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EXISTENCE OF WEAK-RENORMALIZED

SOLUTION FOR A NONLINEAR SYSTEM

B. CLIMENT

Abstract

We prove an existence result for a coupled system of the reaction-
diffusion kind. The fact that no growth condition is assumed on
some nonlinear terms motivates the search of a weak-renormalized
solution.

1 Introduction. Description of the problem

This paper investigates the existence of a solution for the nonlinear sys-
tem ⎧⎪⎪⎨

⎪⎪⎩
−Δu −∇ · (β(v)X ′(u)) = f in Ω,

−Δv −∇ · (β′(v)X(u)) = g in Ω,

u = 0, v = 0 on ∂Ω,

(1)

where Ω denotes a bounded open subset of R
N , X is a C1 bounded

R
N -valued function on R, i.e.

X ∈ (C1(R))N ∩ (C0
b (R))N , (2)

β is a function whose second derivatives are bounded, i.e.

β ∈ W 2,∞(R) (3)

and
f, g ∈ H−1(Ω). (4)

Here, the main difficulty to find a solution is that no growth restrictions
are assumed on X ′. Since f and g belong to H−1(Ω), it is natural to
look for solutions u and v belonging to H1

0 (Ω). Thus, it is not clear how
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b. climent existence of weak-renormalized solution for a. . .

to give a sense to ∇·(β(v)X ′(u)). This inconvenient can be overcome by
introducing a weak-renormalized formulation of this problem, essentially
obtained through pointwise multiplication of the first equation of (1) by
h(u), where h belongs to C1

0 (R), that is, h ∈ C1(R) and its support is
compact.

Remark. We can view this system as a simplified model of a nonlinear
elasticity problem characterized by a constitutive law of the form

σ = σl + Y (u),

where

(σl)ij =
∑

aijklεkl(u), εkl(u) =
1
2
(
∂uk

∂xl
+

∂ul

∂xk
), Yij ∈ C0(R2).

Indeed, the conservation of momentum reads

∇ · σ = F

(F is given), which is in some sense a generalization of (1). In this paper,
we study the case in which

Y (u) =
(

β(u2)X ′
1(u1) β′(u2)X1(u1)

β(u2)X ′
2(u1) β′(u2)X2(u1).

)

2 The main result

Theorem 2.1. Under the assumptions (2), (3), (4), there exists {u, v},
with u, v ∈ H1

0 (Ω), such that the second equation in (1) is satisfied in
the usual weak or distributional sense and the first equation holds in the
following sense:{ −∇ · (h(u)∇u) + ∇u · ∇h(u) −∇ · (β(v)h(u)X ′(u))

+β(v)X ′(u) · ∇h(u) = fh(u) in D′(Ω) ∀h ∈ C1
0 (R).

(5)

A couple {u, v} as above will be called a weak-renormalized solution to
(1).
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Remark. In (5), every term belongs to D′(Ω). Indeed, h(u) belongs to
H1

0 (Ω), the first term is in H−1(Ω). The second one is in L1(Ω). For
instance, since h has a compact support, we can put

h(u)X ′(u) = h(u)X ′(TM (u)) and h′(u)X ′(u) = h′(u)X ′(TM (u))

for some M > 0, where TM is the usual truncation at level M . Thus, we
see that the third term in the left belongs to W−1,∞(Ω) and the fourth
term belongs to L2(Ω).

Remark. Renormalized solutions to PDE’s were introduced by R. Di-
Perna and P.L. Lions in [4] in the framework of the Boltzmann equation.
They have been used in connection with various nonlinear elliptic equa-
tions by P. Benilan et al. [2], L. Boccardo et al. [3] and P.L. Lions and
F. Murat [6] (see also [7]). In the analysis of existence results for systems,
weak-renormalized solutions were first considered by R. Lewandowski [5]
(see also [1]).

In this paper, in order to solve (1), we will extend the techniques
used in [3] in the context of a single equation.

Remark. With regard to uniqueness, it is an open problem. If we follow
the classical argument of considering two solutions ui, vi for i = 1, 2 of
(1), and we compute the difference of (5) written for u1, v1 and for u2, v2,
we find expressions with terms of the form X ′(·)u that we are not able
to estimate. There is another argument, due to P. L. Lions and F.
Murat [7], which leads to the uniqueness of renormalized solutions, but
it cannot be applied here.

