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Abstract

This paper is concerned with systems with control whose state
evolution is described by linear skew-product semiflows. The con-
nection between uniform exponential stability of a linear skew-
product semiflow and the stabilizability of the associated system
is presented. The relationship between the concepts of exact con-
trollability and complete stabilizability of general control systems
is studied. Some results due to Clark, Latushkin, Montgomery-
Smith, Randolph, Megan, Zabczyk and Przyluski are generalized.

1 Introduction

A central concern in the study of infinite-dimensional linear control sys-
tems with unbounded coefficients is to establish the connections between
their asymptotic behaviour and their controllability. It is well known
that in Hilbert spaces for a linear control system associated to a Cjy
- group its exact controllability is equivalent to its exponential stabi-
lizability backward and forward in time (see [9], [12], [21]). Another
important result, in Banach spaces, expresses the relation between uni-
form exponential stability of an evolution family and the stabilizability
and detectability, respectively, of the associated linear control system
([7))-

In recent years, the theory of linear skew-product semiflows has been
developed and used to study the asymptotic behaviour of time-varying
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linear systems ([18]). This approach led to the generalization of some
classical theorems of dichotomy and stability (see [2]-[6], [10], [11], [13],
14]).

Naturally, the question arises whether the connection between sta-
bilizability and controllability can be extended to systems associated to
linear skew-product semiflows.

The purpose of this paper is to answer this question. We shall con-
sider an abstract generalization of systems described by differential equa-
tions of the form

{:’c(t) = A(o(0,t)x(t) + B(o(0,t))u(t)
y(t) = Clo(6,1))x(t)

where o is a semiflow on a locally compact metric space ©. For every 0 €
©, the operators A(f) are generally unbounded operators on a Banach
space X, while the operators B(0) € B(U,X), C(0) € B(X,Y), where
U, Y are Banach spaces.

We establish the connection between the uniform exponential sta-
bility of a linear skew-product semiflow and the stabilizability and de-
tectability, respectively, of the associated control system, using a genera-
lization of a well-known stability theorem of Datko ([8]). Thus we extend
a theorem of Clark, Latushkin, Montgomery-Smith and Randolph ([7]).

We also study the relation between the complete stabilizability and
exact controllability of a control system associated to a linear skew-
product semiflow. The results obtained here generalize some theorems
due to Megan, Zabczyk and Przyluski (see [12], [17] and [21]).

2 Preliminaries

Let X be a Banach space, let (©,d) be a locally compact metric space
and let £ = X x © . We denote by B(X) the Banach algebra of all
bounded linear operators from X into itself and by Ry = [0, 00).

Definition 2.1. A mapping 0 : © x Ry — © is called a semiflow on
O, if it has the following properties:

(i) 0(0,0) =0, forall € ©;
(i) o(,5+1t) = o(0(0,5),t), for all (0,s,t) € © x RZ;
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(iii) o is continuous.

Definition 2.2. A pair m = (®,0) is called a linear skew-product semi-
flow on & =X x O if o is a semiflow on © and ® : © x Ry — B(X)
satisfies the following conditions:

(i) ®(6,0) = I, the identity operator on X, for all 0 € ©;

(ii) ®(0,t + s) = ®(a(6,t),s)®(0,t), for all (0,t,s) € © x R% (the
cocycle identity);

(iii) (0,t) — ®(0,t)x is continuous, for every x € X;

(iv) there are M > 1 and w > 0 such that

|@(0,1)]] < Me** (2.1)
for all (0,t) € © x Ry.
The mapping ® given by Definition 2.2. is called the cocycle associ-

ated to the linear skew-product semiflow = = (®,0).

Remark 2.1. If 7 = (®,0) is a linear skew-product semiflow on £ =
X x © then for every 8 € R the pair 73 = (®g,0), where ®5(6,t) =
e PLd(0,t) for all (0,t) € © x Ry, is also a linear skew-product semiflow
on& =X x0.

