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Abstract

We consider the linear convection-diffusion equation associated
to higher order elliptic operators{

ut + Ltu = a∇u on R
n × (0,∞)

u(0) = u0 ∈ L1(Rn),
(1)

where a is a constant vector in R
n, m ∈ N

∗, n ≥ 1 and L0 belongs
to a class of higher order elliptic operators in divergence form
associated to non-smooth bounded measurable coefficients on R

n.
The aim of this paper is to study the asymptotic behavior, in Lp

(1 ≤ p ≤ ∞), of the derivatives Dγu(t) of the solution of (1) when
t tends to ∞.

1 Introduction

In this paper, we deal with the large time behavior of solutions of the
convection-diffusion equation (1), where

Lt = L∗
0AL0

with A(x, t) = A(x + at) ∈ L∞ is positive and

L0 = (−1)m
∑

|α|=|β|=m

aαβDα+β.
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(L0 will correspond to Lt when t = 0).

The positive coefficients aαβ are assumed to be constants. More details
on these operators with general coefficients can be found, for example,
in [1, 3, 5, 6].

This problem is a generalization to the case of higher order elliptic
operators of the problem studied by Escobedo and Zuazua [4] but for the
case where q = 1 in their notations. Our goal is to obtain information
on the distribution of the constant mass in space.

Before describing our results, we will briefly recall the known results
on the heat equation. If w solves the linear heat equation wt −Δw = 0,
with initial data w0, then w = G(., t)∗w0(.), where G is the fundamental
solution of the heat equation:

G(x, t) = (4πt)−n/2exp(−|x|2/4t).

It is then easy to see that when
∫

Rn w0 = M , then

tn(1−1/p)/2||w(t) − MG(., t)||p → 0,

as t → ∞ for every 1 ≤ p ≤ +∞; this means that the large time profile
of solutions is given by the fundamental solution with the appropriate
mass. For the proof of this result see, for instance, Escobedo and Zuazua
[4].

Let us assume now that w solves the equation wt−Δw = a.∇w with
a ∈ R

n, then w̃ = w(x − at, t) solves the linear equation w̃ − Δw̃ = 0.
The previous result applies to w̃ to lead to the asymptotic behavior of
w,

tn(1−1/p)/2||w(t) − MG(. + at, t)||p → 0, as t → ∞.

Note that the asymptotic behavior is that of the Gaussian MG but, in
this case, the mass center moves with spead a as t increases.

In this paper, we prove similar results (see formula (4)) but for the
class of higher order operators Lt with non-smooth coefficients. Regard-
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Vol. 15 Núm. 2 (2002), 585-598



mokhtar kirane, mahmoud qafsaoui on the asymptotic behavior for. . .

ing the elliptic operators of the type

L̃t = (−1)m
∑

|α|=|β|=m

Dα(aαβDβ),

where A(x, t) =
(
aαβ(x, t)

)
= A(x + at) (L̃0 will correspond to L̃t when

t = 0), we can obtain the same results for the solution of the equation{
ut + L̃tu = a∇u on R

n × (0,∞)
u(0) = u0 ∈ L1(Rn),

(2)

when the positive coefficients aαβ are bounded uniformly continuous or
in L∞ ∩ V MO (see section 5).

The paper is organized as follows. In section 2, we supply notations
and introduce the class of elliptic operators. In sections 3 and 4 we
respectively state and prove the main result. Finally, we conclude with
a few remarks in section 5.

2 Preliminaries

2.1 Notations

The following notations will be used throughout this paper. For a multi-
index α = (α1, · · · , αn) ∈ N

n, we set |α| = α1 + · · · + αn. For any
x = (x1, · · · , xn) ∈ R

n and any multi-index α = (α1, · · · , αn),

Dα
x =

∂α1

∂xα1
1

· · · ∂αn

∂xαn
n

.

By ∇mu and |∇mu|, we denote respectively the vector (Dαu)|α|=m and
its length

|∇mu| =
( ∑
|α|=m

|Dαu|2
) 1

2
.

