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ABSTRACT

Wavelets originated in 1980’s for the analysis of (seismic) signals and have
seen an explosion of applications. However, almost all the material is based
on wavelets over Euclidean spaces. This paper deals with an approach to the
theory and algorithmic aspects of wavelets in a general separable Hilbert space
framework. As examples Legendre wavelets on the interval [—1, 4+1] and scalar
and vector spherical wavelets on the unit sphere 2 are discussed in more detail.
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1. Introduction

Wavelets form “building blocks” that enable fast decorrelation of data. In other
words, three features are incorporated in this way of thinking about wavelets, namely
basis property, decorrelation, and fast computation. In the first part of the paper
we discuss these aspects in a separable (functional) Hilbert space setup. As an es-
sential tool we assume an orthonormal Hilbert basis to be known. The definitions of
scaling function and wavelet are based on the concept of product kernels in terms of
the prescribed orthonormal Hilbert basis. By virtue of the basis property each sig-
nal, i.e. each member of the Hilbert space, can be expressed in stable way as linear
combination of dilated and shifted copies of a “mother kernel” with vanishing zeroth
moment. The wavelet transform maps members of the Hilbert space into an asso-
ciated two-parameter class of space and scale dependent elements. Wavelets show
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the power of decorrelation. As a consequence the representation of the data in terms
of wavelets is somehow “more compact” than the original representation, that is to
say, we search for an accurate approximation by only using a small fraction of the
original information of an element of the Hilbert space. Typically, in the jargon of
information theory, scaling functions provide lowpass filtering, while the decorrelation
is achieved by building wavelets which decay towards low and high frequencies, i.e.
by bandpass filtering. Finally, the main question in wavelet approximation is how to
decompose a function into wavelet coefficients, and how to reconstruct efficiently the
function under consideration from the wavelet coefficients. There is a tree algorithm,
i.e. a pyramid scheme, that makes these steps simple and fast. The fast decorrela-
tion power of wavelets is the key to applications such as data compression, fast data
transmission, noise cancellation, etc.

2. H—Fourier expansions

Let H be a separable real functional Hilbert space over a certain domain ¥ C R"
equipped with the inner product (-, )y, i.e. (H,(-,-)%) is a Hilbert space consisting
of functions F' : ¥ — R. Furthermore, let {U}},=01,.. be a (known) complete
orthonormal system in (H, (-, *)%)-

In a separable real functional Hilbert space (H, (-, )3 ) any function F' € H can be
represented as a Fourier ezpansion relative to the orthonormal system {U}},=0.1,...
(in the sense of || - ||%) by

F=Y F'n)U; (1)

with “Fourier transforms” (coefficients)
FMNn) = (F.U)n, n=0,12,.... (2)

Fourier expansions (1) are very successful at picking out “frequencies” n from a signal
(function) F' € H, but the use of non-space localizing functions U is incapable of
dealing properly with data changing on small spatial scales. Usually a signal (func-
tion) refers to a certain combination of frequencies, and the frequencies themselves
are spatially changing. This space evolution of the frequencies is not reflected in a
Fourier series (1) of non—space localizing (for example, polynomial) trial functions
U, on X. With wavelets, as we are going to show in the next chapters, the amount
of localization in space and in frequency is automatically adapted. The basic frame-
work of this idea is based on convolving the signal (function) against “dilated” and
“shifted” versions of the “mother (wavelet) kernel”. Essential tools are the concepts
of H-product—kernels and H—convolutions (cf. [12]).

Rewvista Matemdtica Complutense 278
2003, 16; Nim. 1, 277-310



W. Freeden, T. Maier, S. Zimmermann A survey on wavelet methods. . .

3. H—Product kernels

Any function T': ¥ x ¥ — R of the form
T(w,y) =Y T"mUi@)Uily), zy€X, (3)
n=0

with " (n) € R, n € Ny, is called an H-product kernel (briefly called H-kernel). The
sequence {I'(n)}, o, is called the symbol of the H-kernel (3).

Definition 1. A symbol {T"(n)},_,, . of an H-product kernel (3) is said to be
H-admissible if it satisfies the following conditions:

@) S @m) <oo, () Y (T'0)UL()® < x (4)

for all x € 3.

4. H—Convolutions

‘H-convolutions will be introduced in the following way.

Definition 2. Let F' be of class H. Suppose that T is an H-kernel of the form (3) with
H-admissible symbol {I‘/\(n)}n:0717‘.‘, then the convolution of T against F is defined

by
(D sy F)(z) = (T(x, ), F)yg = Y TM(n) FN(n)Uy (). (5)

From (5) we immediately see that
(T %3 F)"(n) = T"(n)F"(n), n € Ny. (6)

The convolution of two H-product kernels with H-admissible symbols leads to the
following result.

Theorem 1. Let Ty and Ty be H-kernels with H-admissible symbols
{2 (M)} o1, and {T5(n)}, o 1., respectively. Then
(T1xn Io)(zy) = (TixnDa(y))(2)

= (Fl(w)PZ(y))H

> TR () U (@)U (y)

holds for all z,y € ¥, and the sequence {(T'y xy I‘Q)A(n)}n:07l7“‘ given by
(T1 %3 T2)"(n) =TT (n)I'3 (n) (7)

constitutes an H-admissible symbol of the H-kernel T'y x3; Is.
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5. H-Scaling functions

After having explained the convolution between two 7H-kernels with
‘H-admissible symbols we are now interested in developing countable
families {T'y}, J € Z, of H-product kernels I'j which may be understood as scal-
ing functions in our general Hilbert H-wavelet concept.

