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ABSTRACT

We propose a direct approach to obtain the boundary stabilization of the isotropic
linear elastodynamic system by a “natural” feedback; this method uses local co-
ordinates in the expression of boundary integrals as a main tool. It leads to an
explicit decay rate of the energy function and requires weak geometrical condi-
tions: for example, the spacial domain can be the difference of two star-shaped
sets.
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Introduction

In this paper, we present a detailed proof of a result which has been announced in [3].
This result concerns the boundary stabilization of a linear isotropic elastodynamic
system. Extensions concerning the non-linear case and the anisotropic case are still
in progress.

Revista Matemdtica Complutense 417

2003, 16; Nm. 2, 417-441 ISSN: 11391138

http://dx.doi.org/10.5209/rev_REMA.2003.v16.n2.16815



Rabah Bey, Amar Heminna and Jean-Pierre Lohéac Boundary stabilization of the linear. . .

Let © be a bounded connected open set of R? such that its boundary I satisfies

I is of class C2,
I'= FQ U Fl 3 with (].)
meas(Tg) #0, meas(Ty)#0, LToNT;=0.

Given x, a point of I, we denote by v(x) the normal unit vector pointing outwards
of Q.
For a regular vector field v = (v1, v, v3), we define

1
v, =0y, &,(v)= i(vw +v,,), o(v)=2us(v)+ A div(v)Is,
where \ and 4 are the Lamé coefficients and I3 is the identity matrix of R3. Let A

and B be two positive constants. We consider the following problem which has been
introduced by Lagnese [10].

u” —div(o(u)) =0, in Q xRy ;

u=20, on I'g x R, ;

c(u)v+Au+Bu' =0, onT; xRy; (2)
u(0) =u’, in Q;

u'(0) = ut, in Q;

where u’ = 9u/ot, u” = 9*u/ot>.

Let L2(Q) (resp. H'(£2)) be the space of vector fields v such that every component
of v belongs to L2(Q) (resp. HY(Q)).

We introduce the space Hp, () = {v e H'(Q) /v =0, on I';} and we assume

(u’,u') e H%O () x L4(Q). (3)

Under this assumption, by using semi-group theory, one can show that problem (2)
is well-posed. The energy function associated to this problem is given by

1 1
E(u,t) = 5 /Q(|u’|2 +o(u):e(u)) dx + 3 ). Alu)?dr,

where o(u):e(u) = tr(o(u)e(u)).

A boundary stabilization result for this system has been proved by Alabau and Ko-
mornik in [1] under restrictive conditions concerning the shape of Q as well as some
data of the problem (in fact, I'; is close to a sphere). This result has been extended
firstly by Alabau and Komornik in [2] for the anisotropic case and secondly by Horn
in [7], for the isotropic case under weaker geometrical conditions: the author used
here micro-local analysis methods.

Recent works by Guesmia ([4], [5], [6]) extend results of [2] under similar restrictive
geometrical conditions.
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We propose here a direct approach by using local coordinates in the expression of
boundary integrals. Our conditions are only geometrical and less restrictive than in
works by Alabau and Komornik or by Guesmia. Our proof is constructive and explicit
decay rate estimates are obtained as done in these works. Furthermore, the reader
will observe that similar conditions have been introduced by Lagnese [9] for some
anisotropic linear elastodynamic systems and by Lasiecka and Triggiani [11] for the
wave equation.

We assume that there exists a vector field h = (hy, he, hg) such that

hG(Cl(ﬁ))B, hr<0,onTy, hwr>0,onTly, (4)

and
Ja>0/ Vve (Cl(ﬁ))3 . 0y(V) by vk > ao(v)ie(v),
mﬁax (div(h)) — mﬁin (div(h)) < 2c. (5)

Under above assumptions, we obtain the following result.

Theorem 1. Assume (1). If there exists a vector field h satisfying (4) and (5), then
there exists some constant w > 0 such that for every initial data satisfying (3), the
solution u of (2) satisfies

Vt>0, E(ut)<E(u,0)exp(l—wt).

Remark 1. Choosing v = x in the first line of assumption (5), we get div(h) > 3a,
in Q.

Remark 2. Since Q is bounded and I satisfies (1), I'; is compact and using continuity
of h and v given in (1) and (4), we have

Jk>0: h(x)v(ix) >k, Vxel;.

Remark 3. Theorem 1 remains true when replacing assumption (5) by the following
weaker one.

Ja>0/ Vve (Cl(ﬁ))g, / 04y (V)i y0, 1 dx > a/ o(v):e(v)dx,

Q Q
max (div(h)) — min (div(h)) < 2ec, min (div(h)) > 0.
9) ) Q

(6)

Indeed the reader will note that assumption (5) is used at the beginning of proof of
Lemma 3, Subsection 3.1. Computation also holds under (6).
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Figure 1: An example of open set © (Remark 4).