We shall use the classical definition for the Sobolev space Wm,p, m ∈ Z

and 1 ≤ p ≤ ∞. In particular, the notation Hm stands for Wm,2. Norms
in Lp-spaces will be denoted by ‖ ‖p. We shall also use the weighted
space

L1(Rn; 1 + |x|) = {f ∈ L1(Rn),
∫

Rn

|f(x)|(1 + |x|)dx < ∞}
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with the norm
||f ||L1(Rn;|x|) =

∫
Rn

|f(x)||x|dx.

Eventually, by E(μ) and � we denote respectively the entire part of
μ ∈ R and the symbol of convolution with respect to the space variable
x.

Now, let us define the class of operators used here and mention some
of their properties. Further details can be found in [1, 2, 3].

2.2 The class of elliptic operators

Let m ∈ N
∗. Let aαβ(x) be bounded measurable functions on R

n where
α, β are multi-indices such that | α |=| β |= m. Set

Q(u, v) =
∫

Rn

∑
|α|=|β|=m

aαβ(x)Dβu(x)Dαv(x)dx

for all u, v ∈ Hm(Rn). The form Q is continuous on Hm(Rn) and if
one defines M =

∥∥‖(aαβ(x))‖∥∥∞, where ‖(aαβ(x))‖ is the norm of the
matrix (aαβ(x)), then

|Q(u, v)| ≤ M ‖∇mu‖2 ‖∇mv‖2

for all u, v ∈ Hm(Rn).

Under these assumptions, by a variation on the Lax-Milgram lemma,
there exists a unique operator in divergence form L : Hm(Rn) −→
H−m(Rn), linear and continuous, such that for all u, v ∈ Hm(Rn),

〈Lu, v〉 = Q(u, v) .

We write this operator as (−1)m
∑

|α|=|β|=m

Dα(aαβDβ) and we say it is

associated with the coefficients aαβ . Note that 〈 , 〉 stands for the usual
scalar product on L2.

We suppose that the class of operators L is elliptic in the sense of
the G̊arding inequality: there exists a constant δ > 0 such that for all
u ∈ Hm(Rn),
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Q(u, u) ≥ δ‖∇mu‖2
2 . (3)

Set
D(L) = {u ∈ Hm(Rn) , Lu ∈ L2(Rn)} .

As a consequence of (3), the operator L, restricted to D(L), is maximal
accretive of type ω < π

2 and (−L) is the generator of a contraction
semigroup e−tL on L2(Rn).

Remark 1. We can relax the ellipticity condition by replacing (3) by

Q(u, u) ≥ δ‖∇mu‖2
2 − λ‖u‖2

2 , λ ≥ 0 ,

(this inequality is the one we frequently meet in practice). In that case,
the operator L+λ, restricted to D(L), is maximal accretive of type ω < π

2

and −(L + λ) is the generator of a contraction semigroup e−t(L+λ) on
L2(Rn). Writing e−tL = e−t(L+λ)eλt, we get

‖e−tL‖L2→L2 ≤ eλt .

2.3 De-Giorgi estimates and the Gaussian property for
the heat kernel

Let us start by a few definitions useful for our purpose.

L-harmonic functions. Let Ω be an open bounded set in R
n. A L-

harmonic function u in Ω is a solution of Lu = 0 in Ω in the weak
sense:

u ∈ Hm(Ω) and for all ϕ ∈ Hm
0 (Ω) , Q(u, ϕ) = 0 .

Heat kernel. By Kt(x, y) ∈ D′(Rn × R
n), we denote the distributional

kernel of the semigroup e−tL, i.e., Kt is defined by

(e−tLf , g) = (KL
t , g ⊗ f) ,

for all f, g ∈ C∞
0 (Rn). We refer to this kernel as to the heat kernel of L.

Remark 2. For our purpose, the heat kernel is , formally, the funda-
mental solution of the heat equation with the Dirac mass δy as initial
data.
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Now, let us recall the theorem concerning the Gaussian estimates for
the heat kernel (see [2]).