As preparation we introduce a dilation operator acting on these families in the fol-
lowing way: Let Ty be a member of the family of product kernels.
Then the dilation operator Dy, k € Z, is defined by Dy I’y = T'j;,. In particu-
lar, we have 'y = D;I'g. Thus we refer to I'g as the “mother kernel”. Moreover,
we define a shifting operator S,, x € ¥, J € Z, by S,T'y = T'j(x,-). In doing so we
consequently get by composition the operator I'j(x, ) = S, D ;T for all z € ¥ and all
J € Z. Note that all kernels T'; are symmetric, so that T'j(z,y) =T;(y,z), z,y € &,
for all J € Z.

We are now in position to introduce scaling functions.

Definition 3. Let {(®7)"(n)},—o.. ., J € Z, define an H-admissible symbol of a
family of H-kernels satisfying additionally the following properties:

() lim (@) m)’=1, neN,

@) (@) M) > (@) (n)°, JeZ, neN,
(i) lm ((®)"(m)*=0, neN,
(iv) (@) () =1, JET.

Then {(@J)A (n)}nzol1 s called the generating symbol of an H-scaling function.
The family of H-kernels {tﬁj}, J € Z, given by

oo

®s(ay) = D () MU @UL(Y), zyeX, (8)

n=0
is called H-scaling function.

The H-scaling functions constructed in this way, therefore, satisfy the essential condi-
tions of the classical wavelet concept (see e.g. [5, 11]). From the results of the previous
chapter it follows immediately that ®;(z,), x € X, J € Z, is a member of H. It can

be easily seen that <I>S2) =®;xy by, J € 7Z,is an H-kernel with H-admissible symbol

{(@)" (n))?},n=0,1,....
This leads us to the following central result in the theory of H—scaling functions.

Theorem 2. Let {(®;)"(n)}, ., J € Z, be the generating symbol of a scaling
function {®;}. Then
Jler;c |Fy—Fl;,=0 9)
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holds for all F € H, where Fj given by
Fy=3P sy F=(®y50 )%y F, FeH (10)

is said to be the J-level approzimation of F.

Proof. We introduce the operator Ty : H — H, J € Z, by
FJ:TJF:((PJ*H(EJ)*HF. (11)

From the definition of the convolution and the fact that <I>52) = ®; %y P; is an
‘H-kernel with H-admissible symbol it follows that T;F' can be written as follows:

TsF = ((20)"n)*F n)U;; . (12)
n=0

But this implies that

175l sup ||T5Glly, (13)
Gen

G ll3=1

= (Z((%)A(n))‘*(GA(n)V)

n=0

n€ENg

< sup ((85)"(n))? (Z(GA(n))2>

n=0

< sup (@) (n))* < o0
n€ENg

for every J € Z, since {(®5)"(n)},—o,. . J € Z, is H-admissible.
Now, from Parseval’s identity, we obtain

lim I TsF = FIf = Jim ™ (1= ((8)" (1)) (F (n))*. (14)
n=0

From the conditions (i), (ii) and (iv) of Definition 3 we are able to deduce that
((®7)"(n))? < 1 for n € Ny. But this shows us that

0<(1=((@nN"(n)*)?<1 (15)
is valid for all n € Ny. Therefore, the limit and the infinite sum in (14) may be
interchanged. By applying (i) and (iv) we finally arrive at the desired result. [ |
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6. H—Multiresolution analysis

Note that condition (iii) of Definition 3 has not been used yet. This condition, how-
ever, is needed as assumption for defining H-wavelets and establishing a multiresolu-
tion analysis as will be explained now.

According to our construction, for any F' € H, each T;F defined by (11) provides
an approximation of F' at scale J. In terms of filtering the product kernels <I>(JQ) =
® ; x4 @ ; may be interpreted as low-pass filter. T'; is the convolution operator of this
low-pass filter. Accordingly we understand the scale space Vj to be the image of H
under the operator T:

VJ:TJ(H):{(CI?J*HCI?J)*HF‘FEH}. (16)
As an immediate consequence we obtain the following result.

Theorem 3. The scale spaces satisfy the following properties:

(i) {UycvscvycH, J<J, (17)

(i1) ﬁ Vi ={Us}, (18)
JiT?OCH-HH

(iii) U =H, (19)

(iv) zz]f:_FO; €V then D_1F;€V;_q, JeZ. (20)

Proof. From the conditions (ii) and (iv) of Definition 3 we easily get the validity
of the first assertion (17) of Theorem 3. The identity (18) follows directly from the
conditions (iii) and (iv) of Definition 3. The formula (19) is a consequence of Theorem
2, while (20) follows immediately from the definition of the shifting operator D;. H

If a collection of subspaces of H satisfies the conditions of Theorem 3, it is called
a H-multiresolution analysis (MRA).

7. H-wavelets

The definition of the scaling functions now allows us to introduce #-wavelets. Basic
tool again is the concept of H-product kernels. We start with the definition of wavelets
by aid of a “refinement (scaling) equation”.

Definition 4. Let {(®;)"(n)},—, ., J € Z, be the generating symbol of an H-
scaling function as defined by Definition 3. Then the generating symbol {(¥;)"(n)}
Jj € Z, of the associated H-wavelet is defined via the “refinement equation”

n=0,1,...7

1

(2;)"(n) = ((241)"(n))* = ((8;)"(n))*)=. (21)
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The family {¥;}, j € Z, of H-product kernels given by

o0

Ui(z,y) = D (L) (U (@)Un(y),  zy€, (22)

n=0

is called H-wavelet associated to the H-scaling function {®;}, J € Z. The corre-
sponding “mother wavelet” is denoted by Y.

Note that the defining properties of an H—wavelet presume the zero-mean property
(\I’j)/\ (0) =0, j € Z, i.e. the vanishing of the symbol element at 0. The wavelets con-
structed in this way, therefore, satisfy a substantial condition of the classical wavelet
theory (see e.g. [5, 11]).