Example 2.1. Let © be a locally compact metric space, let ¢ be a
semiflow on © and let T = {T'(¢) }+>0 be a Cp - semigroup on X. Then
the pair mp = (®p,0), where

Op(0,t) = T(t)

for all (0,t) € © x Ry, is a linear skew-product semiflow on &€ = X x O,
which is called the linear skew-product semiflow generated by the Cy -
semigroup T and the semiflow o.

Example 2.2. Let © = R4, 0(0,t) =0+t and let U = {U(t, s) }+>s>0
be an evolution family on the Banach space X. We define

o(0,t) = U(t+0,0)
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for all (6,t) € R%. Then 7 = (®,0) is a linear skew-product semiflow
on & = X x O called the linear skew-product semiflow generated by the
evolution family U.

Example 2.3. Let X be a Banach space, © be a compact metric space
and let 0 : © x Ry — O be a semiflow on ©. Let A : © — B(X) be
a continuous mapping. If ®(#,¢) denotes the solution operator of the
linear differential system

a(t) = A((0,0) u(t), t>0.

then the pair 7 = (®, o) is a linear skew-product semiflow on &€ = X x .
Often, these equations arise from the linearization of nonlinear evolution
equations (see e.g. [18] and the references therein).

Example 2.4. On the Banach space X, we consider the time-varying
differential equation

where a : Ry — Ry is a continuous function such that there exists
o= tlim a(t) < oo.
— 00
Let C(R4,R) be the space of all continuous functions f : Ry — R.
This space is metrizable with the metric

D=3 g
~ 2 1 (x,y)’
where d,,(z,y) = sup |z(t) — y(t)].
te[0,n]
If we denote by as(t) = a(t + s) and by © = closure {as : s € Ry}

then
c:OxRy — 0, o(0,t)(s):=0(t+s)

is a semiflow on ©,
t
B:0 xRy — B(X), ®0,0)z = exp(/ o(r) dr) z
0
is a cocycle and hence m = (®,0) is a linear skew-product semiflow on

=X x 0.
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If U, Y are Banach spaces we denote by B(U,Y’) the space of all
bounded linear operators from U into Y. If © is a locally compact metric
space, we denote by Cs(©, B(U,Y")) the space of all strongly continuous
bounded mappings H : © — B(U,Y), which is a Banach space with
respect to the norm

|[H]| := sup [|H()]].
0cO
If H € Cs(0,B(U,Y)) and G € Cs(0,B(Y, Z)) we shall denote by GH
the mapping © 5 0 — G(0)H (0)
o

Theorem 2.1. Let m = (®,0) be a linear skew-product semiflow on
E=Xx0O. If Pe(Cs(0,B(X)) there is an unique linear skew product
semiflow mp = (Pp,0) on X X © such that

Op(0,t)r = D(0,t)x + /Ot O(0(0,s),t—s)P(a(0,s)) Pp(f,s)xds (2.2)

for all (x,0,t) € X x © x R

Proof. First, we shall show that for every 8 € © and every t > 0 the
integral equation (2.2) has a solution which is a bounded linear operator
on X. Therefore we define:

Dy(0,t)x = P(0,t)x
and .
(0, 1)z :/0 B(o(0, 5), 1 — 5) P(o(0, 5)) Do (6, 5)z ds

for all (z,60,t) € X x © x Ry
Let M and w given by (2.1). We have

1916, 8)]] < M?||P||te,

for all (0,t) € © x R;. We prove that for every € X the function
(0,t) — ®1(0,t)x is continuous. Let z € X and (6p,t0) € © x R.
Because (0, d) is a locally compact metric space there exists r > 0 such
that V = Dy(6,r) is a compact neighbourhood of 6.