3 The proof of theorem 2.1

First step. The introduction of a family of approximations.
For each ε > 0, let us put Xε(s) = X(T1/ε(s)) for all s ∈ R. We will
introduce the following approximation to (1):⎧⎪⎪⎨

⎪⎪⎩
−Δuε −∇ · (β(vε)(Xε)′(uε)) = f in Ω,

−Δvε −∇ · (β′(vε)X(uε)) = g in Ω,

uε, vε ∈ H1
0 (Ω),

(6)
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In order to solve (6), we will apply Schauder’s theorem. Thus, for any
given ε and {u, v} ∈ L2(Ω) × L2(Ω), we set Rε({u, v}) = {uε, vε}, with
{uε, vε} being the unique solution to the linear system⎧⎪⎪⎨

⎪⎪⎩
−Δuε = f + ∇ · (β(v)(Xε)′(u)) in Ω,

−Δvε = g + ∇ · (β′(v)X(u)) in Ω,

uε, vε ∈ H1
0 (Ω),

(7)

Obviously, Rε = R3 ◦ R2 ◦ Rε
1, where

• Rε
1 : L2(Ω) × L2(Ω) �→ H−1(Ω) × H−1(Ω) is the nonlinear contin-

uous mapping given by{
Rε

1({u, v}) = {f + ∇ · (β(v)(Xε)′(u)), g + ∇ · (β′(v)X(u))}
∀{u, v} ∈ L2(Ω) × L2(Ω),

• R2 : H−1(Ω) × H−1(Ω) �→ H1
0 (Ω) × H1

0 (Ω) associates to each
{f, g} ∈ H−1(Ω) × H−1(Ω) the unique solution {w, z} of the fol-
lowing linear system⎧⎪⎪⎨

⎪⎪⎩
−Δw = f in Ω,

−Δz = g in Ω,

w, z ∈ H1
0 (Ω),

• R3 is the compact embedding of H1
0 (Ω)×H1

0 (Ω) into L2(Ω)×L2(Ω).

Since Rε
1 maps the whole space L2(Ω)×L2(Ω) inside a ball, Schauder’s

theorem can be applied and (6) possesses at least one solution {uε, vε}.
Second step. A priori estimates and weak convergence.
Choosing uε and vε as test functions in the first and second equation in
(6) respectively, one finds:∫

Ω
∇uε∇uε +

∫
Ω

β(vε)(Xε)′(uε) · ∇uε = 〈f, uε〉H−1,H1
0
. (8)

∫
Ω
∇vε∇vε +

∫
Ω

β′(vε)X(uε) · ∇vε = 〈g, vε〉H−1,H1
0
. (9)
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For ε sufficiently small, X = X ◦ T1/ε = Xε, whence we can replace
X(uε) by Xε(uε) in (9).

Let us introduce the function H = (H1,H2, ...,Hn), with

Hi(t, s) =
∫ s

0
β(0)(Xε

i )′(θ)dθ +
∫ t

0
β′(θ)Xε

i (s) dθ.

Then,∫
Ω

β(vε)(Xε)′(uε) · ∇uε +
∫

Ω
β′(vε)Xε(uε) · ∇vε =

∫
Ω
∇ · H(uε, vε) = 0

thanks to Stokes’ theorem. Summing (8) and (9), we obtain∫
Ω
|∇uε|2 +

∫
Ω
|∇vε|2 = 〈f, uε〉H−1,H1

0
+ 〈g, vε〉H−1,H1

0

and
‖uε‖2

H1
0

+ ‖vε‖2
H1

0
≤ ‖f‖2

H−1 + ‖g‖2
H−1 .

Consequently, at least for a subsequence, still indexed by ε, we can
conclude that

uε → u, vε → v weakly in H1
0 (Ω),

uε → u, vε → v strongly in Lp(Ω) ∀p ∈ [1, 2�) and a.e.
(10)

Here, we have denoted by 2� the exponent furnished by the Sobolev
embedding theorem, that is{

2� = 2N
N−2 if N ≥ 3,

2� < +∞ arbitrarily large if N = 2.