A dilation and a shifting operator can be understood in the same way as we did
before. In other words, any wavelet can be interpreted as a dilated and shifted copy of
the corresponding mother wavelet like ¥;(z,) = S, D;¥q(-,-). We can easily derive
from the telescoping character of (21) that

J

> () m)? (23)

j=—o0

J
(@)™ (n)* + Y ((¥) () .

J=0

(@41)"(n)?

Similar to the definition of the operator T}, j € Z, we are now led to the convolution
operators It; : H — H given by

RiF =0 sy F = (U9 ¥)) 4y F, FeH. (24)

Thus the identity

J J
Byirkn i = D (U9 U5) = Do xy Do+ ) (V)9 ) (25)

j=—oc 7j=0

can be written in operator formulation as follows:

J J
Tjs= Y Ri=To+)_R;. (26)
7j=0

j=—o0

The convolution operators R; describe the “detail information” of F' at scale j. In
terms of filtering, \1’52) =V, xy ¥;, j € Z, may be interpreted as a band-pass filter.

This fact immediately gives rise to introduce the detail spaces as follows:

Wi =R;(H) = {(V; %3 ¥;) %y F | F € H} . (27)
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W; contains the “detail information” needed to go from an approximation at level J
to an approximation at level J 4+ 1. Hence we get

J J
Z Wj:V0+ZWj:VJ+1, Vi+Wi; =V, JeL. (28)
j=0

j=—o0

Tt should be noted that, in general, the sum in (28) is neither direct nor orthogonal.
But there exist examples leading to an orthogonal multiresolution which should be
discussed later on.

In conclusion, any F' € H can be approximated as follows: Starting with ToF
we find in connection to (26) by adding successively RoF, ..., RjF the (J + 1)-
level approximation T;1F of F' € H. Obviously, the partial “reconstruction” R;F
is nothing else than the “difference of two smoothings” at two consecutive scales
R;F =Tj . F —TjF.

Definition 5. The wavelet transform WT at scale j € Z and position x € X is given
by
WT(F)(jiz) = (9@, ), F)u, F €M, (20)

Combining (29) and (25) we can formulate the main result of our wavelet theory
as follows.

Theorem 4. Let {(®;)"(n)},_,. ., J € Z, be the generating symbol of an H-
scaling function. Suppose that {(\I'j)l/\(n)}n:o.1 _, J €L, is the generating symbol of
the corresponding H-wavelet. Furthermore, let F be of class H. Then

J-1
Fy = (B0 #3 o)+ F + Y Uy 59 (WT(F)(j, ) (30)

i=0
is the J-level approximation of F satisfying

}eréo|\FJ—F|\H =0. (31)

The limit relation (31) shows the essential characteristic of wavelets. We change
the approximated solution from F; to Fjy1; by adding the so-called detail information
of level J as the difference of two smoothings of two consecutive scales J and J + 1
and, what is more important, we are able to guarantee limj_,o, Fy = F in the sense
of the ||-||,,-topology provided that F' € H.

The following scheme briefly summarizes the essential steps of our wavelet ap-
proach in the framework of product kernels introduced for a separable functional
Hilbert space H.
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ToF T\F... T, F TjpF... 77 F
m m m m m
Vo c V... c Vi C Vi1 ... = H
Vo +Wo + ...+ W + W, + ... = H
W W w w W
ToF+RoF + ...+ R;2«F + R;F + ... = F

8. H—Bandlimited wavelets

For simplicity, we assume that {®;};ez is a family of bandlimited kernels such that
(®;)"(n))>>0forn=0,...,N; =2/ —1 and (($;)"(n))> =0forn > N; +1 =27,
Then it follows that

(p]'(.’l]‘,') €H07...72j_1 :span{Ug,...,UQ*j_l} (32)

and

‘I’j (SU, ) € 7‘[07“‘72141_1 = Span{US, ey U2*j+171} (33)
holds for all z € X, (“span” means, as usual, the set of all finite linear combinations).
More explicitly,

(o) = 3 (@) U@V W), (34)
Uiy = Y () 0)Ui@)ULW) (35)
n=0

for (z,y) € ¥ x ¥. Consequently, the scale spaces and the detail spaces, respectively,
fulfill the relations V; = Hg  2i_1, W; C Hg,._2i+1_1.

Simple examples are given below:
(a) orthogonal (Shannon) scaling function
1 for n=0,...,N;
AN — ) s 4Vg
(;) (”)_{0 for n>N;+1
(b) non-orthogonal (smoothed Shannon) scaling function

1 for n=0,...,27h
(®)"(n) =4 55" for n=2h,... N, (37)
0 for n>N;+1

for fixed h € [0, 1),
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(c) mon-orthogonal cubic polynomial (CP-) scaling function

Ay [ (T=270n)2(1+277%n)  for n=0,...,N;
(®;)"(n) _{ 0 for n>N;+1 (38)
with
_ 0 for je€Z,j<O0
N]_{Qj—l for jE€Z,j>0 " (39)

Note that the case (a) leads to an orthogonal multiresolution analysis, i.e. the detail
and the scale spaces satisfy V11 =V; @ W;, W; L Wy, k # j, 7 > 0. In the cases
(b) and (c) the scale and detail spaces are still finite-dimensional, but the detail spaces
are no longer orthogonal.

It should be noted that each scale space V;, j € Ny, can be understood as a
finite dimensional reproducing Hilbert space with the inner product (-,-)% and the
(Shannon) reproducing kernel (SH)y; being canonically defined by

N
(F,G)y = Z F"(n)G"(n), F,G € Ho,..n, (40)
n=0
and
N
(SH)N, (2,9) = > Un(@)Us(y), w,y€S, (41)
n=0
respectively.

The reproducing property enabled [10, 11, 12] to develop different variants of tree
algorithms (even for the non—bandlimited case [11]).