Let € > 0. For h > 0 and 8 € V we have:

to
Hq’l(9,t0+h)m—‘1’1(907%)56\!S/ |[0(0, h, s) — (60,0, 5)|| ds +
0
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to+h
+ / ||®(a(0,s),to+h—s)P(a(,s)) ®(0,s)z|| ds

to

where:
¢ :V x[0,1] x [0,t0] — X,

©(0,h,s) =®(c(0,s),to+h—s)P(c(0,5))P(0, s)x.

The function ¢ is continuous on V' x [0,1] x [0,¢0] and hence it is
uniformly continuous. Then there exist §; € (0,1) and r; € (0,7) such

that
€

2(to+ 1)
for all (6, h,s), (0", 1, s") € Vx[0,1]x[0, to] with |h—h/| < 01, |s—s'| < &
and d(0,0") < 1.

Let 0 € (0,d1) such that

100, b, 5) — (0", 1, s")]| < (2.3)

to+h
/ [|®(c(0,s),to+h—s)P(c(,s)) ®(0,s)z||ds <

to
< h M2 || P [a] < 3, (2.4)
for all h € [0,4). Using (2.3) and (2.4) we obtain that
|[@1(0,t0 + h)x — P1(0o, to)z|| < e (255)

for all h € [0,8) and 8 € Dg(fo, r1).
Similary, one can show that there is § € (0,4) and 7o € (0,71) such
that
||<I>1((9,t0 — h)x — @1(90,t0)$” <e
for all h € (0,0) and 0 € D4(6y, 7o), so the function (0,t) — ®1(0,t)z is
continuous on © x R4 for every x € X.
Inductively we define

D,11(0,t)x = /0 O(0(0,s),t—s)P(c(b,s)) D,(0,s)xds,

for all (n,0,t,2) € N x © x R4 x X. Then for every n € N and x € X
the function (0,t) — ®,,(0,t)x is continuous on © x Ry and

(M| Pl[e)”

120, 1) < M et 2L

, (2.6)
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for all (n,0,t) € N x © x Ry. It has sense to define:
q)P(eat) = Z q)n(ea t)’ (27)
n=0

for all (0,t) € © x Ry. So ®p(#,0) = I for every 6§ € O. Using (2.6) we
obtain that for every t > 0 and § € © ®p(0,t) € B(X) and

19p(6,8)|| < M el MIPIE,

for all (0,t) € © x R;..

Let x € X, (0o, t9) € © x R4 and let V' be a compact neighbourhood
of 0y. Since the series (2.7) converges uniformly on V x [0,¢y + 1] by
the continuity of ®,,, we obtain that the function (6,t) — ®p(0,t)z is
continuous in (g, tg). Moreover:

Op(0,t)r = P(0,t)x + i ®,(0,t)r =

n=1
=0, t)x+ > /0 (0 (0, s),t — s) P(c(0,5)) Pp_1(0, )z ds =
n=1

=®(0,t)r + /0 ®(0(0,s),t —s)P(a(0,s)) Pp(6,s)xds,

so ®p verifies the equation (2.2).

Using (2.2) and Gronwall’s lemma it is easy to show that ®p verifies
the cocycle identity.

Finally, suppose that ®/, is a cocycle which verifies (2.2). Then we
have:

t
1@ (0, ) — Pp (0, t)| é/ M ||P|[ e ||@p(0, )z — Dp (6, 5)x|| ds.
0

From Gronwall’s lemma it follows that ®p(60,t) = ®5(0,t), for all t > 0
and 0 € ©.

Remark 2.2. The linear skew-product semiflow 7p = (®p, o) given by
Theorem 2.1. is called the linear skew-product semiflow generated by the
pair (mw, P).
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Corollary 2.1. Let m = (®,0) be a linear skew-product semiflow on
E=Xx0O. If Pe(Cs(0,B(X)) then the linear skew-product semiflow
wp = (Pp, o) generated by the pair (mw, P) verifies the equation