Third step. The strong convergence of vε in H1
0 .

It is easy to see that v is a weak solution to the problem{ −Δv −∇ · (β′(v)X(u)) = g in Ω,

v = 0 on ∂Ω
(11)

Indeed, since β′ and X are continuous and bounded, it is clear that
β′(vε) → β′(v) strongly in Lp for all p ∈ [1, 2�) and X(uε) → X(u)

575 REVISTA MATEMÁTICA COMPLUTENSE
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strongly in Lr for all r ∈ [1, +∞). This enables us to pass to the limit
in the second equation in (6).

From (11), we also see that∫
Ω
|∇v|2 = −

∫
Ω

β′(v)X(u) · ∇v +
∫

Ω
gv. (12)

Let us use vε as a test function in the second equation in (6). We find:∫
Ω
|∇vε|2 = −

∫
Ω

β′(vε)X(uε) · ∇vε +
∫

Ω
gvε. (13)

Arguing as above, we can pass to the limit in the right hand side in (13).
Accordingly, we have:∫

Ω
|∇vε|2 → −

∫
Ω

β′(v)X(u) · ∇v +
∫

Ω
gv.

This, combined with (12), gives the convergence in norm in H1
0 for vε

and, consequently,
vε → v strongly in H1

0 . (14)

Fourth step. The strong convergence of uε in H1
0 .

We will first prove that

lim
K→+∞

(
lim sup

ε→0

∫
{|uε|>K}

|∇uε|2
)

= 0 (15)

Thus, let us consider the test functions uε −TK(uε) in the first equation
in (6). Notice that

∇(uε − TK(uε)) =

{
∇uε if |uε| ≥ K,

0 if |uε| < K.

Hence,∫
{|uε|≥K}

|∇uε|2 +
∫

Ω
β(vε)(1 − T

′
K(uε))(Xε)′(uε) · ∇uε

= 〈f, uε − TK(uε)〉.
(16)
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We can put (1 − T
′
K(uε))(Xε)′(uε) · ∇uε = ∇ · Y ε

K(uε), where

(Y ε
K)i(t) =

∫ t

0
(1 − T

′
K(θ))(Xε)′(θ) dθ.

Thus, the second term in the left hand side of (16) can be written in the
form ∫

Ω
(∇ · Y ε

K(uε))β(vε) = −
∫

Ω
Y ε

K(uε) · ∇β(vε).

Moreover,

Y ε
K(s) =

⎧⎪⎪⎨
⎪⎪⎩

Xε(s) − Xε(K) if s > K,

0 if |uε| ≤ K,

Xε(s) − Xε(−K) if s < −K.

Since X ∈ C0
b (R)N , for ε > 0 sufficiently small, Y ε

K is independent of ε
and Y ε

K(uε) is bounded by a constant independent of ε. We also have

lim sup
ε→0

|Y ε
K(uε)| ≤ |X(u) − X(K)|1l{u>K} + |X(u) − X(−K)|1l{u<−K}

for all K > 0. Therefore,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

lim sup
ε→0

∫
{|uε|>K}

|∇uε|2 ≤
∫

Ω
|X(u) − X(K)| · |∇β(v)|1l{u>K}

+
∫

Ω
|X(u) − X(−K)| · |∇β(v)|1l{u<−K} + 〈f, u − TK(u)〉,

(17)
whence ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
K→+∞

(
lim sup

ε→0

∫
{|uε|>K}

|∇uε|2
)

≤ lim
K→+∞

[∫
Ω
|X(u) − X(K)| · |∇β(v)|1l{u>K}

+
∫

Ω
|X(u) − X(−K)| · |∇β(v)|1l{u<−K}

]

+ lim
K→+∞

〈f, u − TK(u)〉 = 0.

(18)
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This proves (15). Let us introduce the sets F ε
i,j ,

F ε
i,j = {x ∈ Ω : |uε − Tj(u)| ≤ i}.