9. A tree algorithm

Until now efforts have been made to establish the basis property and the ability of
bandpass filtering in terms of wavelets. Next we come to the third feature of wavelet
approximation, viz. fast computation, which will be realized in form of a pyramid
scheme for bandlimited wavelets.

Let the assumptions of Chapter 8 be satisfied, i.e. V; = Ho,... n;, W; C Ho,..,Nj 41 -
The key ideas of our fast evaluation method are based on the following observations:

(1) For some suitably large J, the scale space V; is “sufficiently close” to .
Consequently, for each F' € H, the error between F' and @SQ) x; F' (understood in
the || - [[x—topology) may be assumed to be negligible. This is the reason why F is

supposed to be of class V; for the remainder of this chapter.
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2) For j =0,...,J, consid Vi, = {y)’ L3} of L; points )7 € ¥
. (2) For j =0,...,J, consider sequences Yz, = {y; ,...,ij}o j pointsy,” € X,
t=1,...,Lj, such that

V; =Ho. N, = span (@5.2)(-, gl @ yf;j)) (42)

(the existence of pointsets Yz, C ¥ fulfilling the desired property is well-known from
interpolation theory (see, for example, [6])).

(3) The (Shannon) kernel functions (SH)n; : ¥ x ¥ — R introduced by (41)
satisfy the properties

o) = 0% xy (SH)y,. j=0,....7, (43)
and
(SH)NJ.:(SH)NJ *’H,(SH)Nja ]:0,.] (44)

In conclusion, for F' € Vy, it follows that

) sy F =0\ sy ((SH)w, # F) | (45)
j =0,...,J. Hence, from (42) it is clear that there exist real coefficients ale such
that
L;
&) sy F = 0 sy (SH)w, #0 F) = a7 0\ () (46)
=1
j = 0,...,J. There remains the question if we need to calculate the coefficients
alL" for all j = 0,...,J or if there exist pyramid schemes such that it suffices to

find the coefficients for the largest scale J since the lower scale coefficients can be
calculated recursively. Starting point for our considerations are discretizations of
the convolutions, i.e. we assume that a table of coefficients {wle}, l=1,...,L;,
j=0,...,J, is known (see the example in Chapter 10) such that

L;
Lj Lj Lj
O s (SH)N, #1 F) = 3wl ((SH)w, (oy?) s F) @7 (y),  (47)
=1
ie.
af’ = w7 (SH)n, (4 ) su F, 1=1,...,L;. (48)
The coefficients wle, l=1,...,L;, are stored elsewhere for j =0,...,J. It is worth

mentioning that discretizing the convolutions usually can be done by means of so-
called integration formulas; prominent examples are equidistributions or equiangular
longitude-latitude grids on spherical surfaces (see e.g. [11] and the references therein.)
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What we are going to realize is a tree algorithm (pyramid scheme) with the following
ingredients: Starting from a sufficiently large J such that

Ly
O oyl ) s F =Y a7 @ (y) (49)
=1
with
af? = w7 (SH)N, (ny?) s F=w/ F(y’), 1=1,...,Ly, (50)
our aim is to show that the coefficient vectors o™i = (afj,...,afj)T € R, j =

0,...,J — 1, given by (48) (and being, of course, dependent on the function F' € V;
under consideration) can be calculated such that the following properties are true:

(i) The vectors a®i, j = 0,...,.J — 1, are obtainable by recursion from the values
Ly
al7,

(i) For j=0,...,J

L;
<I>§.2) xqy F = Zale @;2)(-,yle) (51)
1=1
and for j=1,...,J
Lj
L L
U wg F =" a0 (g0, (52)

=1

Note that, if we can fulfill the second condition, we are able to calculate the convolu-
tions with scaling functions as well as with wavelets from the same set of coefficients
and, therefore, have found a recursion for the determination of the complete multires-
olution analysis.

Our considerations are divided into two parts, viz. the initial step concerning the
scale J and the pyramid step establishing the recursion relation:

The Initial Step. For suitably large J the formula (49) holds true with (50):

ol = wH Fyl), 1=1,...,Ly. (53)

The Pyramid Step. From (46) it follows immediately that

A L v/ L
(@) mF ) =Y 0 @) ()T () (54)
=1
ie.:
L;
irrH (L
FNn) =Y a, Uy(y") (55)
=1
Rewvista Matemdtica Complutense 288
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forn = 0,...,Nj, i.e. the Fourier coefficient of the function under consideration is
independent of the kernel functions involved. But this shows us that

Kj i F=Kjsp ((SH)y, . F) = Zal K ( (56)
holds for all H-product kernels K; : ¥ x ¥ — R of the form

Nj
=3 KU @)U;(), (2,9) €S xS (57)
n=0

with arbitrary (real) coefficients K7(0),..., K/(N;). In particular, we have

U g sy F =T, sy (SH)N, 3, F) Zal 0 () (58)
and
U g F =0, sy (SH)w, %0 F) = ZaZJ\I' ( ) . (59)
Moreover, we find for j =1,...,J
(SH)N, . *u F = (SH)n, , *u ((SH)n, *3 F) Zal (SH)n, ,(y/"). (60)

Now we obtain from (48) in connection with (60) the recursion relation

o™ = wPT(SH)N,_, () s F (61)

i
L4
L1 N~ L Li_1 L
w; Zal (SH)Nj—l(yi » Uy ):

j=1,...,].