CI)p(Q, t)IE =

=P(0,t)x + /Ot Dp(o(,s),t—s)) Plo(,s)) ®(0,s)xds (2.8)
for all (0,t,z) € © x Ry x X.
Proof. It is easy to verify that
D,(0,t) = ©,(0, 1), (2.9)
for all (n,0,t) € N x © x R, where ®,(0,t) is defined by:
Do (6,1) = (0, )

~ t ~
D,(0,t)x = /0 ®,_1(0(0,5),t —s)P(a(0,s)) ®(0,s)xds

for all (n,t,0,z) € N* x Ry x © x X. Then using (2.7) and (2.9) we
obtain

Op(0,t)r = B0, 1)z + Y Pu(6, 1)z =
n=1

= (0, t)x + Z/O ®,_1(c(0,5),t — s)P(o(0,5)D(0, s)xds =
n=1

_ @(e,t)x+/0 Bp(0(0, ), t — 5)P(0(0,5))D(0, 5)z ds,

for all (z,0,t) € € x R4, which ends the proof.

Definition 2.3. A linear skew-product semiflow 7 = (®,0) on & =
X % © is called uniformly exponentially stable if there are N > 1 and
v > 0 such that

190, 1)]] < Ne™

for all (0,t) € © x Ry

Example 2.5. Consider the linear skew-product semiflow 75 = (®g3, 0)
where

Ds(0,t) = e PP ®(0,1), BER,

606 REVISTA MATEMATICA COMPLUTENSE
Vol. 15 Nam. 2 (2002), 599-618



MIHAIL MEGAN ET AL. STABILIZABILITY AND CONTROLLABILITY OF SYSTEMS. . .

and m = (®,0) is the linear skew-product semiflow given in Example
2.4. It is easy to see that mg is uniformly exponentially stable if and
only if § > «.

A sufficient condition for uniform exponential stability of linear skew-
product semiflows is given by:

Proposition 2.1. Let m = (®,0) be a linear skew-product semiflow on
€ =X xO. If there are ty > 0 and c € (0,1) such that

12(6, 1) < ¢,

for all 0 € ©, then m = (®,0) is uniformly exponentially stable.

Proof. Let M > 1 and w > 0 given by (2.1) and let v > 0 such that
c=e Vo,

Let 6 € ©. For every t € R there are n € N and r € [0,%y) such
that t = nty + r. Then we obtain:

120, 8)[| < [|@( (6, nto), r)|| [|©(8, nto)|| < Me"0 e < Ne™™",

where N = Me@)t_So 7 is uniformly exponentially stable.

Now, we give a characterization of uniform exponential stability of linear

skew-product semiflows, which generalizes the well-known theorem of
Datko ([8]).

Theorem 2.2. The linear skew-product semiflow = = (®,0) is uni-
formly exponentially stable if and only if there are K > 0 and p > 1
such that

/ 196, 0)e|lPdt < K|la]”, (2.10)
0

for all (z,0) € £.

Proof. Necessity. If m = (®,0) is uniformly exponentially stable and
N > 1, v > 0 are given by Definition 2.3. it follows that

> NP
/ [@(0, t)z[|P dt < — ||z][”,
0 vp

for all (z,0) € £ and p > 1.
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Sufficiency. Let t > 1 and m = fol M~Pe P¥Tdr where M > 1 and
w > 0 are given by (2.1). Then using the cocycle identity we obtain
from (2.10) that

t
m||® (0, t)z||P < |<1>(9,t)g;||1’/ MPePo(t=s) gg <
0

t
< / 19(6, )| [Pds < K |||,
0

and hence

K 1
100,011 < 24 = mar {1, ()7 )
m

for all (¢,0) € Ry x ©. Setting to = 2P MV K we deduce:
to
to||2(6, to)z||” < Mf/ 190, s)||” ds < K MY [[|”
0
and hence ||®(6,t)|| < 1, for all § € ©. From Proposition 2.1. it results

that 7 is uniformly exponentially stable.