Remark 4. This result can be applied when Q and its boundary I' satisfy (1) and

h(x) =x—x¢, (a =1),
I'p={xel'/hx)rix) <0},
IN={xel/hx)vx)>0}.

Especially, a possible case is: Q = Uy \ U, where Uj is a convex open set, Us is a closed
set, star-shaped with respect to one of its points, xg, such that {xq} C Us C Uy (see
figure 1).

~—

This case has been studied in [1], [2] [4], and [5] and for a particular shape of © (T'; is
supposed to be close to a sphere) and in [7] by means of micro-local analysis methods.
Above Remark 4 can be extended in the following way.

Theorem 2. Assume (1) and suppose that, for some xo € R3,

(x)

v(x) <0, ifxely,
(x —x0).v(x) >0,

ifxely.

Then there exists some constant w > 0 such that for every initial data satisfying (3),
the solution u of (2) satisfies

Vt>0, E(ut)<E(u,0)exp(l—wt).

This Theorem is proved at the end of this paper. Starting from vector field x — xg,
we build some vector field h such that Theorem 1 can be applied.
This result extends previous geometrical case as follows: Q = U; \ Uy where Uy C Uy
and Uy, Us are star-shaped with respect to xo € Us (see figure 2).
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Figure 2: An example of open set Q (Theorem 2).

Remark 5. Theorems 1 and 2 can be extended to the n-dimensional case. To this
end, we only have to rewrite boundary integrals conveniently.

They can also be extended to the case when A and B belong to C!(I'y).
Furthermore, Theorems 1 and 2 remain true with the following weaker assumptions
concerning A and T'g.

(A=0 and meas(I'g) >0) or (A>0 and meas(Ty) =0).

This paper is mainly devoted to the proof of Theorem 1.

After introducing some notations and definitions in Section 1, we deal with the well-
posedness in Section 2 and we conclude with the stabilization in Section 3, where we
describe some preliminary results and give the proof of Theorem 1. Theorem 2 is
proved in Section 4.

1. Notations and definitions

In this paper, we use the convention of repeated indices. As usual, we write tr (7) =
Ti1 + To2 + 733 = Ty, V.W = U, W, O(V) :E(V) = 01‘7(V>51‘7(V)-

1.1. Geometrical notations

We define Q, T, v as above. Since I is of class C2, for every point x of I', we can build
a local C2-diffeomorphism ¢ from an open connected subset I' of R? onto some open
neighborhood of x in I". Then vectors

o 4 .
:%(d) (X)) ) aE{l,Q},

are independent and generate the tangent plane to ' at x, Tx(T"). Furthermore, we
denote by T'(T') the tangent bundle (see [12] and [15]).

a,(x)
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Then we define:
e the metric tensor g related to ¢, gos = as.ag, V(a, 8) € {1,2}%;
; . . B
e the inverse tensor of g, (go‘ l<a,B<2’
We denote by m(x) the orthogonal projection on Tx(T') and, for a given vector field

v:Q — R3, we will write

vxel, v(x)=

with vp(x) =71(x)v(x), v,(x)=v(x).r(x).

We denote by Or (resp. 0,) the tangential (resp. normal) derivative.
If v is some regular function, the transposed vector of drv is the tangential gradient
of v and is denoted by Vpv. We have

Vvo=Vrv+09dvv,onl. (7)

1.2. Strain and stress

If the vector field v is regular enough, as well as in [12] and [15], we can write

dv = w(Opvy)m 4 v, (Orv) + (O, vy )T (8)
+v ((Orvy) — v (Orv) + (Oyv,)7) , on T,

where V (resp. 7) is the transposed vector (resp. matrix) of v (resp. 7).
Furthermore, we can define the strain tensor £(v) and the stress tensor o(v) (see
introduction). We have

e(v) =ep(v) +vEs(v) +es(v)v+e,(v)vo, onT,
o(v)=or(v)+vas(v)+os(V)T+o,(v)vr, onT,

with

0, (V) = 2ue, (v) + Altr(er(v)) + & (v)) .

It can be observed here that terms ep(v), op(v) (resp. eg(v), os(v)) correspond
to some symmetric 2 X 2-matrices £g(v), o7 (v) (resp. some vectors £g(v), ds(v) of
dimension 2) such that in some orthogonal basis (71, 72, ) where 71, 72 belong to the
tangent space and v is the unit normal vector, tensors (v) and o(v) are represented

by matrices
<§_T(v) és(v)> and (?_T(V) 55(")).

es(v) eu(v) os(v) ou(v)
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Remark 6. Let v be in H!(Q). From previous formule, we deduce

= ep(v):ep(v) +2les(vV)|* + [en (v)I?;
o(v):e(v) = 2u (en(v):er(v) + e, (V)[?) + 4ules(v)|?
A {r (er(v)) + £,(v))?

