − uj)

= I ′(ui, vi)− < I ′(uj , vj); (ui − uj , 0) >

+
∫

f(x)(| ui |α−1 ui | vi |β+1

− | uj |α−1 uj | vj |β+1)(ui − uj) dx.

By Palais-Smale condition, it is easy to see that

I ′(ui, vi)− < I ′(uj , vj); (ui − uj , 0) >→ 0

as i and j tend to infinity.
From the Lemma 2.2 (K ′ is compact), we have
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∫
f(x)(| ui |α−1 ui | vi |β+1 − | uj |α−1 uj | vj |β+1)(ui − uj) dx → 0.

as i and j tend to infinity. From the following algebraic relation

| ξ1 − ξ2 |r≤ ((| ξ1 |r−2 ξ1− | ξ2 |r−2 ξ2)(ξ1 − ξ2))s/2(| ξ1 |r + | ξ2 |r)1−s/2

with s = r, for 1 < r ≤ 2 and s = 2 for 2 < r, we deduce that (un) is a Cauchy
sequence in E, therefore it converges strongly. By the same argument, we show also
that (vn) converges strongly.
This concludes the proof of Lemma 2.3.

3. Proof of the main results

In this section, we give the proof of the existence results, we apply Mountain Pass
Lemma and local minimization to find nontrivial solution. For that reason, we will sep-
arately distinguish two cases related to our study: α+1

p + β+1
q > 1 and α+1

p + β+1
q < 1.

After that, we use an iterative method to prove the regularity result.

Lemma 3.1. Suppose (H1), (H2) and α+1
p + β+1

q > 1, then
1) There exist γ, ρ, such that I(u, v) ≥ γ, for || (u, v) ||E= ρ.
2) I(t(u, v)) → −∞ as t → +∞.

Proof. 1 ) From lemma 2.1, we have

I(u, v) ≥ α + 1
p

|| u ||p1 +
β + 1

q
|| v ||q2 −C0(|| u ||m1

m1
+ || v ||m2

m2
),

with p ≤ m1 < p∗ and q ≤ m2 < q∗.

Denoting by θ and η respectively || u ||1 and || v ||2, we therefore obtain the fol-
lowing minoration of J for any (u, v) ∈ E

I(u, v) ≥ θp(
α + 1

p
− C ′θm1−p) + ηq(

β + 1
q

− C ′ηm2−q).

Which implies that there exists γ, ρ > 0 such that I(u, v) ≥ γ > 0 for all || (u, v) ||E=
ρ.
2 ) From the expression

I(t1/pu, t1/qv) = t(α+1)
p || u ||p1 + t(β+1)

q || v ||q2 −t
α+1

p + β+1
q

∫
f(x) | u |α+1| v |β+1 dx,

it follows that
I(t1/pu, t1/qv) → −∞ as t → +∞
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2003, 16; Núm. 2, 483-494

490



Said El Manouni and Abdelfattah Touzani On some nonlinear elliptic systems. . .

Since α+1
p + β+1

q > 1. Hence, in view of Lemmas 2.3 and 3.1, we can apply the
Mountain-Pass Theorem (c.f. [1]) which guarantees the existence of nontrivial weak
solutions of (S).

On the other hand, in the case α+1
p + β+1

q < 1, we may use the local minimiza-
tion of the functional I to prove the existence result. Indeed, by hypothesis (H2), the
functional I is weakly lower semi continuous differentiable. Moreover, I is bounded
below. In fact, we have

I(u, v) ≥ α + 1
p

|| u ||p1 +
β + 1

q
|| v ||q2 −C || f ||ω|| u ||α+1

p∗ || v ||β+1
q∗ .

Since α+1
p + β+1

q < 1, there exist γ1 ∈]1, p[, γ2 ∈]1, q[ such that

α + 1
γ1

+
β + 1

γ2
= 1,

which implies that

I(u, v) ≥ α + 1
p

|| u ||p1 +
β + 1

q
|| v ||q2 −C || f ||ω (|| u ||γ1

p∗ + || v ||γ2
q∗)

since || u ||p∗≤ D1 || u ||1 and || v ||q∗≤ D2 || v ||2 for some constants D1, D2 > 0.
Then, we have

I(u, v) ≥ α + 1
p

|| u ||p1 +
β + 1

q
|| v ||q2 −C || f ||ω (|| u ||γ1

1 + || v ||γ2
2 ).

It follows from here that I is bounded below. Thus I has a critical point (ū, v̄)

I(ū, v̄) = inf{I(u, v) : (u, v) ∈ E},
which is solution of the system (S). We note that (u, v) must be nontrivial since

I(sϕ, tψ) = sp α + 1
p

|| u ||p1 +tq
β + 1

q
|| v ||q2 −sα+1tβ+1

∫
f(x) | ϕ |α+1| ψ |β+1 dx

for some ϕ,ψ ∈ C∞
0 . Hence, since α + 1 < p, β + 1 < q, we get I(sϕ, tψ) < 0 for small

s, t.
This concludes the proof of Theorem 1.1.