We denote by M(X) the linear space of all strongly Bochner mea-
surable functions u : R4 — X identifying the functions which are equal
almost everywhere. For every p € [1,00) the linear space

PRy, X) = {u € M(X) : /OOO l|u(t)|[Pdt < 0o}

is a Banach space with respect to the norm:

fully = ([ ,u(t)det)é |

We shall denote by L], (R4, X) the set of all locally integrable func-
tions u : Ry — X.

Let U, Y be two Banach spaces and
{A9 : Llloc(R+a U) - Llloc(R+7Y)’ 0 € 6}
a family of linear operators.

Definition 2.4. The family { Ag}oco is said to be uniformly (LP(R,U),
LP(R4,Y)) - stable if the following conditions are satisfied:
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(i) Apgu € LP(R4,Y), for all (u,0) € LP(R4,U) x ©;

(ii) there is L >0 such that ||Agu|l, < Ll||ullp, for all (u,0) €
LP(R4+,U) x O.

Remark 2.3. If the families {Ap}lgco, {Bploco are uniformly
(LP(R4,U), LP(R4,Y)) - stables and the family {Cy}gceo is uniformly
(LP(R4,Y), LP(R4, Z)) - stable then

(i) the family {Ay + Bp}oco is uniformly (LP(Ry,U), LP(R4,Y)) -
stable;

(i) the family {CpAp}oco is uniformly (LP(R4,U), LP(R4, 7)) - sta-
ble.

Let m = (®,0) be a linear skew-product semiflow on &€ = X x ©. For
every 0 € © we define the operator

Pyt Lpo(Ri, X) — Lo (R, X), (Pyu)(t) = /0 ((6, 5),t — s)u(s) ds
(2.11)

Another characterization of uniform exponential stability of linear
skew-product semiflows has been treated in [13] and it is given by:

Theorem 2.3. Let m = (®,0) be a linear skew-product semiflow on
E =X x 0. Then m is uniformly exponentially stable if and only if the
family {Py}oco is uniformly (LP(R4+, X), LP(R4, X)) - stable.

Proof. see [13], Theorem 3.2.

Remark 2.4. The above result is an extension of a well-known theorem
of Perron type, proved by Datko in [8]. Other approaches of this the-
orem have been presented by Neerven in [16] for the particular case of
Cy-semigroups, employing a complex analysis technique and by Clark,
Latushkin, Montgomery-Smith and Randolph in [7], for the case of evo-
lution families, applying Neerven’s result for the associated evolution
semigroup.
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3 Stabilizability and detectability of linear
control sytems

In this section we shall establish the connection between the uniform
exponential stability of a linear skew-product semiflow and the stabi-
lizability and detectability of the system associated to the linear skew-
product semiflow. Thus, we shall extend a result due to Clark, La-
tushkin, Montgomery-Smith and Randolph ([7]).

Let X, Y, U be Banach spaces and let © be a locally compact metric
space. Let B € C5(0,B(U, X)) and C € C4(0,B(X,Y)). Let 7 = (®,0)
be a linear skew-product semiflow on £ = X x ©.

Consider the system S = (7, B, C') described by the following integral
model

x(0,t,xo,u) = @0,t)xo + fg ®(0(0,s),t—s)B(a(0,s))u(s)ds
y(0,t,x0,u) = C(o(0,1))z(0,t,x0,u)

where t > 0, (z0,0) € E,p € [1,00) and u € L} (R4, U).

Definition 3.1. The system S = (7, B,C) is called:

(i) stabilizable if there exists F' € C4(0,B(X,U)) such that the li-
near skew-product semiflow tpr = (Ppp, o) generated by the pair
(m, BF) is uniformly exponentially stable;

(ii) detectable if there exists K € Cs(©,B(Y, X)) such that the li-
near skew-product semiflow txc = (Prc,0) generated by the pair
(m, KC) is uniformly exponentially stable.