Theorem 1. Are equivalent:

(i) There exists a constant c0 > 0 such that for all R > 0, for all
x0 ∈ R

n and for all L-harmonic function v in BR(x0), one has∫
Br(x0)

| ∇mv |2 ≤ c0

( r

R

)n−2m+2μ0
∫

BR(x0)
| ∇mv |2 (D)

provided 0 < r ≤ R. Note that μ0 ∈ (
max(0,m − n/2),m

]
, the

exponent n − 2m + 2μ0 is nonnegative and Bρ(x0) stands for the
Euclidean ball of centre x0 and radius ρ > 0.

(ii) There exist l ∈ {0, 1, · · · ,m − 1}, ν ∈ (0, 1) and two constants c
and a > 0 such that for all t > 0, for all x, y, h ∈ R

n and for all
multi-index γ ∈ N

n, one has

|Dγ
xKt(x, y)| + |Dγ

yKt(x, y)| ≤ c

t
n+|γ|
2m

exp
(
−a

( |x − y|
t

1
2m

) 2m
2m−1

)
,

when |γ| ≤ l, and

|Dγ
xKt(x + h, y) − Dγ

xKt(x, y)| ≤ c

t
n+|γ|
2m

( |h|
t1/2m

)ν
,

|Dγ
yKt(x, y + h) − Dγ

yKt(x, y)| ≤ c

t
n+|γ|
2m

( |h|
t1/2m

)ν
,

when |γ| = l.

This means that the kernel Kt(x, y) belongs to the Hölder space
Cl,ν(Rn) in each variable.

Remark 3. The relationship between μ0 and μ = l + ν is such that, if
(i) is verified for μ0 then (ii) is satisfied for all μ ∈ (0, μ0). Note that
μ /∈ N.

The interest of Theorem 1 (seemingly new) is that the elliptic prop-
erty (D) applies appropriately to operators with little smoothness such
as uniformly continuous or VMO (Vanish Mean Oscillation) coefficients.
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The equivalence applies as well to operators such as L0 defined in the
introduction. Indeed, it was shown in ([2], Proposition 51) that L0 ver-
ifies (D) for all μ0 ∈ [0, 2m), thus by Theorem 1, we get the following
Gaussian estimates for the heat kernel:

Proposition 2. Let μ ∈ [0, 2m) \N. There exist constants c and b1 > 0
such that for all t ∈ (0,∞) and all x, h ∈ R

n, we have for any multi-
index γ ∈ N

n such that |γ| ≤ E(μ)

|Dγ
xKt(x, y)| ≤ c

t
n+|γ|
4m

gm,b1

( |x − y|
t

1
4m

)
, (G1)

and if |γ| = E(μ)

|Dγ
xKt(x + h, y) − Dγ

xKt(x, y)| ≤ c

t
n+|γ|
4m

( |h|
t

1
4m

)μ−E(μ)
, (G2)

where Kt(x, y) denotes the heat kernel of the semigroup generated by the
operator L0 and gm,δ(y) = exp

(
−δy

4m
4m−1

)
for δ > 0.

From now on, Kt(x) stands for Kt(x, 0).

3 Statement of the main result

We consider the Cauchy problem (1). An adaptation of the argument
(Banach fixed point theorem) used in

(
[4], Proposition 1

)
shows that

Proposition 3. There exists a unique solution u ∈ C(
[0,∞);L1(Rn)

)
of (1) such that

u ∈ C(
(0,∞);W 4m,p(Rn)

) ∩ C1
(
(0,∞);Lp(Rn)

)
for all p ∈ (1,∞).

The main result of this paper is the following

Theorem 4. For all u0 ∈ L1(Rn) such that
∫

Rn u0(x)dx = M , the
solution u of (1) satisfies for all p ∈ [1,∞]

lim
t→∞ t

n
4m

(1− 1
p
)+

|γ|
4m ||Dγ

xu(x, t) − MDγ
xKt(x + at)||p = 0, (4)
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for all multi-index γ ∈ N
n such that |γ| ∈ {0, 1, · · · , 2m − 1}.