In other words, the coefficients alL"’1

can be calculated recursively starting from
al’ for the initial level .J, a; 7 ~* can be deduced recursively from a, ’~" etc. Moreover
it is worth mentioning that the coefficients are independent of the special choice of

the wavelet. This finally leads us to the formulae

L;
Vg F=Ya 0P (y)), 5=0,....0 (62)
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and
Lj
2 L; 2 L; .
v« F =S a0 (y), =0, (63)
=1
with coefficients given by (50) and (61). Furthermore, the coefficients ale can be used

to calculate the wavelet transform ¥;_; x5 F' for j =0,...,J — 1.
The recursion procedure leads us to the following decomposition scheme:

F - at’ - abr-1 - o at - abo
| ! L (64)
O wy F TP sy F U wy F () « F.
The coefficient vectors a’®,a”1, ... allow the following reconstruction scheme:
a’o a™ ars,
_ ) o
3P sy F - 4+ — Py F 5 + = Pur 5 (65)
4 y
3wy F Y wgy F

In the previous chapters we described wavelets as intimately related to a multires-
olution analysis. Moreover, any bandlimited signal (function) is reconstructable by
using bandlimited wavelets.

We saw that the multiresolution analysis “looks” at the signal through a micro-
scope, whose resolution gets finer and finer. Thus it associates to the signal a sequence
of smoothed versions, labelled by the scale parameter. The wavelets provide a pow-
erful tool in interpreting and constructing lowpass and bandpass filters. This makes
wavelets particularly useful for data compression. In fact, compression techniques
aim at reducing storage requirements for the signal and at speeding up read or write
operations. In case of compression we are ready to accept an error, for example, by
using a threshold for the wavelet coefficients (see e.g. [7, 8, 14, 17]) as long as the
quality after compression is acceptable.

10. Noise cancellation

Thus far only a deterministic function model has been used. If a comparison of a
measured function with the actual value were done, a discrepancy would be observed.
A mathematical description of this discrepancy has to follow the laws of probability
theory in a stochastic model. Usually the observations are not looked upon as a time
series but rather as a function F' ("™ for stochastic) for which it is canonical to assume
that

F=F+8,
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where € is the observation noise. Moreover, in our approach, we suppose the covariance
to be known in the form

Cov[F(x), F(y)] = Ele(),£0)] = K(,y), (2,y) € Sx T,

where K : ¥ x ¥ — R is an H-kernel
K(z,y) =Y K"nUi(x)Ux(y), (,y) €T xT,
n=0

with H-admissible symbol {K"(n)},=o.1.....

Since the large “true” coefficients are the ones that should be included in a selective
reconstruction, in estimating an unknown function F' € H, it is natural to include
only coefficients larger than some specified threshold value. In our context a ’'larger’
coefficient is taken to mean one that satisfies for j =0,...,Jand I =1,...,L;

)

SH)NJ(leJ) *H F)Q
(FOFO.SH)N, (), (SHIN, (o)

(KCo(SHw, ™) (SHYN, Cu™))

I
/N
g
Nk‘h

H

Y
—~
g
~=

I
~~
=
=
~—
V)

In spectral language the last estimate reads as follows

N;

@) = () % (i) (Frm)
(w*)

3
I
=)

v

(Vs )" K )

For the given threshold values lej a multiscale estimator (**’ for estimated) can be
written in the form:

F; = Z I{(&iLO)QZ(k?V} ((I)O *H <I>0) (yiLo)diLo
i=1
J—1 Lj

LiN~L;
- Z%Z;I{(affﬂz(khz}(q’j W) (i)ai
=0 i=
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In other words, the large coefficients (relative to the threshold kiLj, i=1,...,Lj,
j =0,...,J —1) are kept intact and the small coefficients are set to zero. The
estimator F; can be reformulated in the following way

By = Zéh“d( ) (@0 % o) (5/°)a}

J—1 Lj

b S a2 (2 w0 w) ()

7j=0 i=1

where the function 62974 is the hard thresholding function

6hard( ) { 1if |a| > A

0 otherwise

The “keep or kill” hard thresholding operation is not the only reasonable way of
estimating the coefficients. Recognizing that each wavelet coefficient consists of both
a signal portion and a noise portion, it might be desirable to attempt to isolate the
signal contribution by removing the noisy part. This idea leads to the soft thresholding
function (see the considerations by [7, 8])

ar max{0,1— 2} ifa#0
2 d(a):{ { 0 ! ifa=0"

which can also be used in the estimators stated above. When soft thresholding is
applied to a set of empirical coefficients, only coefficients greater than the threshold
(in absolute value) are included, but their values are ’shrunk’ toward zero by an
amount equal to the threshold .

Summarizing all our results we finally obtain the following thresholding multiscale
estimator FJ for a function F' € H known from error-affected F :

Lo
Fro= oo (@h)?) 88 (ofoale
i=1
J—1 Lj
+ Z Zé‘hard ( ),1,52)(:%[/1)&1[/]
7j=0 i=1

where the coefficients diL" are given recursively (see (53),(61)) by the formulae

Ljt1
~L; L; ~L; L; L; . .
a;’ =w;”’ Z a; """ (SH)n,(y;”,y;”"), i=1,...,L;, j=0,...,0J -1
=1
and
~L Ly, L .
a;’ =w; F(y;”), i=1,...,Ly.
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In conclusion, F is first approximated by a thresholded Fy. Then the coefficients of
higher resolutions are thresholded.

11. Legendre wavelets

As a first example we consider the space L?[—1,+1] of square-integrable functions
F :[-1,+1] = R, ie. & = [-1,41] and H = L?[-1,+1]. The kernels resulting
from this choice, i.e. Legendre scaling functions and wavelets, can be used for one—
dimensional time-series analysis or, in combination with scalar or vectorial spherical
wavelets, for the analysis and approximation of time dependent scalar or vector fields
on the sphere. Since this subject is beyond the scope of this survey, we do not present
an example and therefore keep the treatise brief.
On the space L*[—1, +1] we are able to introduce, as usual, the inner product

+1
(F.G)g2_y ) :/ F()G(t) dt, F,G e L*[-1,+1]. (66)