For every 6 € © we define the operators
89 : Llloc(R+a U) - Llloc(R+7 X)7 (BQU)(t) = B(U(ea t))u(t)
Cg : Llloc(R—HX) - Llloc(R—l-v Y)v (C@U)(t) = C(U(@,t))u(t)

Theorem 3.1. Let m = (®,0) be a linear skew-product semiflow on
E=Xx0, let {P(0)}oco the family associated to m by relation (2.11)
and let p € [1,00). The following assertions are equivalent:
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(1) 7 is uniformly exponentially stable;

(i) the system S = (m, B, C) is stabilizable and the family {PyBp}oco
is uniformly (LP(R4,U), LP(Ry, X)) - stable;

(iii) the system S = (w, B,C) is detectable and the family {CypPp}oco
is uniformly (LP(R4+, X), LP(R4,Y)) - stable;

(
(iv) the system S = (w, B,C) is stabilizable, detectable and the family
{CyPyBp}oco is uniformly (LP(R4+,U), LP(R4,Y)) - stable.

Proof. (i) = (ii) Since m is uniformly exponentially stable,
according to Theorem 2.3., the family {FPyp}pco is uniformly
(LP(Ry, X), LP(R4, X)) - stable. Because

[ Boullp < [1BI] [[ullp,

for all (u,0) € LP(R4,U) x O, it follows that the family {Bp}gco is
uniformly (LP(R4,U), LP(R4, X)) - stable, so from Remark 2.3. the
family {PyBp}oco is uniformly (LP(Ry,U), LP(R4, X)) - stable.

The implications (i) = (iii) and (i) = (iv) can be obtained in an
analogous manner.

(ii) = (i) Let F' € C5(©,B(X,U)) such that ngr = (Ppp, o) is uni-
formly exponentially stable. For every # € © we consider the operators

Gy : Llloc(RJra X) - Llloc(R+7X)7 (GGU)(t> = /0 (I)BF(U(ea S)vt - S)u(s) ds

Fy : Llloc(R+7X) - Llloc(RJﬂ U)7 (Feu)(t) = F(U(aﬂt))u(t)

Because mpp is uniformly exponentially stable the family {Gg}oco is
uniformly (LP(R4, X), LP(R, X)) - stable.
Let # € ©,¢ >0 and u € L}, (R4, X). Using Fubini’s theorem we
obtain
(PQBQFQGQU) (t) =

= /0 /OS O(o(0,s),t—s)B(a(0,5)F(c(8,s))Ppr(c(d,7),s— T)u(r)drds =

= /0 / ®(0(0,5s),t —s)B(o(0,5))F(c(0,s)Ppr(c(0,7),s — 7)u(r)dsdr =
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= /0 [Pppr(c(@,7),t —T)u(r) — P(c(0,7),t — 7)u(T)] dr.

So
Py = Gg — PyByFypGy, (3.1)

for every 6 € ©.

Using the hypothesis and the fact that the families {Fy}oco
and {PyBg}oco are uniformly (LP(Ri,X),LP(R4,U)) -stable and
(LP(R4,U), LP(R4, X)) -stable, respectively, we deduce from
Remark 2.3. that the family {PyBpFpGgloco is uniformly
(LP(R4, X), LP(R4, X)) -stable.

Hence from (3.1) and Remark 2.3. we obtain that the the family
{Py}oco is uniformly (LP(R4, X), LP(R4+, X)) - stable. From Theorem
2.3. it follows that 7 is uniformly exponentially stable.

(ili) = (i) Let K € Cs(©,B(Y, X)) such that 7xc = (Pxc,0)
is uniformly exponentially stable. For every § € © we consider the
operators

Hy: L (R, X) — Lh (R X),  (Hyu)(t) = / Brc(o(6,5),t - shu(s) ds

Kg : Llloc<R+7Y) - Llloc(R+7X)7 (K@’U,)(t) = K(U(07t))u(t)
Because mx ¢ is uniformly exponentially stable the family {Hp}oco is

uniformly (LP(R4, X), LP(R4, X)) - stable. Using an analogous argu-
ment as in the proof of (ii) = (i) one obtain that

Py = Hy — HyKyCy P,

for all @ € ©. Then we immediately deduce that the family {Py}oco is
uniformly (LP(R4, X), LP(R4, X)) - stable, so from Theorem 2.3. 7 is
uniformly exponentially stable.