We will have to consider the following vector spaces.
Ls(Tx(I')) is the space of linear symmetric operators of Tx(I"),
Ls(T(I')) is the space of symmetric operators of T'(I").

Remark 7. drv(x) belongs to Ls(Tx(T)); its eigenvalues are principal curvatures of
I' at x.
1.3. Some functional spaces

Consider a tangent field vy : I' — T(T') with vo = vla; + v2a,.
We will say that vr belongs to L2(I', T(T)) if v! and v? belong to L?(T"). In L(T, T(T")),
we define the following norm

1/2
O ( / vT|2dr) : )

/
which is equivalent to the norm vp — (||v1||iz(p) + \\U2Hiz(p)> .

Similarly, v belongs to H'(I',T(I")) if v! and v? belong to H}(T') and we define a
norm in HY(T, T(T")) by the following formula

1/2
Ivrllm ) = (||U1||%{1(r) + ”7)2”%{1@‘)) : (10)

A field 77 : T — L(T(T")) belongs to L2(T, L,(T(T))) if (r7:77)Y/? : T — R belongs
to L2(T") and we take

7z c.creyy) = (o) 2 e (11)

Remark 8. If vp- € HY(I', T(T")), then er(vy) € L2(T, Ls(T(T))).

Another useful space will be V= {v € H(Q) /vy € HY(I', T(T))} with the following
norm

/
Ivllv = (IViEs o + vl ery) - (12)

Proposition 1. By the following formula, we define in H*(I', T(T')) a norm which is
equivalent to the norm given in (10)

Vel = [ (vel? + extvr)ienter)) dr.
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Proof. We only have to prove that there exists a constant C' > 0 such that
Vel rey) < Cllvell,  Yvr € BT, T(T)).

Assume that such a constant does not exist.

Then there exits a sequence vg€ )} which satisfies

||V¥€)HH1(1",T(F)) =1, VkeN,
er(vi?)) =0, in L3I, £,(T(T)),
Vi) =0, in L3, T(D)).

ko

855 ’

(k)

Setting v’ = = vFa; +v*2ay and " 5= we get

(vfga + gA"‘gngf&“> — 0, inL*(I).

With a = 3, we easily get (v)kll + vf“;) — 0, in L*(I).
We have gan, (v%’ + gmgguv)k/\”) = Ganv’§ + gguvﬁ]”.

This expression vanishes in L%(T') as k — oco. We write this for (3,7) = (1,1),
(8,m) = (2,2) and (8,7) = (1,2) and we get

(g1 L + g21v"?) — in L2(T);
(9220’3 2 + ga1v’y') — in L*(T') ;
(91111 5+ gaov’?) — in L*(T) ;
( —&—UkQQ) — 0, in L2( ).

Set ng) = gvé?)

= w*'a; + w*?ay. From (v¥)> — 0, in L3, T(T")) and previ-
ous computations, one can easily deduce that sequences (w*'), (w*'), (w¥' +w'y),
(w"? + w%') vanish in L*(T).

Thanks to Korn’s inequality in I', we get that sequences (wkl), (wkz) vanish in
HY(T).
Hence, (v*'), (v*?) vanish in H(I') and this is impossible. |

2. Well-posedness

By using semi-group theory, we can show that problem (2) is well-posed. This classical
proof which is left to the reader leads to the following result.
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Proposition 2. If (u’,u') belongs to Hy, () x L(S2), then problem (2) has one and
only one (weak) solution u which satisfies

u € C°([0,4+00),Hp, (2)) N C'([0, +00),L*(Q)) ;
0 < E(u,t) < E(u,0), for almost every ¢ > 0.

Furthermore, if (u®, u') belongs to (H?(Q) NHy, (€2)) x Hf, (Q) and if
o(u®).v+ Au’ + Bu' =0, 0on I'y;
then the (strong) solution of (2) satisfies

(', u") € CO([0, +o0), (B () N HE, () x Hb, () x L*()):

/(a(u’):e(u’) + \div(a(u))|2)dx+/ Aju'|?dl
Q

Iy

< /Q(U(ul) e(ul) + | div(o(u®))[2) dx + /F Alul[2dr .

3. Stabilization

Following Komornik [8], we will prove here that the energy function is exponentially
decreasing with respect to time.
We recall the following fundamental result which is proved in [8].

Lemma 1. Let E: Ry — Ry be a non-increasing function and assume that there
exists T > 0 such that

/ E(s)ds <TE(t), Vt>0.
¢

Then we have

E(t) < E(0) exp <1 - %) VST,

First, we can prove that the energy function is non-increasing.