' -1

The L?[—1, 41]-orthonormal Legendre polynomials P}: [-1,41] — R given by

1
P,’{:\/%Pn, n=0,1,... (67)

with
[n/2]
Py(t) = Z (_1)5271(” (_2ng|(2;)_' S)!S!t”_%, te[-1,+1] (68)

form a Hilbert basis in L?[—1,+1]. In other words, every F € L*[—1,+1] admits a
Fourier expansion F' = Y">°  F(n)P;;, where the Fourier coefficients read as follows:
+1

F"(n) = (F, P;)L2[71,+1] = /_1 F)P,(t)dt, n=0,1,.... (69)

The L?[—1,+1]-admissible product kernels (cf. [3]) are given by
D(z,t) =Y T n)P;(z)Pr(t), =,t€[-1,+1] (70)
n=0

with T"(n) € R, n € No, where the symbol of the L2[—1, 1]-kernel has to satisfy the
estimates

(i) Y (M"m)*<oo, (i) Y (M(n)P;(t)* < oo (71)
n=0 n=0
203 Rewvista Matemdtica Complutense
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for all ¢t € [-1,+1]. A sufficient condition for the validity of the conditions (i) and
(ii) in (71) is given by

S P <o (72)

(note that |P,(t)] <1 for all t € [-1,+1]).
Let {(®;)"(n)}n=0,1,..., j € Z,be the generating symbol of a scaling function {®,}.

Then limy_,« || Fy — FHLQ[_LH] = 0 holds for all F € L*[—1, +1], where the .J-level

approximation Fly is given by
+1 +1 +1
Fy = / ¢J(-,m)/ & (z, t)F(t) dt do = / oD (L OF(t)dt.  (73)
-1 -1 -1

The scale spaces V; are given by

+1
V; = {/ o) () F(t) di|F e L2[—1,+1]}, (74)
~1
while the detail spaces are of the form

[T e 2
W]_{/_1 U (-, t)F(t) dt|F € L?] 1,+1]}. (75)

J

The wavelet transform WT at scale j and position z € [—1,+1] reads as follows:

(WT)(F)(j;z) = /+1 U,(z, t)F(t) dt, FeL*[~1,+1]. (76)

-1

Finally, the reconstruction formula of F' € L*[~1, +1] allows the (bilinear) represen-
tation

F = /le Do (-, ) /H Do (z,t)F(t) dt dx

12. Spherical wavelets

As reference space we now use the space £2(Q) of square—integrable functions F : Q —
R on the unit sphere  in three—dimensional Euclidean space R? (i.e.. ¥ = Q C R3
and H = £2?). We consider £? to be equipped with the inner product (F,G)z> =
Jo F(6)G(&)dw(€), F,G € L? (dw is the surface element). As £?-orthonormal system

Rewvista Matemdtica Complutense 204
2003, 16; Nim. 1, 277-310



W. Freeden, T. Maier, S. Zimmermann A survey on wavelet methods. . .

we choose the system {Y),, k} n=0.1, of spherical harmonics Y,, ;. of degree n and
nt1

order k (see e.g. [10, 11] for more detalls) From the addition theorem we know that

2n+1
> Vasl@Varln) = 2P ), Enen, (77)

where P, is the Legendre polynomial (67) of degree n.

Clearly, every function F' € £? can be represented in the form F = Zn 0 in'il'l FMNn, k)Y, k,
where the Fourier coefficients are given by F*(n, k) = (F, Yy 1)c2 = [o F (n)dw(n).
The £2-product kernels (cf. [10, 11])are of the form

oo 2n+1

=3 3 T, B) Y k()Y () (78)

n=0 k=1
with TN (n, k) e Rforn=0,1,...;k=1,...,2n+ 1, where

(o] 2n+1

nOkl

is a sufficient condition for the admissibility (i) and (ii) (note that |Y, x(§)] <

V(2n + 1) /4w for all € € Q). In case of rotational invariance, i.e. T (n, k) = I'*(n)
forn=0,1,..;k=1,...,2n + 1, the conditions (i) and (ii) reduce to

o

Z(FA(n))QQZ; LIp (80)

n=0

The convolution of T' against F' is canonically understood by
T2 F)(§) = (T(&-) F)pe (81)
| remFamdsm

oo 2n+1

S TN F N0, k)Y, k(6), £€Q .

n=0 k=1

Let {(®)"(n,k)} (S0 , J € Z,be the generating symbol of a scaling function

J en we have limj_ . ||F; — Fl||z2 = 0 for a € L7, where F is given by
®;}. Th h 1 F F 0 f Il F e ? where F b

Fy = fQ J - n)F(n) dw(n). The scale and detail spaces and the wavelet transform
WT are given in canonical way.
The reconstruction formula recovering a function F € £ now reads

P [ 8 CaFm d +Z/ W) (52
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Again, the Shannon kernel (SH),; | admits an explicit representation. The space V;
is equivalent to the space Ho  2i_1 = Polsi_1(2) of restrictions to Q of (homogeneous
harmonic) polynomials in R* of degree < 2/ —1. The dimension of Poly; _; () is equal

to S22 2n 4+ 1) = (27)2 = 2%.

For j = 0,...,.J, the generating coefficients wle € R and nodal pointslnlL" € 0,
l=1,...,Lj, of polynomial exact integration formulae of degree L; > 2(27 — 1) are
calculable from the linear systems

L;
/Q (SH)1, (62 )do(€) = S w! (SH)p, (1 ) (83)
=1

i =1,...,L; (note that the matrix ((SH)Qj_1(7)iLj.nle))i,z:L,,,, is assumed to be
of maximal rank). Again we are able to make profit of the fact that @;2)(-,5) €
Poly;_1(2) and [ (SH)ai_1 (-, 1) F (n)dw(n) € Poly;_1(£2), hence, (as a function of )

@;2)(-, €) [o(SH)yi_1(&-0)F(n) dw(n) € Polyi+1_5(Q) (for more details on polynomial
exact integration the reader is e.g. referred to [10, 11, 16]). In conclusion, we get

/ (@) ¢) / (SH)as 1 (€, n)F(n)dw(n) (34)
Q

Q
Lj
= S wfe® (k) / (SH)os (nm) F(n)deo(r)
1=1 Q

j=0,...,J. The J-level approximation F; can be obtained in recursive way via the
tree algorithm (pyramid scheme) as indicated in this paper.

