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Abstract

Let X be an infinite dimensional separable Banach space. There exists a hy-
percyclic operator on X which is equal to the identity operator on an infinite
dimensional closed subspace of X.
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1. Introduction and main results

In this note, we will be concerned with hypercyclic and chaotic linear operators on
an infinite dimensional real or complex separable Banach space X. If T is a bounded
operator on X, a vector x of X is said to be hypercyclic for T if the orbit of x under
T , that is Orb(x, T ) = {Tnx, n ≥ 0}, is dense in X. If T has a hypercyclic vector, T is
called a hypercyclic operator. There is a link between hypercyclicity and dynamics for
linear operators on a Banach space. Recall that a continuous mapping φ of a metric
space E is chaotic in the sense of Devaney ([8], p. 50) if it satisfies the following
three conditions: it is topologically transitive (i.e. for every pair of non empty open
subsets U, V of E, there exists an integer n such that φn(U) ∩ V is non-void), it has
a dense set of periodic points (a vector x of X is called periodic for φ when there
exists a positive integer n such that φnx = x), and it has sensitive dependence on
initial conditions (there exists a positive real number δ such that for every x in X and
every neighborhood V of X, there exists a vector y in V and a nonnegative integer
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n such that φnx and φny are more than the distance δ apart). It is shown in [3]
that if φ is topologically transitive and has dense periodic points, then φ has sensitive
dependence on initial conditions. In the special case where φ is a bounded operator
on a separable Banach space X, it is shown in [9] that φ is topologically transitive if
and only if it is hypercyclic. Thus φ is chaotic if and only if it is hypercyclic and has
a dense set of periodic points.

A result of S. Ansari ([2]) and L. Bernal-González ([5]) states that every infinite
dimensional separable Banach space supports a hypercyclic operator. It is interesting
to notice here that this result cannot be extended to non-separable Banach spaces by
replacing the concept of hypercyclicity by the concept of topological transitivity: a
result of T. Bermudez and N.J. Kalton ([4]) implies that some non-separable spaces
such as �∞ or B(�2) do not support any topologically transitive operator. Another
question which follows naturally from S. Ansari and L. Bernal-González result is to
know whether every infinite dimensional separable Banach space supports a chaotic
operator. The answer is no: J. Bonet, F. Mart́ınez-Giménez and A. Peris proved
in [6] that when X is a hereditarily indecomposable Banach space with hereditarily
indecomposable dual, there exists no chaotic operator on X (see also [10], Section
5.3). This raises the following question regarding periodic points:

Question 1.1 [6] Does every infinite dimensional separable Banach space support a
hypercyclic operator with an infinite dimensional closed subspace of periodic points?

The purpose of this note is to answer this question in the affirmative. We will
prove the following stronger theorem:

Theorem 1.2. Let X be an infinite dimensional separable Banach space. There
exists a hypercyclic operator on X which is equal to the identity operator on an infinite
dimensional closed subspace of X.

This highlights the fact that a hypercyclic operator can be very far from having
no non trivial invariant subspace. This theorem is also related to a result of [6],
where it is proved that when X and its dual are hereditarily indecomposable and
T is hypercyclic, there exists a positive integer N such that every periodic vector x
satisfies TNx = x. Since T is hypercyclic, TN is hypercyclic too ([1]) and this implies
that if T has an infinite dimensional closed subspace V of periodic points, then TN

is hypercyclic and equal to the identity operator on this same subspace V .

The main step in the proof of Theorem 1.2 is Theorem 1.3, in which we construct
hypercyclic perturbations of the identity operator by some kind of shift operator with
infinite dimensional kernel on one of the sequence spaces �p, 1 ≤ p < ∞, or c0.
Theorem 1.3 is related to a result of H. Salas, who proved in [11] that when (ωi)i≥0

is any bounded sequence of positive scalars and S is the backward shift defined on X
by Se0 = 0 and for every i ≥ 0, Sei+1 = ωiei, then the operator I + S is hypercyclic.

Theorem 1.3. Let X be one of the sequence spaces �p, 1 ≤ p < ∞, or c0, with
canonical basis (ei)i≥0. Let (ωi)i≥0 be any bounded sequence of positive scalars and
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consider the operator T defined on X by the following relations: for every i ≥ 0,

Te2i = 0 and Te2i+1 = ωiei.

Then the operator I+T , where I denotes the identity operator on X, is hypercyclic on
X, and it is equal to the identity operator on the closed space spanned by the vectors
e2i, i ≥ 0.