Proposition 3. Under assumptions (1), (3), the weak solution u of (2) is such that
w'V/B belongs to L} ((0,+00),L%(T'1)), the energy function is non-increasing and
satisfies

T
E(u,T)—E(u,S):—/ / Blu'|*dldt, 0<S<T < +o0.
s Jry

425 Revista Matemdtica Complutense
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Proof. Assume first that u is a strong solution of (2) (with convenient initial data).
We can write

E'(u,t) = /Q (Wu" +o(u):e(v)) dx+ [ Au'dl

Iy
= / (u'.div(o(u)) + o(u):e(u’)) dx+/ Auu’ dll
Q I
= (c(u)v) u'dl'+ [ Auu'dl
Fl F1
= —/ BlW|*dr.
Iy

We obtain the result by integrating between S and T'. A density argument completes
the proof. ™

In order to apply Lemma 1, we have to prove some preliminary results.

3.1. Preliminary results
In this Subsection, we assume (1) and

(lzo,ul) € (H*(Q) N Hr, () x Hr, (Q);

u v+ Au’ + Bul =0, 0onTy; (13)

and we consider the (strong) solution of (2).
Let h be a vector field satisfying (4) and (5). For some positive constant 3, we define

Mu =2(h.V)u + fu.

The value of 8 will be chosen later on.
Lemma 2. The strong solution u of (2) satisfies

T

/ST/Q(diV(h) ~B) (W — o(w):(w)) dxdt + 2/

T T s
- [/ u’.Mudx} +/ /h.u|u'\2drdt
Q S S r

T
+/S /F((a(u)y).Mu —h.ovo(u):e(u)) dldt .

/ O'U(u)hk7jul7k dxdt
Q

Proof. We use the multipliers method (see [8], [13]). Thanks to the first equation in
(2), we may write

T T
/ u”’ . Mudxdt = / / div(o(u)).Mudxdt . (14)
S Q S Q
Revista Matemdtica Complutense 426
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e Consider the left-hand side.

T
/ u’ Mudxdt = [/ Mudx} / /u M dxdt
s Ja
{/ Mudx}
T
—2/ /uh]uwdxdt—ﬁ/ / ['|? dxdt .
s Ja
We have

T
2/ /u;hjuiddxdt / /hjaj lu'|?) dxdt
s Ja
/ /hz/|u |2dth—/ /le )|u'|? dxdt .

T
/ u’ Mudxdt = [/ Mudx] / /hu|u | dldt
S Q (15)

/ (div(h) — 3) |u'|* dxdt .
Q

Hence

e Now, we consider the right-hand side.

/ /le ).Mudxdt = 2/ /JU7 YAk, dxdt
+ﬁ/ /u div(o(u)) dxdt .

T T
/ /owd(u)hkuwC dxdt :/ /aw(u)l/]hkul,k dldt
s Ja s Jr

~ é ! /Q 00y (W), (hiu, 1) dxdt

We have

oy, (W) hi yu, 1 dxdt

/
T
f/ / oy, (W) i, dxdt ;
Q
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and
T 1 (T
/ /O'”( )hku”kdxdt —/ /hkak ) (u))dxdt
s Ja 2 5./
1/ /le (u):e(u) dxdt
2 /s Ja
17T
——/ /h.z/o (u) dl'dt
2 /s Jr
Furthermore

/ST/Qu.div( ) dxdt = / / youdl'dt — /ST/QU(U)ZE(U)dth.

Hence

/ /dw ). Mu dxdt = /T/(div( h) — B) o (u) : £(u) dxdt

—2/ /a” u)hy U, dxdt (16)
// ).Mu—h.uvo(u):e(u)) dl'dt.

We deduce the required result from (14), (15) and (16). |
Lemma 3. There exist 3> 0 and C; > 0 such that

T

T
C’l/ Edtg[/ u/.Mudx}
s o s

+/ / hov (pldyur|® + (2u + N)|0yu,|?) dldt
To

/ / < — -3 A|u|2—ﬂBu.u’+h.uu’|2) dUdt
Iy

—/ / 2(Au+ Bu).(h.V)u + h.vo(u):e(u)) dl'dt.
s Jr,

Proof. Lemma 2, (4) and (5) give

T
/ ((div(h) = 8) (Ju']* = o(u):e(u)) + 2ac(u):e(u)) dxdt

S JQ

T T
< - [ u/.Mudx] +/ / h.v |u'|? dTdt
TQ S S JIn

+/S /F((U(u)y).Mu —hwo(u):e(u)) dl'dt.
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Since (5) holds, we can use Remark 1 and choose 8 > 0 such that
B < div(h) < 2o+ 3, in Q; (17)

and C7 > 0 such that

T

T
6’1/ Edt < — [ u’.Mudx}
s Q s

+/ST/F (%A\uﬁ +h.y\u’|2) drdt (18)
+%j£«d@ﬂﬁh—hyMM£mDﬂw.