For illustrational purposes we present some results obtained by using spherical
wavelets for noise cancellation. Using the well known NASA, GSFC and NIMA
EGM96 model (see http://cddisa.gsfc.nasa.gov/926/egm96/egm96.html) for the gravi-
tational potential we calculated a potential function including contributions of spher-
ical harmonic degrees 3 up to 127. This function was evaluated on the 66564 nodal
points of a point system suitable for numerical integration (see [9] for details on the
point system and the integration technique used). We then 'contaminated’ this data
set with bandlimited white noise of variance o> ~ 14.4 and bandwidth nx ~ 257.
This resulted in noise of the order of magnitude 10? [Gal m] in a field of the order
of magnitude 10* [Gal m]. Note that bandlimited white noise is characterized by the
following symbol of the covariance kernel function:

2

K"\(n) = { (w177

n<ng,
0 , m>NK, .

It should be remarked that, when looking at the pictures, the noise is not constant at
the poles as one should expect it to be. This is due to our routine of adding the noise
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to the synthetic data. However, our results are not influenced by this, since during
the process of decomposition and reconstruction each data point of the rectangular
domain is weighted by corresponding integration weights which are constructed such
that the poles do not contribute to the whole integration. The denoising process has
been carried out using Shannon wavelets from scales j=0 to 6 and the hard threshold-
ing criterion. Figure 1 shows the gravitational potential after the denoising process,
Figures 2 and 3 show the noise in the data before and after the noise cancellation,
respectively. The rms error of the noisy data-set w.r.t. the clean data has been im-
proved by 51 per cent. Because of the space localizing properties of the wavelets, local
calculations become possible. Figure 4 shows the result of a locally denoised data set,
i.e. from the global data distribution we have extracted a local data set over South
America and applied our algorithms to this spatially restricted area. This resulted in
an improvement of the rms error of 31 per cent.

e T I o 200 400 £

Figure 1: Denoised graviational potential [100 Gal m)]
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Figure 2: Noise before the denoising process [100 Gal m)]

Figure 3: Noise after the denoising process [100 Gal m)]
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A

Figure 4: Denoised graviational potential over South America [100 Gal m]

Last but not least we present a computational example illustrating the concept of
multiresolution analysis. The multiresolution analysis looks at’ the given data (in this
case the EGM96 model potential up to degree and order 360) through a magnifying-
glass, the resolution of which gets finer and finer. Thus it associates to the potential
a sequence of smoothed versions, labelled by the scale parameter j. These aspects are
illustrated in the Figures 6 to 11. The computations have been accomplished using
CP scaling functions and wavelets. The nodal points and the corresponding weights
needed for the numerical integration are chosen as described in [16].
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-500.0 0.0 500.0

Figure 5: raw data set [100 Gal]

N

-100.0 0.0 100.0 200.0 -200.0 0.0 200.0

Figure 6: T5(F) (left) and R3(F) (right) in [100 Gal]
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s ——

-200.0 . 200.0 400.0 -100.0 0.0 100.0

Figure 7: Ty(F) (left) and R4(F) (right) in [100 Gal]

=

-500.0 500.0 0.0 100.0

Figure 8: T5(F) (left) and R5(F) (right) in [100 Gal]
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I

-500.0 0.0 500.0 -50.0 0.0 50.0

Figure 9: T4(F') (left) and Re(F) (right) in [100 Gal]

-500.0 0.0 500.0 -50.0 0.0 50.0

Figure 10: T (F) (left) and R7(F') (right) in [100 Gal]
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-500.0 0.0 500.0

Figure 11: T5(F) [100 Gal]

13. Spherical vectorial wavelets

Now we consider the space 1?(Q) of square-integrable vectorial functions f : Q — R?
on the unit sphere (i.e. ¥ = Q C R*, # = 1%(Q)). Equipped with the inner product
(fs9ie@) = Jo fn) - gn)dw(n), f.g € 1*(Q), 1*(Q) is a Hilbert space. Using the
L?-orthonormal system {Y},, k} neO of spherical harmonics (see Section 12) we

are able to introduce an 1%(Q)- orthonormal system {yn k}'nlf’i_”, via
L2n41
YO = EVar(), (85)
2) 1 *
- VY, (0, 86
Yok () SN k(&) (86)
V) = —— Iy, 87
Y1 (&) RS nk(€); (87)

where § € , V{ is the surface gradient and L = {AV7 is the surface curl gradient (see
[11] for more details), 0; = 0 for i = 1 and 0; = 1 for i = 2,3. Using {yn k}’nlf’? _____

every function f € 1?(Q) can be represented by its orthogonal expansion, i.e.

M)

n—l

3 [
f= ZZ nkynk (88)

i=1 n=0; k:l
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with coefficients (f(?)) = [ f( (n) dw(n). The vectorial 12(Q) kernel
functions of type i are of the form
oo 2n+1
=2 Z DAY AO) (89)
n=0; k=1

and the vectorial I2(2) kernel functions are then derived by
3 .
T n) =Y TOEn), (90)
i=1
with (D) (n) € R for i = 1,2,3, n = 0,1,... (see [1]). Admissibility is guaranteed

provided that
- , 220 +1
> (r0ym) s <o (91)
4

n=0;

is assumed. It should be observed that, if P, denotes the Legendre polynomial of
degree n, ViP,(€-n) = (n—(&-n)&) Py (§-n) and Ly P, (€-n) = EAnP, (§-n), such that
smgularltles at the poles are completely avoided by use of the kernel representations
(89). In connection with the addition theorem (77) of scalar spherical harmonics this
leads to the following, numerically very useful, representations of the vectorial kernel
functions of type i:

oo 2n+1

D) = ¢ Z kz 22 L ) ) Pae ) (92)
2)(€ _ _ SN UAR 2n _ 2n4+1 1 2)\A ,
(e = S LS BT .