Using the notion of quasi-extension of an operator on the space �1 to an operator
on a general separable Banach space X introduced by S. Ansari in [2], we then deduce
Theorem 1.2 from Theorem 1.3.

Remark 1.4. All the hypercyclic operators constructed in Theorem 1.3 satisfy the
Hypercyclicity Criterion (see for instance [7]): since (ωi)i≥0 is a sequence of positive
scalars, this is a straightforward consequence of Corollary 2.8 of [7].

2. Proofs of Theorems 1.2 and 1.3

2.1. Proof of Theorem 1.3

We will prove Theorem 1.3 in the Hilbert space case when p = 2, the construction
being the same in the general case.

Notation. (ei)i≥0 denotes the canonical basis of �2. A vector x of �2 is said to have
finite support when it is a linear combination of finitely many basis vectors ei, and if
x =

∑
i≥0 xiei , supp(x) = {i ≥ 0;xi �= 0} denotes the support of x.

Let (zk)k≥1 be a dense sequence of vectors of �2 with finite support such that
for every k ≥ 1, max supp(zk) ≤ k. Proceeding as in the proof of Theorem 3.3 in
[11], we will construct inductively a fast increasing sequence (nk)k≥1 of integers and
a sequence (yk)k≥1 of finitely supported vectors of �2 such that:

(1) for every k ≥ 2, max supp(yk−1) < min supp(yk)
(2) for every k ≥ 1, ||yk|| ≤ 2−(k+1)(1 + ||T ||)−(nk+1)

(3) for every k ≥ 1,
∣∣∣∣∣∣(I + T )nk(

∑k
j=1 yj) − zk

∣∣∣∣∣∣ ≤ 2−k.

Then an easy computation shows that the vector y =
∑+∞

k=1 yk is a hypercyclic
vector for the operator I + T .

A crucial lemma is the following ([11], Lemma 3.2):

Lemma 2.1. Let n and r be positive integers. Consider the 2r×2r matrix Cn defined
by Cn = (cij(n)1≤i,j≤2r ) where cij(n) =

(
n

2r+j−i

)
. Let Bn = (bi(n))1≤i≤2r be a column

vector such that for every i, 1 ≤ i ≤ 2r, bi(n) is a polynomial in n of degree at most
2r − i. Then the equation CnXn = Bn has a solution Xn = (xi(n))1≤i≤2r for n large
enough which satisfies: there exists a constant P such that for every i, 1 ≤ i ≤ 2r,
|xi(n)| ≤ P

ni .
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Let us first construct y1: z1 can be written as z1 = z
(1)
0 e0 + z

(1)
1 e1. We will be

looking for a vector y1 of the form y1 = x1e3 + x2e7. Now:

||(I + T )n(x1e3 + x2e7) − z1|| =
∣∣∣∣∣∣(x1 + x2 ω3

(
n
1

)
)e3 + x2e7

∣∣∣∣∣∣
+

∣∣∣∣∣∣(x1 ω1 ω0

(
n
2

)
+ x2 ω3 ω1 ω0

(
n
3

) − z
(1)
0

)
e0 +

(
x1 ω1

(
n
1

)
+ x2 ω3 ω1

(
n
2

) − z
(1)
1

)
e1

∣∣∣∣∣∣.
Since ∣∣∣∣∣ω1 ω0

(
n
2

)
ω−3ω1 ω0

(
n
3

)
ω1

(
n
1

)
ω3 ω1

(
n
2

)
∣∣∣∣∣ = ω3 ω2

1 ω0

∣∣∣∣∣
(
n
2

) (
n
3

)
(
n
1

) (
n
2

)
∣∣∣∣∣ ,

the system (
ω1 ω0

(
n
2

)
ω3 ω1 ω0

(
n
3

)
ω1

(
n
1

)
ω3 ω1

(
n
2

)
) (

x1

x2

)
=

⎛⎝z
(1)
0

z
(1)
1

⎞⎠
has a solution for n large enough with |xi(n)| ≤ P

ni for i = 1, 2. Then

||(I+T )n(x1(n)e3+x2(n)e7) − z1 = ||(x1(n)+x2(n) ω3

(
n

1

)
)e3+x2(n)e7|| =

+∞O(
1
n

).

If n1 is big enough and y1 = x1(n1)e3 + x2(n1)e7, then y1 satisfies conditions (2)
and (3) for k = 1.