We are now going to prove that

lim
j→+∞

(
lim sup

ε→0

∫
F ε

i,j

|∇(uε − Tj(u))|2
)

= 0 ∀i ≥ 1. (19)

Thus, let us use Ti(uε − Tj(u)) as test function in the first equation of
(6). We obtain∫

Ω
∇uε · ∇Ti(uε − Tj(u)) +

∫
Ω

β(vε)(Xε)′(uε) · ∇Ti(uε − Tj(u))

= 〈f, Ti(uε − Tj(u))〉.
(20)

Let us notice that

∇Ti(uε − Tj(u)) = 0 in Ω \ F ε
i,j .

We can then write (20) in the form∫
F ε

i,j

∇uε · ∇Ti(uε − Tj(u)) +
∫

F ε
i,j

β(vε)(Xε)′(uε) · ∇Ti(uε − Tj(u))

= 〈f, Ti(uε − Tj(u))〉.
(21)

Since
|uε| ≤ |uε − Tj(u)| + |Tj(u)| ≤ i + j if x ∈ F ε

i,j ,

we can write T1/ε(uε) = Ti+j(uε) for all x ∈ F ε
i,j whenever ε is sufficiently

small. This gives:

(Xε)′(uε) = X ′(Ti+j(uε))T
′
i+j(u

ε) = X ′(Ti+j(uε)) in F ε
i,j .

Thus, for small ε > 0, the second term in the left in (21) is∫
F ε

i,j

β(vε)X ′(Ti+j(uε)) · ∇Ti(uε − Tj(u))

and converges to ∫
Ω

β(v)X ′(Ti+j(u)) · ∇Ti(u − Tj(u)) (22)
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as ε → 0, since

Ti(uε − Tj(u)) → Ti(u − Tj(u)) weakly in H1
0

and β(vε)X ′(Ti+j(uε)) is bounded in (L∞(Ω))N and converges a.e. to
β(v)X ′(Ti+j(u)).

Let us introduce H i,j = (H i,j
1 ,H i,j

2 , ...,H i,j
N ), with

H i,j(s) =
∫ s

0
T

′
i (θ − Tj(θ))(1 − T

′
j(θ))X

′(Ti+j(θ)) dθ.

Then (22) can be rewritten in the form

∫
Ω
(∇ · H i,j

K (u))β(v) = −
∫

Ω
H i,j(u) · ∇β(v)

Moreover, it is not difficult to check that

H i,j(u) =

{
X(i + j) − X(j) if j < |u| < i + j,

0 otherwise.

For any i, we have H i,j(u) → 0 a. e. as j → +∞. Since X is bounded,
H i,j(u) is also bounded. Thus, we obtain from Lebesgue’s theorem that

∫
Ω

H i,j(u) · ∇β(v) → 0 as j → ∞.

for all i ≥ 1. Recalling (20) we see we have proved the following:

lim
j→+∞

(
lim
ε→0

∫
F ε

i,j

∇uε · ∇Ti(uε − Tj(u))

)
= lim

j→+∞
〈f, Ti(u − Tj(u))〉.

(23)
On the other hand,

lim
j→+∞

(
lim
ε→0

∫
F ε

i,j

∇Tj(u) · ∇Ti(uε − Tj(u))

)

= lim
j→+∞

∫
Ω
∇Tj(u) · ∇Ti(u − Tj(u)).
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Consequently,

lim
j→+∞

(
lim
ε→0

∫
F ε

i,j

|∇(uε − Tj(u))|2
)

= lim
j→+∞

(
〈f, Ti(u − Tj(u))〉 −

∫
Ω
∇Tj(u) · ∇Ti(u − Tj(u))

)
.

(24)

Notice that, the terms on the right hand side of (24) can be bounded as
follows:

〈f, Ti(u − Tj(u))〉 −
∫

Ω
∇Tj(u) · ∇Ti(u − Tj(u))

≤ (‖f‖H−1 + ‖u‖) ‖u − Tj(u)‖
and this converges to 0 as j → +∞. Therefore, (19) is satisfied.