Proof of Theorem 1.2. In this section, we may choose u, v ≥ 0 since we can show
that argument developed here is true for u+ and u−.
Set uk(x) = min{u(x), k}, k ∈ N. For any real i ≥ 1, (ui

k, v) ∈ E. We have∫
| ∇u |p−2 ∇u∇ϕ + a(x) | u |p−2 uϕdx =

∫
f(x) | u |α−1 uϕ | v |β+1 dx
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for all ϕ ∈ E.
Substituting ϕ = (uk)i in this equation, we obtain the following estimate

i

∫
(uk)i−1 | ∇uk |p≤

∫
f(x) | u |α+i| v |β+1 dx.

Due to the fact (uk)i−1 | ∇uk |p= ( p
i+p−1 )p | ∇(uk)

(i+p−1)
p |p and Sobolev’s inequality,

we get

(
∫

(uk)
N

N−p (i+p−1))
N−p

N ≤ C

∫
f(x) | u |α+i| v |β+1 dx

for some constant C > 0.
Setting i = i0 = 1 + p∗ δ

ω , s0 = n
n−p (i0 + p− 1) = N

N−p (p + p∗ δ
ω ). Letting k → ∞, we

conclude that u ∈ Ls0 since

1 − δ

ω
+

α + i0
p∗

+
β + 1

q∗
= 1.

Setting now i1 = 1 + p∗ δ
ω + N

N−pp∗ δ
ω = i0 + N

N−pp∗ δ
ω , repeating the same argument,

we get

u ∈ Ls1 , where s1 =
N

N − p
(i1 + p − 1),

since α+i1
p∗ + β+1

q∗ + ( 1−δ
ω − N

N−p
δ
ω ) = 1 and f ∈ L

ω

1−δ(1+ N
N−p

) for δ small enough.
Iterating this process gives

u ∈ Lsj where sj =
N

N − p
(ij + p − 1),

with ij = 1 + p∗ δ
ω + N

N−pp∗ δ
ω + ........ + ( N

N−p )jp∗ δ
ω . Hence, it follows that

u ∈ Lσ1 for all,
Np

N − p
≤ σ1 < ∞.

On the other hand, by using the same argument as above, we prove that

v ∈ Lσ2 ,
Nq

N − q
≤ σ2 < ∞.

In order to complete the proof of Theorem 1.2, we need the following result.

Claim. fvβ+1 ∈ L
N

p−ε and fuα+1 ∈ L
N

q−ε for some 0 < ε < 1 small enough.
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Proof. Let ε ∈]0,min{1, pδ, qδ}[; using Hölder inequality we obtain
∫

(fvβ+1)
N

p−ε dx ≤ (
∫

f(x)
ωp

p−ε )
N
pω (

∫
v

β+1 N
p−ε

p

p− N
ω )

p− N
ω

p ,

Indeed, in virtue of (1.1) (in particular, we have α+1
p∗ + β+1

q∗ > N−p
N ), it follows that

N
pω > 1. Let us remark also, for reader’s convenience, that p−N + N(α+1)

p∗ ≤ 0 (since
α + 1 ≤ p), which implies

(3.1) (β + 1)
N

p − ε

p

p − N
ω

> q∗

Hence, we deduce from (3.1) and due to the fact that v ∈ Lσ1(σ1 ≥ q∗), that
fvβ+1 ∈ L

N
p−ε since ωp

p−ε ∈ [ω, ω/(1 − δ)]. Similarly, we prove that fuα+1 ∈ L
N

q−ε .

Letting now ϕ = u− as a test function in the first equation of (SV ) implies u ≥ 0
in R

N . Hence, in view of previous Claim , the positivity of solutions follows immedi-
ately from the weak Harnack type inequality proved in Trudinger [18, Theorem 1.2].
Finally, the decay of u and v follows directly from the result (Theorem 1) of Serrin
[12].

4. Concluding remarks

Remark 4.1. When α+1
p + β+1

q = 1, one can show, by the same argument used in
the case α+1

p + β+1
q < 1 that there exists λ∗ such that for all λ verifying 0 < λ < λ∗,

the following eigenvalue problem⎧⎨
⎩

−Δpu + a(x) | u |p−2 u = λf(x) | u |α−1 u | v |β+1 in R
N

−Δqv + b(x) | v |q−2 v = λf(x) | u |α+1| v |β−1 v in R
N

lim|x|→∞ u(x) = lim|x|→∞ v(x) = 0

has at least one nontrivial solution in E.

Remark 4.2. The existence result is also obtained for systems of the form

(S′)
{ −Δpu + a(x) | u |p−2 u =

∑
I fi(x) | u |αi−1 u | v |βi+1 in R

N

−Δqv + b(x) | v |q−2 v =
∑

I fi(x) | u |αi+1| v |βi−1 v in R
N

under the more general assumptions:
fi ∈ Lmi positive, mi ∈ [ri,

ri

1−δ ] where

ri =
1

1 − (αi+1
p∗ + βi+1

q∗ )
,

αi+1
p∗ + βi+1

q∗ < 1, αi > 0, βi > 0 and 0 < δ < 1 is a small positive real.
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