Suppose now that y1, . . . yk−1, n1, . . . nk−1 have already been constructed, and let
r be a positive integer such that 2r − 1 ≥ k and for every i = 1 . . . k − 1, supp(yi) ⊆
{0 . . . 2r − 1}.
Notation. For l ≥ 0, the sequence (u(2l)

n )n≥0 is the sequence defined by

u
(2l)
0 = 2l and for n ≥ 0, u

(2l)
n+1 = 2u(2l)

n + 1.

Let I2l be the set of cardinality 2r containing the 2r first terms of the sequence
(u(2l)

n )n≥0:
I2l = {u(2l)

0 , u
(2l)
1 , . . . , u

(2l)
2r−1}.

It is easy to see that the sets I2l are disjoint. Denote by Π2l the orthogonal projection
onto the space spanned by the vectors ev, v ∈ I2l.

With this notation, Te
u

(2l)
n+1

= ω
u

(2l)
n

e
u

(2l)
n

for every n ≥ 0. Moreover, {u(2l)
j } is the

support of the vector T−je
u

(2l)
0

for every j ≥ 1, and

e
u

(2l)
j

=

(
j−1∏
i=0

ω
u

(2l)
i

)
T−je

u
(2l)
0

.
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We will be looking for a vector yk of the form yk =
∑s

l=0(
∑2r

i=1 x
(2l)
i e

u
(2l)
2r+i−1

)

where the coordinates x
(2l)
i have to be determined. This vector yk must satisfy s + 1

systems of equations: for every l = 0 . . . s and for every p = 0 . . . 2r − 1,

〈(I + T )n

⎛⎝ s∑
l=0

(
2r∑

i=1

x
(2l)
i e

u
(2l)
2r+i−1

)
+

k−1∑
j=1

yj

⎞⎠ − zk, e
u

(2l)
p

〉 = 0.

Since the sets I0, I2, . . . , I2s do not overlap and since the vector space spanned by
the vectors ev, v ∈ I2l, is invariant by T , the equations above are equivalent to the
following s + 1 independent systems:

(S2l)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
for every p = 0 . . . 2r − 1,

〈(I + T )n
(∑2r

i=1 x
(2l)
i e

u
(2l)
2r+i−1

)
, e

u
(2l)
p

〉
= 〈Π2l

(
zk − (I + T )n

∑k−1
j=1 yj

)
, e

u
(2l)
p

〉

for l = 0 . . . s.
Now

〈(I + T )n
(∑2r

i=1 x
(2l)
i e

u
(2l)
2r+i−1

)
, e

u
(2l)
p

〉 = 〈∑2r

i=1 x
(2l)
i

∑n
j=0

(
n
j

)
T je

u
(2l)
2r+i−1

, e
u

(2l)
p

〉

= 〈∑2r

i=1 x
(2l)
i

∑n
j=0

(
n
j

) (∏2r+i−2
m=2r+i−j−1 ω

u
(2l)
m

)
e

u
(2l)
2r+i−j−1

, e
u

(2l)
p

〉.

Thus the system (S2l) has the form C
(2l)
n X

(2l)
n = B

(2l)
n with X

(2l)
n = (x(2l)

p (n))1≤p≤2r ,

B(2l)
n = (b(2l)

p (n))1≤p≤2r = (〈Π2l(zk − (I + T )n
k−1∑
j=1

yj), eu
(2l)
p−1

〉)1≤p≤2r

and C
(2l)
n = (c(2l)

ij (n))1≤i,j≤2r where c
(2l)
ij (n) =

(∏2r+i−2
m=2r+i−j−1 ω

u
(2l)
m

)(
n
j

)
. Moreover,

det C(2l)
n =

(2r−1∏
q=0

2r−1∏
m=q

ω
u

(2l)
m

)(2r−1∏
q=0

q∏
m=0

ω
u

(2l)
m

)
det Cn,

where Cn is the matrix of size 2r × 2r considered in Lemma 2.1. Thus in order to
apply Lemma 2.1, we only have to check that for p = 1 . . . 2r, b