Above inequalities hold if we use assumption (6) instead of (5).
We write u = ur + u,v, on I'. Because of Dirichlet boundary condition on 'y, we
have

Mu=2h.V)u=2hvd,u, onTly;

and, with our notations, using Remark 6, we get

o) =og(u) + o, (0)v = pdyur + 2 + A)(Oyuy)v, onTy;
o(u):e(u) = dules ()] + (20 + Nle, (w)]?
= pld,ur)® + (2p + N)|0,u,[?, onTq.

Hence
/1“ ((c(u)v).Mu—hwvo(u):e(u)) dl'dt

(19)
:/ o (jldyurf? + (2 + \)|0,uy[?) dT.
To
Using the boundary condition on I'y, we get
/ (o(u)v).Mudldt
h (20)
= —/ 2(Au+ Bu).(h.V)udl' — 8 [ u.(Au+ Bu')dl.
Fl 1_‘1
We deduce the result from (18), (19) and (20). [
Lemma 4. There exists Cy > 0 such that
/ u'(t).Mu(t)dx| < CoE(u,t), Vt>0.
Q
Proof. Given t > 0, for every n > 0, we can write
[ dwix| < DBy + 5 (Ml
Q 2 2n
429 Revista Matemdtica Complutense
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We have
Mg = /Q(\2(h.V)u|2 + B2[ul? + 4pu.(h.V)u) dx
= /Q(\z(h.V)uF + #2ul? + 2607 (Ju?)hy) dx

:/(\2(h.V)u|2+ﬁ(6—2div(h))\u\2)dx+2ﬁ/ ho [uf2dr.
Q I

Setting R = sup |h|, we get thanks to (17)
Q
[ Mulffa gy < 4R2/ |Vu|?dx 426 [ ho|u?dl.
Q N1

With Korn’s inequality, we can find the smallest positive real number R; (depending
on h and ) such that

AR? (/Qo(v):a(v) dx+/F1 A|v|2dr)

2432/|Vvl2dx+26/ holv?dl', Vv e Hy, (T).
Q

1]
Then we get
/ 2R? 2
u . Mudx| < = ||u ||]L2(Q) +— o(u):e(u)dx+ [ Alul[*dl | .
Q n Q Iy
The choice n = 2Ry gives the result with Co = 2R;. [ |

Lemma 5. There exists C3 > 0 such that, for every n in (0,1),

T
/ |u|2drdt<—E +77/ Eut)dt, 0<S<T<+oo.
S Fl

medskipProof. We proceed as in [8]. We define z, depending on ¢, as follows

{ div(o(z)) =0, inQ;

zZ=u, onlI'.

We have

/ z. div(o(v)) dx = / u.(o(v)v)dl', YveH*(Q)N H%O(Q) .
Q I
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Using the definition of the energy function and Proposition 3, we can find some
positive constants ¢y, ca, ¢}, ¢5 such that

/ |z|? dx < cl/ \u\QdF < o F;
Q T

/ |z'|? dx < c'lf |W'|?dl < ch(—E').
Q I
Furthermore, we have

/Qa(z):e(u —z)dx = —/Q(u —z).div(o(z)) dx + /Fl(u —2).(o(z)v)dl' =0.
Then

/QO’(Z)ZE(U) dx = / o(z):e(z)dx > 0.

Q
From (2), we deduce

0= /Qz.(u” — div(o(u)) dxdt

/Qz.u”der/Qa(z):s(u)dx/Fl z.(o(u)v)dl’

:/z.u”dx—l—/a(z):a(u)dx—i—/ u.(Au+ Bu')dl.
Q Q I,

/ A|u|2dl"§—/z.u"dx—/ Bu.u' dl.
T Q 11

For 0 < S < T < o0, we get

T T
/ / Alu|? dldt < — {/ z.u dx}
s Jr, Q s
T T
+/ /z'.u’ dxdtf/ / Bu.u' dldt .
s Ja s Jr,

Let C be a positive constant, large enough. Using Cauchy-Schwarz inequality and
above estimates, we can write for every 6 > 0,

Hence

T T
/ Alul>dldt < CE(u,S) + c/ (—E'(u,t))Y2(E(u,t))/2 dt
S Iy S

T
+B/ lu| |u’| dTdt
S I
co

T
< CE(u,S) + —/ E(u,t)dt + %E(u, S)

2 Js
1 T B2 T
+—/ / A|u|2drdt+—/ || dTdt .
2J)s Jr, 24 Js Jr,

431 Revista Matemdtica Complutense
2003, 16; Num. 2, 417-441



Rabah Bey, Amar Heminna and Jean-Pierre Lohéac Boundary stabilization of the linear. . .