(iv) = (i) If {Hp}gco and {Ky}pco are defined in the same manner
as above we obtain that

PyBy = HyBy — HyKogCgFy By,

for all & € ©. Then, using the hypothesis we deduce that the family
{PyBy}pco is uniformly (LP(Ry,U), LP(R4, X)) - stable. Because S is
stabilizable we finally conclude that 7 is uniformly exponentially stable.
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Remark 3.1. The above theorem has been obtained by Clark, La-
tushkin, Montgomery-Smith and Randolph ([7]), for the case of time-
varying systems associated to evolution families.

Remark 3.2. Another characterization for exponential stability of li-
near systems in Hilbert spaces, in terms of dual concepts, have been
presented by Weiss and Rebarber in [19]. There, it is proved that a
system associated to a Cp-semigroup is exponentially stable if and only
if it is optimizable, estimatable and input-output stable.

4 Complete stabilizability and exact controlla-
bility

In this section we shall present the connection between complete stabili-
zability and the exact controllability of a system associated to a linear
skew-product semiflow.

Let X, U, Y be reflexive Banach spaces and let © be a locally compact
metric space. Let m = (®,0) be a linear skew-product semiflow on
E=Xx0,Be(Cs0,BU,X))and C € Cs(0,B(X,Y)). Let p € (1, 00).

Let S = (m, B, C) be the system considered in the previous section.
Definition 4.1. The system S = (7, B, C) is said to be exactly control-

lable if for every 0 € © there ist > 0 such that for all xg,z1 € X there
exists u € LP(R4,U) with x(0,t, 9, u) = x1.

Remark 4.1. Because the concept of exact controllability does not
depend on the mapping C' we suppose C' = 0 and in all what follows we
shall denote the system S = (7, B,0) by S = (7, B).

For every (6,t) € © x R4 consider the bounded linear operator

t
C4 LP(RL,U) — X, cgtu:/o ®(c (0, s),t — s) B(o(6, s)) u(s) ds.

Lemma 4.1. Let X be a Banach space and let X' be a reflexive Banach
space. If A € B(X', X) then A is surjective if and only if there is ¢ > 0
such that

1A%z = cf|z7]],

for all x* € X*.

613 REVISTA MATEMATICA COMPLUTENSE
Vol. 15 Nam. 2 (2002), 599-618



MIHAIL MEGAN ET AL. STABILIZABILITY AND CONTROLLABILITY OF SYSTEMS. . .

Proof. See [21], pp. 207-209.

Proposition 4.1. Let m = (®,0) be a linear skew-product semiflow on
E=Xx0O and S = (m,B). The following assertions are equivalent:

(i) S is exactly controllable;
ii) for every 0 € © there is t > 0 such that C%' is sur jective;
Y S 7

(iii) for every @ € © there aret >0 and ¢ > 0 such that H(Cg’t)* z¥|| >
cl|lz*||, for all z* € X*.

Proof. It is immediate from Definition 4.1. and Lemma 4.1.
As a consequence of Theorem 2.1. and Definition 4.1. we obtain

Proposition 4.2. Let 1 = (®,0) be a linear skew-product semiflow
on & =X x0 and let F € C4(0©,B(X,U)). The system S = (w,B) is
exactly controllable if and only if the system Spr = (7pr, B) is ezactly
controllable.