We can now prove that uε converges strongly in H1
0 . Indeed, obseve

that, if x ∈ Ω \ F ε
i,j , then

|uε| ≥ |uε − Tj(u)| − |Tj(u)| ≥ i − j,

so that Ω \ F ε
i,j ⊂ Eε

i−j , with

Eε
i−j = {x ∈ Ω : |uε(x)| ≥ i − j}.

Therefore,

1
2

∫
Ω
|∇(uε − u)|2 ≤ 1

2

∫
F ε

i,j

|∇(uε − u)|2 +
1
2

∫
Eε

i−j

|∇(uε − u)|2

≤
∫

F ε
i,j

|∇(uε − Tj(u))|2 +
∫

F ε
i,j

|∇(Tj(u) − u)|2

+
∫

Eε
i−j

|∇uε|2 +
∫

Eε
i−j

|∇u|2 ≤ 2(Aε
ij + Bε

ij + Cε
ij + Dε

ij).

(25)

We have seen in (19) that

lim
j→+∞

lim sup
ε→0

Aε
ij = 0 ∀i ≥ 1 (26)

The second term Bε
ij satisfies

lim sup
ε→0

Bε
ij ≤

∫
Ω
|∇(Tj(u) − u)|2,
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whence we also have

lim
j→+∞

lim sup
ε→0

Bε
ij = 0 ∀i ≥ 1 (27)

From (15) we know that

lim
j→+∞

lim sup
ε→0

Cε
ij = 0 as i, j → +∞, i − j → +∞. (28)

Finally, this is also true for Dε
ij , since u ∈ H1

0 :

lim
j→+∞

lim sup
ε→0

Dε
ij = 0 as i, j → +∞, i − j → +∞. (29)

From (25) and (26)–(29), we deduce at once that uε → u strongly in H1
0

as ε → 0.

Fifth step. End of the proof of theorem 1.1.
Let us chose h ∈ C1

c (R) and ϕ, ψ ∈ D. Multiplying the first equation
in (6) by h(uε)ϕ and the second one by ψ and integrating by parts, we
obtain:⎧⎪⎪⎨

⎪⎪⎩

∫
Ω
(∇uε + β(vε)(Xε)′(uε)) · ∇(h(uε)ϕ) = 〈f, h(uε)ϕ〉∫

Ω
(∇vε + β′(vε)Xε(uε)) · ∇ψ = 〈g, ψ〉.

(30)

Since h and h′ have compact support on R, for ε sufficiently small we
have

(Xε)′(t)h(t) = X ′(t)h(t), (Xε)′(t)h′(t) = X ′(t)h′(t).

Both functions belong to (C0(R) ∩ L∞(R))N . Thus, we can write (30)
as follows⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

h(uε)∇uε · ∇ϕ +
∫

Ω

h′(uε)|∇uε|2ϕ +
∫

Ω

β(vε)h(uε)X ′(uε) · ∇ϕ

+
∫

Ω

β(vε)h′(uε)(X ′(uε) · ∇uε)ϕ = 〈f, h(uε)ϕ〉
∫

Ω

∇vε∇ψ +
∫

Ω

β′(vε)X(uε)) · ∇ψ = 〈g, ψ〉.

(31)
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Now, using the strong convergence of uε to u in H1
0 (Ω), it is easy to

pass to the limit in each term of (31); this yields⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

h(u)∇u · ∇ϕ +
∫

Ω
h′(u)|∇u|2ϕ +

∫
Ω

β(v)h(u)X ′(u) · ∇ϕ

+
∫

Ω
β(v)h′(u)(X ′(u) · ∇u)ϕ = 〈f, h(u)ϕ〉∫

Ω
∇v · ∇ψ +

∫
Ω

β′(v)X(u) · ∇ψ = 〈g, ψ〉.

This completes the proof.

Acknowledgment. The author is indebted to E. Fernández-Cara, for
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Vol. 15 Núm. 2 (2002), 571-583



b. climent existence of weak-renormalized solution for a. . .

Department of Differential Equations and Numerical Analysis
University of Sevilla
Tarfia s/n, E-41012 Sevilla
Spain
E-mail: blanca@numer.us.es.

Recibido: 13 de Marzo de 2000
Revisado: 13 de Diciembre de 2001

583 REVISTA MATEMÁTICA COMPLUTENSE
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