With Proposition 3, we get

C C B
2 < - R N
/ /Fl |u|® dldt ( 0 > E(u,S)

% E(u,t)dt.
An :
We now choose 6 = Yol and the required result follows.

3.2. Proof of Theorem 1

We assume (1) and h satisfies (4) and (5) (or (6)).

We first suppose (13) and we consider the (strong) solution u of (2).

The energy function is non-increasing (Proposition 3). From Lemma 4, we deduce
T

— [/ u/.Mudx] < 2C%E(u,S).

Q

S

Since h.v < 0 on I'y, Lemma 3 gives

T
01/ Edt <2C5E(u,S)

S
/ / ( __5 A|u|2—ﬁBu.u'+h.Vu’|2) drdt
I'y

7/ / (2(Au + BY').(h.V)u+h.vo(u):e(u)) dl'dt.
I'y

There exists ¢ > 0 such that

T T
g/ |u|2dth+c/ [u'|? dTdt .
S F1 S F1

T
/ Bu.a’ dldt
S I

Hence, using Proposition 3, we can find C4 > 0 and C5 > 0 such that

T

T
Cl/ Edt §C4E(u7S)+C5/ lu|? drdt
S

S Iy

/T/ (2(Au+ Bu).(h.V)u+ h.vo(u):e(u)) dldt.
|1
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With Remarks 2 and 6, this can be written
T

T
01/ Edt < O4E(u, S) + 05/ |u|2dth
S S JT

T
_/ / 9(Au + Bu').(h.V)udldt

—2]<:M/S /F1 (er(u):ep(u) + [e, (w)]* + 2[eg(u)[?) dldt

T
_mfs /F (6 (ex(u) + & (w))? dTdt .

(21)

Now, we estimate two integrals which appear in the right hand side at the second row
of the above formula

T
e Estimate of T; = / / 2Au.(h.V)udl'dt.
S Iy

We denote by C some positive constant which is independent of u and large enough.
1
We have u.(h.V)u = §h.V(\u\2).

Setting u = ur + u,v and h = hy + hyv, on I'1, we use (7) and we get:
u.(h.V)u = %VT(|U|2).hT + hyur.(O,ur) + hyu, (Oyu,), onTy.
First, we have
/F AVr(|ul*).hy dldt = f/r Alul* div(hr) dTdt .
1 1

Hence

AV (Jul?).hy dF‘ <c | ppar. (22)

Fl 1_‘1

Using eg(u) (see Subsection 1.2), we can write
hyur.0yur = hy,ur.(2¢5(u) + (Orv)ur — Vru,), on 'y .

Let 6 be some positive number. We can write

/ 4AhVuT.55(u)dF‘ ge/ |5S(u)|2dF+% lur|?dT . (23)
I I 'y

Since h, and drv are bounded, we get

/QAh,,uT‘(aTu)quF‘<C lur|?dT . (24)
Fl Fl
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Now, we observe

/ h, ur.Vru, dl' = —/ u,, div(h,ur) dl
Fl 1—‘1 T

= —/ hy u, div(ur) dT' — / w, Vrh,urdl.
Fl T 1_‘1

Proposition 1 implies

c
/ 2Ahl,u,,div(uT)dF‘ g9|\uT||§+—/ 2 dr.
r, T 9 r,
Hence

C
€T(UT)I€T(UT) dF+ g / \u\QdF (25)
151

/ 2Ah, ur.Vru, df‘ <40
Fl I‘1

We also can write

/2Ah,,ul,(8,,u,,)df <9 |(9,,ul,\2df‘+€/ a2 dr . (26)
Iy I 0 I

Finally, (22)—(26) give
T
|Z,| < 9/ / (|0 |* + er(ur):er(ur) + [es(u)|?) dldt
s Jr,

T (27)
+€/ lu|? dTdt .
0 Js Jr,

We emphasize that, in (27), 6 is a positive number which will be chosen later on and
C is a positive constant which does not depend on u.

T
e Estimate of Zo = / / 2Bu’.(h.V)udldt.
S Iy

Here, we use (8) and we get

u.(h.V)u= u_’T(3TuT)hT + uyﬂ(aTy)hT + hyu_'TayuT
+ul (Oru, )hy — v, ur (Orv)hy + ul,(,u,)h,, on Ty.

This can be written as follows

u'.(h.V)u = u.(0rur)hr + (u, 0y — ul,ur).(Orv)hr
+u, Vru, hy + h,(wp.0,ur +u,(0,u,)), onTy.