Proof. Let (0,t) € © x Ry and u € LP(R4,U). Using Theorem 2.1.
and Fubini’s theorem we obtain that

C¥u=C(u+w),

Spr
where

u1(7_):{ F(o(0,1)) fOT Spp(o(d,s), r—s)B(a(0,s))u(s)ds, T € [0,1]
0 , T >t

So Range Cg;F C Range Cg’t. In the same way by using Corollary
2.1. we obtain that Range Cg’t C Range CgéF, which ends the proof.
Definition 4.2. The system S = (m, B) is said to be completely stabili-
zable if for every v > 0 there are N > 1 and F € C4(0,B(X,U))
such that the linear skew-product semiflow nprp = (Ppr, o) satisfies the
1nequality

1@5r(0,t)]] < Ne™™,

for all (0,t) € ©® x Ry.

Now we can give:
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Theorem 4.1. Let m = (®,0) be a linear skew-product semiflow on
E = X x © with the property that for every 6 € © there is tg > 0
such that ®(0,tg) is surjective. If the system S = (m, B) is completely
stabilizable then S is exactly controllable.

Proof. Suppose the contrary, i.e. there exists 0y € © such that for all
t > 0 Range C’go’t # X. It follows from Proposition 4.1. that for every
e >0 and every t > 0 there is z;_ € X* with ||z}_[| = 1 such that

Oo,t\x
1(Ce) @il <. (4.1)

Let tg > 0 such that ®(fy,tp) is surjective. Since X is reflexive from
Lemma 4.1. it follows that there exists £ > 0 with

kllz*[] < [|® (6o, to) =], (4.2)

for all * € X*.
Let v > 0. Since S is completely stabilizable there is F' : © —
B(X,U) a strongly continuous mapping with ||F|| = sup ||F(0)|| < o
0O

and N > 1 such that
1@5r(0,)]] < Ne™™,
for all (0,t) € © x Ry. Using Theorem 2.1. we obtain that
O(0,t)x = Pppr(0,t)r — Cg’t Ly,

for all (0,t,x2) € © x R4 x X, where for every § € ©

Ig: X — LP(Ry,U), (Tox)(s)=F(o(0,s)) Ppr(f,s)z.
Then we have

O(0,t) z" = Ppp(h,t)" x* — (Ty)* (C’g’t)* x*,

for all * € X*. It follows that

120, 6) 2*|| < N e |[2*|| + [|(To) | 11(Cg*)" 2|l (4.3)

for all (6,¢,2*) € © x Ry x X*. Since

F||N
To) |l = ITe|| < Ny := I
o)l = ol < N o= 2L,
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from (4.3) applied for z, .,00 and to using (4.1) and (4.2) we obtain
that
k< Ne™ + Nie.

Since € > 0 was arbitrary we obtain from above that
N

el/to < —,

k

for all v > 0, which is absurd.
So the system S = (7, B) is exactly controllable.

Remark 4.2. The above theorem generalizes a result obtained by
Megan ([12]), Zabczyk ([20], [21] Theorem 3.4., pp. 229-231) and Przy-
luski ([17]), for systems with control described by Cj - groups and Cj -
semigroups, respectively.

Remark 4.3. The hypothesis imposed in Theorem 4.1. on the surjec-
tivity of @ is essential, even for linear skew-product semiflows generated
by Cp - semigroups, as shows:

Example 4.1. Let {e;, },>0 be an ortonormal basis in the separable real
Hilbert space X and T = {T'(t) }+>0 be the Cy - semigroup defined by

o0 o0
T(t)x = E e Mrnen, forx= E Tnen.
n=0 n=0

Let o be a semiflow on the locally compact metric space © and ® be the
cocycle generated by T and 0. Let U = X, B: © — B(X),B(0) = I,
the identity operator on X and p = 2. Since for every every t > 0

o0 o0
Range T'(t) = {x = anen : Z e?Mr? < oo}
n=0 n=0

it follows that for every 6 € ©, &1 (6,t) = T'(t) is not surjective.
It is easy to see that S = (w, B) is completely stabilizable but

o0 oo
Range C’g’t ={z= anen : Zn%i < oo},
n=0 n=1

for every (0,t) € © x R4, so the system S = (m, B) is not exactly
controllable.
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