Remark 4. The restriction |γ| ∈ {0, 1, · · · , 2m − 1} is justified by
Theorem 1 and Remark 3. Indeed, as mentioned above, L0 verifies (D)
for all μ0 ∈ [0, 2m).

To prove Theorem 4, note first that if u is the solution of (1) then
v(x, t) := u(x − at, t) satisfies{

vt + L0v = 0 on R
n × (0,∞),

v(0) = u0.
(5)

This remark then reduces Theorem 4 to proving

Proposition 5. Let u0 ∈ L1(Rn) be such that M =
∫

Rn u0(x)dx. Then
the solution v of (5) verifies

lim
t→∞ t

n
4m

(1− 1
p
)+

|γ|
4m ||Dγ

xv − MDγ
xKt||p = 0, (6)

for all p ∈ [1,∞] and all γ ∈ N
n such that |γ| ∈ {0, 1, · · · , 2m − 1}.

4 Proof of the main result

This section is devoted to the proof of Proposition 5, hence Theorem 4.
We include an argument adapted from [4] and the proof will be divided
into three steps.

• Step 1: Estimation of ||Dγ
xu(., t)||p.

Lemma 6. For all p ∈ [1,∞] there exists a constant Cp,m such that for
all t > 0, the solution u of (5) satisfies

t|γ|/4m||Dγ
xu(., t)||p ≤ Cp,mt

− n
4m

(1− 1
p
)||u0||1 (7)

for all |γ| ≤ E(μ).

Proof. We have u(x, t) = Kt � u0(x) and Dγ
xu(x, t) = Dγ

xKt � u0(x).
Then by the Young inequality we get

||Dγ
xu(., t)||p = ||Dγ

xKt � u0||p ≤ ||Dγ
xKt||p||u0||1.
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On the other hand, using (G1) yields

||Dγ
xKt||pp ≤ C

tp
n+|γ|
4m

∫
Rn

gm,pb1

( |x|
t

1
4m

)
dx

=
C

tp
n+|γ|
4m

− n
4m

∫
Rn

gm,pb1(|x|)dx.

Hence
||Dγ

xKt||p ≤ Cp,mt
−n+|γ|

4m
+ n

4mp

and (7) follows.

Because of the density of L1(Rn; 1 + |x|) into L1(Rn), the proof of
Proposition 5 is reduced to proving the following result.

• Step 2: The heart of the matter.

The key to the proof is the following result from which Proposition
5 (and hence Theorem 4) follows straightforwardly.

Theorem 7. 1. For all p ∈ [1,∞] there exists a contant Cp > 0 such
that for all t > 0 and all ϕ ∈ L1(Rn; 1 + |x|) such that

∫
Rn ϕ(x)dx = 0,

t|γ|/4m||DγKt �ϕ||p ≤
{

Cpt
− n

4m
(1− 1

p
)− 1

4m ||ϕ||L1(Rn;|x|) if |γ| < E(μ)

Cpt
− n

4m
(1− 1

p
)− ν

8m ||ϕ||L1(Rn;|x|ν/2) if |γ| = E(μ),
(8)

where ν = μ − E(μ) and μ is as in Proposition 2.

2. For all p ∈ [1,∞] there exists a contant C ′
p > 0 such that if ϕ ∈

L1(Rn; 1 + |x|) with
∫

Rn ϕ(x)dx = M , then for all t > 0 t|γ|/4m||DγKt �

ϕ − MDγKt||p ≤{
C ′

pt
− n

4m
(1− 1

p
)− 1

4m ||ϕ||L1(Rn;|x|) if |γ| < E(μ)

C ′
pt

− n
4m

(1− 1
p
)− ν

8m ||ϕ||L1(Rn;|x|ν/2) if |γ| = E(μ).
(9)

Proof. We only prove (8). The same argument applies to inequalities
(9).