As above, since h and drv are bounded, we get

C
/F 2Bu/.(Orur)hr df‘ < Ollur|? + g/r [u/p|? dl; (28)
1 1
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/2B(uyu'T—u:,uT) (aTy)thr‘<0 lu?dl’ + — /|u|2dF (29)
T

Under assumptions about {2, we can observe that I'; is a compact manifold of dimen-
sion 2. So, we can build a finite number of local maps and an associated partition of
unity (01,72, ..,9%). Denoting by U, the support of ¥,, we can write

L
/ 2Bu),Vu, hpdl = / 2BY u, Vru, hrdl.
ry

We consider one of the ¢ terms of the previous sum. Omitting the index 7, we denote
U

Using notations introduced in Subsection 1.1, we write hy = h'a; + h2aq. Setting
lg| = |det (g)], W = ¢~ 1(U), we get

/ 2BYu., Vru,.hy dT
U

_ o T INuy09¢) 1  Ouyod), 1/2
= [ 2pwesyu o0 (Mt Ont 2 22 g2 g .

We observe that ¢ o ¢ is continuous and compactly supported, v, = u, o ¢ belongs to
HY2(W), vy llma/2wy < Clluwllgizy and we define two subsets of W

W* ={(&,&)/h'(&1,8) >0}, W™ ={(&,&) /' (&,&) <0}.
We have

/W23<19o¢) VZZ”W |1/2 dgy dé

= [ 2mwoon g
ov,
+/W_ 2B(’L9 o (ﬁ)vya—&

2 || 12 dey dés

ht|g|'/? dé; dés .

1/2
Setting 1 = ((19 o ¢)h1|g|1/2) ,in W, we can write

o ; Ouy g 1/2 _
/W+ 2B(v ¢)Uu—a%l(h |9) dé&; dés /W 2By*v uag dés
- / 2By, 20 ge e, / Be (|0, ) 2L de, de
w+ w+

231 96
We have
w T
‘ [/ By|v V|2 d§1 dgg] <CE(u,S).
w+
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We can observe that 1) is compactly supported in W, and ) = 0, on OW ™. We define
function G by

G=1vv,, nWHrxR,, G=0, in(R*\WT)xR,.
We have

/ (9(1/)111,) - /a_G
/W+ 2B1/}UV afl dfl d§2 = /Rz 2BG 851 dfl d§2 .

Let G be the Fourier transform of G, with respect to &;. We can write

/ 2B¢U;a<w”") d, des = / 4B G G diy dés .
Wt 081 R?

This implies

T

T
/ / 2By, Oliw,) d&y d& dt = [/ 2B |G di dé,
s Jw+ R2

0& s

But

[ mIGE dn | < G ey < Calus ey

Hence, using the energy function and Proposition 3, we get

4 , O(Yvy)
/s /W+ 2By, 9% d&1 d&s dt

<CE(u,S).

For the integral in W™, we replace ¢ by ¢ such that ¢(&1,&) = ¢(—£€1,&2), a1 by —ax,
h' by —h!, respectively and we proceed as above. We can also get a similar result
concerning the integral terms containing h2.

Finally we obtain

< CE(u,S). (30)

T
/ / QBU;,VTUV.I’IT dl’ dt
S Iy

Using eg(u), we get
h, wp.0,ur = h, wp.(2e5(u) — (Vru,) + drvur), on I'y;

and, as well as for (23) and (24),

/ 2Bh, uy.(Orv)ur dF‘ <C [ (7 + |url?) dr; (31)
Fl F1
/ 4Bh, wp.cg(u) dl“‘ <O [ les(u)|?dl + ¢ [u/p|? dT . (32)
Fl Fl 9 Fl
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Now, we compute

T
/ hy Wy Vo, dUdt
S Ty

= |:/ hy uT.VTul, dF:| / / h uT VT’U, )dth
Fl 1_‘1

= [/ h, ur.Voru, df} / / u d1v (kup)dl'dt .
Fl l—‘1

Since d%v(hyuT) =h, d%v(uT) + Vrh,.ur, Proposition 1 gives

/ 2Bu/udiv(hyuT)dF‘ §0||uT||%+9/ /|2 dT . (33)
r T 0 Jr,

Now, we consider / h, up.Vpu, dI.
I
Given t > 0, let ¢ be in HY(T';) (notice that H'(I';) = H}(T'1)) such that

¢ = Ar¢ = div(ur)(t).