(2l)
p (n) is a polynomial

in n of degree at most 2r − p. The projection onto I2l of the vector
∑k−1

j=1 yj can

be written as Π2l

(∑k−1
j=1 yj

)
=

∑2r−1
i=0 α

(2l)
i e

u
(2l)
i

, and since Π2l(I + T )n
∑k−1

j=1 yj =

(I + T )nΠ2l

∑k−1
j=1 yj , this yields that

〈Π2l(I + T )n
k−1∑
j=1

yj , eu
(2l)
p−1

〉 =
2r−1∑
i=0

α
(2l)
i

n∑
q=0

(
n

q

)
〈T qe

u
(2l)
i

, e
u

(2l)
p−1

〉.
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Since 〈T qe
u

(2l)
i

, e
u

(2l)
p−1

〉 is non-zero if and only if q = i− p+1, the expression above
can be reduced to

b(2l)
p (n) = 〈zk, e

u
(2l)
p−1

〉 −
2r−1∑
i=0

α
(2l)
i

(
n

i − p + 1

)
〈T i−p+1e

u
(2l)
i

, e
u

(2l)
p−1

〉.

This shows that b
(2l)
p (n) is a polynomial in n of degree at most 2r−p. We can therefore

apply Lemma 2.1 and obtain a solution (x(2l)
i (n))1≤i≤2r of the system (S2l) with

|x(2l)
i (n)| ≤ P (2l)

ni

for n large enough, where P (2l) is some constant depending only on l. Setting

yk(n) =
s∑

l=0

(
2r∑

i=1

x
(2l)
i (n)e

u
(2l)
2r+i−1

)

we have

(I + T )n

⎛⎝k−1∑
j=1

yj + yk(n)

⎞⎠ − zk=
+∞∑
q=0

〈(I + T )n

⎛⎝k−1∑
j=1

yj + yk(n)

⎞⎠ − zk, eq〉eq

=
∑

q �∈I0∪I2∪...∪I2s

〈(I + T )n

⎛⎝k−1∑
j=1

yj + yk(n)

⎞⎠ − zk, eq〉eq.

Now
∑k−1

j=1 yj and zk belong to the space spanned by the vectors ev, v ∈ I0∪ I2∪ . . .∪
I2s, which is invariant by (I + T )n, and thus the last equality becomes:

(I + T )n

⎛⎝k−1∑
j=1

yj + yk(n)

⎞⎠ − zk=
∑

q �∈I0∪I2∪...∪I2s
〈(I + T )n (yk(n)), eq〉eq

=
s∑

l=0

2r∑
i=1

x
(2l)
i (n)

∑
q �∈I0∪I2∪...∪I2s

n∑
p=0

(
n

p

)
〈T pe

u
(2l)
2r+i−1

, eq〉eq.

Since q does not belong to I2l, 〈T pe
u

(2l)
2r+i−1

, eq〉 is zero as soon as 2r + i − 1 − p < 2r,

i.e. i − 1 < p, and we obtain:

(I+T )n

⎛⎝k−1∑
j=1

yj + yk(n)

⎞⎠−zk =
s∑

l=0

2r∑
i=1

x
(2l)
i (n)

i−1∑
p=0

(
n

p

) ∑
q �∈I0∪I2∪...∪I2s

〈T peu2l
2r+i−1

, eq〉eq
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and∣∣∣∣∣∣
∣∣∣∣∣∣(I + T )n

⎛⎝k−1∑
j=1

yj + yk(n)

⎞⎠ − zk

∣∣∣∣∣∣
∣∣∣∣∣∣ =
+∞ O

⎛⎝ 2r∑
i=1

|x(2l)
i (n)|

i−1∑
j=0

(
n

j

)⎞⎠ =
+∞ O(

1
n

).

Taking nk large enough and yk = yk(nk) yields (1), (2) and (3). This terminates the
proof of Theorem 1.3.

2.2. Proof of Theorem 1.2

This is a mere rewriting of the arguments of [2]. If (xi, x
∗
i )i≥0 is a bounded biorthog-

onal system of the Banach space X and if ωi, i ≥ 0, are positive numbers such that∑
i≥0

∣∣∣∣x∗
2i+1

∣∣∣∣ ωi||xi|| < +∞, the operator

T̃ (x) =
∑
i≥0

x∗
2i+1(x)ωixi

is a nuclear operator on X. If T is defined on the space �1 with canonical basis (ei)i≥0

by Te2i = 0 and Te2i+1 = ωiei for i ≥ 0, then I + T̃ is a quasi-extension of I + T

in the sense of [2]. Since I + T is hypercyclic on �1, I + T̃ is hypercyclic on X, and
I + T̃ is equal to the identity on the infinite dimensional closed subspace spanned by
the vectors x2i, i ≥ 0. Theorem 1.2 is proved.
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