1. Let ϕ ∈ L1(Rn; 1 + |x|) be such that
∫

Rn ϕ(x)dx = 0. We get

DγKt � ϕ(x) =
∫

Rn

(DγKt(x − y) − DγKt(x))ϕ(y)dy.
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∗ Case 1 : |γ| < E(μ).

Using successively Taylor’s formula and (G1) we obtain

DγKt(x − y) − DγKt(x) = y

∫ 1

0
DτKt(x − θy)dθ,

where τ ∈ N
n is such that |τ | = |γ| + 1. It then follows that

|DγKt(x − y) − DγKt(x)| ≤ |y|
∫ 1

0

c

t
n+|τ |
4m

gm,b1

( |x − θy|
t1/4m

)
dθ.

Hence,

|DγKt � ϕ(x)| ≤ c

t
n+|τ |
4m

∫ 1

0

∫
Rn

gm,b1

( |x − θy|
t1/4m

)
|y||ϕ(y)|dydθ.

It follows that

||DγKt � ϕ||∞ ≤ c

t
n+|τ |
4m

||ϕ||L1(Rn;|x|) sup
x,y∈Rn

∫ 1

0
gm,b1

( |x − θy|
t1/4m

)
dθ

≤ Ct−
n+|τ |
4m ||ϕ||L1(Rn;|x|),

which is (8) for p = ∞ in this case. Similarly, we have for p = 1,

||DγKt � ϕ||1 ≤ c

t
n+|τ |
4m

∫ 1

0

∫
Rn

∫
Rn

gm,b1

( |x − θy|
t1/4m

)
|y||ϕ(y)|dxdydθ,

and since ∫
gm,b1

( |x − θy|
t1/4m

)
dx = tn/4m

∫
gm,b1(|u|)du,

||DγKt � ϕ||1 ≤ Ct−
|τ |
4m ||ϕ||L1(Rn;|x|),

this is (8) when p = 1.

Finally, the case p ∈ (1,∞) is easily obtained by interpolation. In-
deed,

||DγKt � ϕ||p ≤ ||DγKt � ϕ||1/p
1 ||DγKt � ϕ||1−1/p

∞
≤ C ′t−

n
4m

(1− 1
p
)− τ

4m ||ϕ||L1(Rn;|x|).
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Inequality (8) is proved for all p ∈ [1,∞] when |γ| < E(μ).

∗ Case 2 : |γ| = E(μ).

We have by inequalities (G1) and (G2)

|DγKt(x − y) − DγKt(x)| =
= |DγKt(x − y) − DγKt(x)|1/2|DγKt(x − y) − DγKt(x)|1/2

≤ c

t
n+|γ|
4m

( |y|
t

1
4m

)ν/2[
gm,b1

( |x|
t

1
4m

)
+ gm,b1

( |x − y|
t

1
4m

)]1/2

≤ c′

t
n+|γ|
4m

+ ν
8m

|y|ν/2
[
gm,b1/2

( |x|
t

1
4m

)
+ gm,b1/2

( |x − y|
t

1
4m

)]
.

Thus,
|DγKt � ϕ(x)| ≤

c

t
n+|γ|
4m

+ ν
8m

∫
Rn

[
gm,b1/2

( |x|
t

1
4m

)
+ gm,b1/2

( |x − y|
t

1
4m

)]
|y|ν/2|ϕ(y)|dy .

It then follows that

||DγKt � ϕ||∞ ≤ C

t
n+|γ|
4m

+ ν
8m

||ϕ||L1(Rn;|x|ν/2) .

This is (8) for p = ∞. For the case p = 1, we have

||DγKt � ϕ||1 ≤

≤ c

t
n+|γ|
4m + ν

8m

∫
Rn

∫
Rn

[
gm,b1/2

( |x|
t

1
4m

)
+ gm,b1/2

( |x − y|
t

1
4m

)]
|y|ν/2|ϕ(y)|dxdy

≤ C

t
n+|γ|
4m + ν

8m

t
n

4m ||ϕ||L1(Rn;|x|ν/2)

since, as before,∫
gm,b1/2

( |x − y|
t1/4m

)
dx =

∫
gm,b1/2

( |x|
t1/4m

)
dx = tn/4m

∫
gm,b1/2(|u|)du .