Since d%v(uT)(t) belongs to H~/2(T'y), ¢ satisfies

{ IICIIngré) < Cllur(®)llezw, vy » (34)
¢ € H2(Ty) and [[¢llus/2(r,) < Cllur s,z -
Then we have
/ hy,ur.Voyu, dl' = —/ u, div(hy,ur) dl
Iy 151 T
= 7/ u, Vohy,.updl 7/ uuhl,(dl“+/ Uy hy ApCdl.
Iy Iy Ty
First, we can write thanks to (34)
/ u, Vrh,.ur dF’ <C [ |u*dl,
1N Iy
’/ u,,h,,CdI“ <C | (Ju)*+[¢Hdt <C [ |uf*dl.
I, Iy ry
Secondly, we have
—/ u,hy Ap¢ dl = / (=Ar) Y4 (u,hy) (—Ag)3/4¢dT
Fl l—‘1
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and, again with (33),

LA%%Aﬂﬂﬁcuﬂmmemmwﬁﬁﬂw@my
1

gc(/|m%W+wm;mQ-
I

With Poincaré’s inequality and Korn’s inequality, we finally get

Hence

/ hl, uT.VTuV dr’
I

/ 2Bhy, up.Vru, df‘ < CE(u,t). (35)
Iy

Observing that the energy function is non-increasing and using (33), (35), we obtain

T
/ / 2Bh, u}.Vru, dUdt| < CE(u,S)
5 h . o T (36)
+0/ llur||? dt + —/ / || dTdt .
s 0 Js Jr,
Using boundedness of h, we get
/ 2Bh,,u'yayude‘ <o [ 1oupar+S [ jwpar. (37)
Fl Fl 9 F1
Finally, with (28)—(32), (36) and (37), we obtain
T
|Z5| < 9/ / (|0vus |* + er(ur):er(ur) + [es(u)|?) dldt
5 (38)

¢ T 2 /12
+— (lu|* + |u'|* dldt + CE(u, S).
0 S I

Again, we emphasize that, in (38), 0 is a positive number which will be chosen later
on and C' is a positive constant which does not depend on u.

e End of the proof.

With (21), (27), (38), we obtain that there exists two positive constants Cs and Cy
such that

g Cr g 2 P
Cl/s Edt<CgE(1;,S)+7/S /1“1(|u| + |u'|?) dl'dt
+29/S T/F (ex(w):er(u) + e (w)[? + |es(w)[?) dTdt
—Qk/L/S /r (er(u):er(u) + [e, (w)]* + 2[eg(u)|?) dldt

T
_k)\/s /F (67 (e7(w)) + £ (u))? dTdt

(39)
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From the relations
er(u) =ep(ur) + u,0rv =ep(ur) +er(u,v), onl,
we have

er(u):er(u) =
er(ur):er(ur) + 2er(ur) er(uyv) + er(uyv)ep(u,v), onTy.

Using |er(ur):er(u,v)| < Oer(ur):er(ur) + (40) " ter(u,v) er(u,v), we get

1

er(u):er(u) > (1 —20)er(ur):er(ur) + (1 - %> er(uyv):er(uy,v), on Ty .

Since er(uyv):er(u,v) < C [ |uy|? dT, we deduce from (39) that there exists Cg > 0
r
such that '

Cl/ Edt < CsE / /F (Jul® + [u'|?) dTdt
+26’/ /r er(u):er(u) + [, (u)|* + [es(u)[?) dldt
1
—2Im/s /F (1= 20)er(u):er(u) + |e, (0)]* + 2leg(u)[?) dldt.
1
Then, for 8 > 0 small enough, we can find a positive constant Cg such that
Cl/ Edt < CsE(u +Cg/ / (Jul? + ['|?) drdt .

Thanks to Proposition 3 and Lemma 5, there exists C7¢p > 0 such that, for every

n >0,
010
e E dt < =2 Y+1n E dt .
Hence, for n small enough, we conclude the proof of Theorem 1 by applying Lemma
Cy —
1 and by setting w = M
C1o

Now, we can observe that above constants (especially C, Cio, 7 do not depend on the
strong solution u of (2). Hence, by a density argument, this result can be extended
to a weak solution of (2). |

4. Application: proof of Theorem 2

We show that Theorem 1 can be applied with the following vector field.
h(x) = (x —xo) + ph(x)
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where p is some positive constant and h e (Cl(ﬁ))3 is such that
I~1:O, on Iy, fl:u, onl.
e h satisfies (4). Indeed we have

h(x).r(x) = (x — x¢).v(x) <0, itxely,
h(x).v(x) = (x —x0).v(x)+p>0, ifxel;.

e h satisfies (6). We have
/ 0y (V)i vy dx = / 0,(V)&, dx+p/ O'W(V)Ekdvl,k dx.
Q Q Q

Using Korn’s inequality, we can build a constant C' (fl) > 0 such that

/ O’ZJ(V)%]CJVZ’k dx
Q

< O(fl)/ga’(v):é‘(v) dx

and

/ 04y (V) ey Vo i dx > (1 - pC(fl)) / o(v):e(v)dx.
Q Q

We choose a = 1 — pC(h) and get a > 0 for p small enough.

Now one can easily show that all conditions in (6) are satisfied if

p<min( 1~ = 2~ = 5 = )
C(h) 2C(h) + mgx(div(h)) - m%n(div(h)) , |mg_%n(div(h))|

This completes the proof.
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