The following concept of convolutions is not totally reflected by the general Hilbert
space approach discussed in the previous chapters, but it is still in quite analogy to
the presented wavelet idea:

Using the kernels (92),(93) and (94), two kinds of convolutions will be introduced
(cf. [1]), i.e. a convolution of vectorial kernels against vectorial functions - resulting
in scalar coefficients - and a convolution of vectorial kernels against scalar valued
functions - enabling us to reconstruct a vectorial function from scalar coefficients.
The corresponding convolutions are given by

T = / T(0,€) - £(n) doln)
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M)

n+1

3 oo
ZZ Ynk(f) fEQ’

i=1 n=0; k:l

mapping vector fields onto scalar fields and

wmwzfmwwm

oo 2n+1

ZZZWWH@&%

i=1 n=0; k=1

mapping scalar functions onto vectorial functions. Applying both convolutions con-
secutively to a function f € I? results in

3 00
(C*Tx 1)) =D > S (@D )2 (F D) (n. )y, (&) e (95)
Hence, the reconstruction formula recovering a function f € I? now reads

f=OoxBoxf+> UjxT;xf (96)
7j=0

with @ = Z?Zl @(i) and ¥; = ZZ 1 ;z) Again, as in the scalar case one can make
use of discretizatlons of integrals and use efficient pyramid schemes.

Once again, strictly spoken, this approach is a slight extension to the general con-
cept since here two different types of convolutions are defined. This, however, is based
on the fact that the direct application of the general approach to vector fields would
involve tensorial kernel functions. Though being the canonical approach in the sense
of this review, the tensorial kernel functions hold some disadvantages for numerical
applications and will be omitted here (for more details see [1] and [11]).

Similar to the scalar case, we present here an illustrative application of vectorial
spherical wavelets for the denoising of spherical vector fields. From a bandlimited geo-
magnetic potential up to degree 13 (see [4]) we calculated the corresponding gradient
field w.r.t. a local moving triad of unit vectors {e,e%,e"}, where t € [-1,1] is the
polar distance, ¢ € [—m, 7) is the spherical longitude and r is the radius of the sphere
of interest (e.g. a satellite orbit in spherical approximation). For details on notation
the reader is referred to [11]. In similarity to the scalar example given above, we
computed the gradient field on 3600 nodal points of a suitable integration point system
(cf. [9]) (note that, due to the lower degree of the geomagnetic potential we need less
integration points). In a second step each vectorial component was “contaminated”
with bandlimited white noise of bandlimit nx and variance o2 of approximately 60
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and 0.9, respectively (see the remarks in Section 12). This resulted in noise of the
order of magnitude 10° [nT] in field components of the order of magnitude 10* [nT].
The denoising process has been accomplished using vectorial Shannon wavelets of
type 1 and 2 and of scales j = 1 to 3 and applying the hard thresholding criterion.
Figure 12 show the denoised negative radial component (i.e. the —&"-component) and
the denoised tangential e-component of the gradient field (the results for the &' are
similar and are therefore omitted). Figure 13 shows the noise that has been added
to the field components (see the remarks in Section 12) while Figure 14 shows the
remaining noise after the noise cancellation. The rms error w.r.t. the unnoised data
has been improved by 87 per cent for the —e"-component and by 89 per cent for the
e¥-component.

4 4 ] ] i ] K . ] 4 L] i ak L] L1 ] I

Figure 12: Denoised —e"-component (left) and £¥-component in 10000 [nT]

Figure 13: Absolute value of noise [nT]
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Figure 14: Error of denoised —¢” (left) and ¥ (right) component w.r.t. clear data
[nT]

Finally we close with an example of spherical vectorial wavelets applied to CHAMP
Fluxgate-magnetometer data. CHAMP is a geoscientific satellite run by the Geo-
ForschungsZentrum (GFZ) in Potsdam, Germany (see http://www.gfz-potsdam.de
and www.gfz-potsdam.de/champ/ for more information on the GFZ or the CHAMP
satellite mission). In addition to gravitational field and ionospheric measurements,
CHAMP is designed to map the geomagnetic field with high accuracy using a scalar
Overhauser-magnetometer and two vector Fluxgate-magnetometers. In the follow-
ing example we have applied spherical vectorial wavelets to vector data from August
2001 to November 2001 (10:00 - 16:00 local time). In a first step the data have
been corrected for so-called main field distributions by using the spherical harmonic
model Oersted-10b-01 (cf. [15]) and have then been gridded to a regular grid using an
inverse-distance method. We then have performed a vectorial multiresolution analysis
using type i = 3 Shannon wavelets. This procedure leads to a multiresolution analysis
of the so-called toroidal magnetic field at satellite height. The toroidal field is purely
tangential and can be shown to be due to radial electric current distributions crossing
the satellite’s track (see e.g. [2]). Figures 15 up to 17 present the absolute value of
the toroidal field at different scales. It can clearly be seen that in higher scales we
get large contributions in the vicinity of the north- and southpole. These are due to
strong current systems flowing onto and away from the Earth in the polar areas (field
aligned currents).
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Figure 15: Toroidal Intensity at scales 0 (left) and 1 (right); [nT]

B0 O B0 e
i - L L] L " "= L] L] " L} (-] " m -

Figure 16: Toroidal Intensity at scales 2 (left) and 3 (right); [nT]
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L TR
L - L] (=] (-] - L m L - Lo - m

Figure 17: Toroidal Intensity at scale 4 (left) and Reconstruction (right); [nT]
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