Hence
||DγKt � ϕ||1 ≤ C

t
|γ|
4m

+ ν
8m

||ϕ||L1(Rn;|x|ν/2)

which corresponds to (8) when p = 1 and |γ| = E(μ).
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As previously, the case p ∈ (1,∞) follows by interpolation.

2. We show (9) in the same way by writing

(DγKt � ϕ − MDγKt)(x) =
∫

Rn

DγKt(x − y)ϕ(y)dy − DγKt(x)
∫

Rn

ϕ(y)dy

=
∫

Rn

(DγKt(x − y) − DγKt(x))ϕ(y)dy.

Theorem 7 is completely proved.

Now, we are in a position to prove Proposition 5, hence Theorem 4.
We recall that the argument of density used here appears in [4]. Recall
that L1(Rn; 1 + |x|) is dense in L1(Rn).

• Step 3: A density argument.

Let u0 ∈ L1(Rn) and uN ∈ L1(Rn; 1+|x|) be such that
∫

Rn uN (x)dx =
M and limN→+∞uN = u0 in L1(Rn). We have

t
n

4m
(1− 1

p
)+

|γ|
4m ||DγKt � u0 − MDγKt||p ≤

t
n

4m
(1− 1

p
)+

|γ|
4m

(
||DγKt � uN − MDγKt||p + ||DγKt � (uN − u0)||p

)
and by Lemma 6,

||DγKt � (uN − u0)||p ≤ Cpt
− n

4m
(1− 1

p
)− |γ|

4m ||uN − u0||1.

Let ε > 0, then there exists N0 ∈ N such that for all N > N0,

sup
t>0

(
t

n
4m

(1− 1
p
)+

|γ|
4m ||DγKt � (uN − u0)||p

)
≤ ε

2
.

On the other hand, Theorem 7 yields

lim
t→+∞ t

n
4m

(1− 1
p
)+

|γ|
4m ||DγKt � uN − MDγKt||p = 0,

i.e. there exists t0 > 0 such that for all t ≥ t0,

t
n

4m
(1− 1

p
)+

|γ|
4m ||DγKt � uN − MDγKt||p ≤ ε

2
.
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Hence, for all ε > 0, there is t0 > 0 such that for all t ≥ t0,

t
n

4m
(1− 1

p
)+

|γ|
4m ||DγKt � u0 − MDγKt||p ≤ ε.

The proof of Proposition 5 is complete.

5 Concluding remarks

1. The result of Theorem 4 can be improved in the case where L0 = Δ2m.
Indeed, in that case, Kt is “explicitly” given by

Kt(x) =
1

tn/4m
K

( x

t1/4m

)
where

K(x) =
1

(2π)n

∫
eix.ξe−|ξ|4m

dξ.

Then, by the Fourier transform we get

|DγK(x)| ≤ Cγe−|x| 4m
4m−1 for all γ.

It then follows that Theorem 4 is valid for all γ ∈ N
n instead of

|γ| ≤ E(μ). We thank P. Auscher for bringing this remark to our atten-
tion.

2. It is possible to prove a similar result to Theorem 4 for the solution
of the equation (2) when the coefficients aαβ , associated to L̃0, are as
follows:

(i) constants or

(ii) aαβ ∈ BUC (Bounded Uniformly Continuous) or

(iii) aαβ ∈ L∞ ∩ V MO (Vanish Mean Oscillation) or

(iv) aαβ ∈ BMO (Bounded Mean Oscillation) with small BMO norm.

Indeed, in these cases, the kernel associated to L̃0, elliptic in the sense of
the G̊arding inequality, satisfies the gaussian estimates (ii) of Theorem
1 (see [2], section: examples).
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