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EXISTENCE OF WEAK-RENORMALIZED
SOLUTION FOR A NONLINEAR SYSTEM

B. CLIMENT

Abstract

We prove an existence result for a coupled system of the reaction-
diffusion kind. The fact that no growth condition is assumed on
some nonlinear terms motivates the search of a weak-renormalized
solution.

1 Introduction. Description of the problem
This paper investigates the existence of a solution for the nonlinear sys-
- M-V (B)X @)= ino
—Av—=V-(f(v)X(u) =g in , (1)
u=0, v=0 on 052,

where Q denotes a bounded open subset of RV, X is a C' bounded
RN -valued function on R, i.e.

X e (C'R)YY n (CYR)Y, (2)
0 is a function whose second derivatives are bounded, i.e.
g€ W2(R) (3)

and
frge H (). (4)

Here, the main difficulty to find a solution is that no growth restrictions
are assumed on X’. Since f and g belong to H~1(f), it is natural to
look for solutions u and v belonging to Hg (). Thus, it is not clear how
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to give a sense to V- (3(v)X’(u)). This inconvenient can be overcome by
introducing a weak-renormalized formulation of this problem, essentially
obtained through pointwise multiplication of the first equation of (1) by
h(u), where h belongs to C(R), that is, h € C*(R) and its support is
compact.

Remark. We can view this system as a simplified model of a nonlinear
elasticity problem characterized by a constitutive law of the form

o=o0;+Y(u),

where

1 ou, O
(01)ij = Zaijszkz(U), ep(u) = 5(87931 + c‘chk)’ Yi; € C°(R?).

Indeed, the conservation of momentum reads
V-o=F

(F is given), which is in some sense a generalization of (1). In this paper,
we study the case in which

_( Bluz)X{(u1) B'(u2)X1(u1)
Y(w) = ( Bluz) Xp(wr) ' (uz) Xo(u). )

2 The main result

Theorem 2.1. Under the assumptions (2), (3), (4), there exists {u, v},
with u, v € H}(SY), such that the second equation in (1) is satisfied in
the usual weak or distributional sense and the first equation holds in the
following sense:

{ —V - (h(uw)Vu) + Vu-Vh(u) — V- (B(v)h(u) X' (u)) )

+B(0) X! (1) - Vh(u) = fh(u) in D'(Q)  Vh e CA(R).

A couple {u,v} as above will be called a weak-renormalized solution to

(1).
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Remark. In (5), every term belongs to D'(2). Indeed, h(u) belongs to
HE(Q), the first term is in H1(2). The second one is in L*(Q). For
instance, since h has a compact support, we can put

h(u) X' (u) = h(u) X' (Tar(u)) and A (u)X'(u) = B (u) X' (Tar(u))

for some M > 0, where Ty is the usual truncation at level M. Thus, we
see that the third term in the left belongs to W~1°°(Q) and the fourth
term belongs to L*(Q).

Remark. Renormalized solutions to PDE’s were introduced by R. Di-
Perna and P.L. Lions in [4] in the framework of the Boltzmann equation.
They have been used in connection with various nonlinear elliptic equa-
tions by P. Benilan et al. [2], L. Boccardo et al. [3] and P.L. Lions and
F. Murat [6] (see also [7]). In the analysis of existence results for systems,
weak-renormalized solutions were first considered by R. Lewandowski [5]
(see also [1]).

In this paper, in order to solve (1), we will extend the techniques
used in [3] in the context of a single equation.

Remark. With regard to uniqueness, it is an open problem. If we follow
the classical argument of considering two solutions u?,v* for i = 1,2 of
(1), and we compute the difference of (5) written for u!, v! and for u?, v?,
we find expressions with terms of the form X'(-)u that we are not able
to estimate. There is another argument, due to P. L. Lions and F.
Murat [7], which leads to the uniqueness of renormalized solutions, but

it cannot be applied here.

3 The proof of theorem 2.1

First step. The introduction of a family of approximations.
For each € > 0, let us put X(s) = X(7}/.(s)) for all s € R. We will
introduce the following approximation to (1):
A - V(B (XY (W) = f i@
CAF -V ()X () =g inQ (6)
uf,v° € HY(Q),

573 REVISTA MATEMATICA COMPLUTENSE
Vol. 15 Nam. 2 (2002), 571-583



B. CLIMENT EXISTENCE OF WEAK-RENORMALIZED SOLUTION FOR A. ..

In order to solve (6), we will apply Schauder’s theorem. Thus, for any
given ¢ and {u,v} € L?(Q) x L?(Q), we set R°({u,v}) = {u,v°}, with
{u®,v®} being the unique solution to the linear system
—Aut = f+ V- (B0)(X)(v)  nQ,
—Avf =g+ V- (F(0)X(w) inQ, (7)
uf,v° € HH(Q),
Obviously, R = R3 o Ry o Rj, where
o Rj:L*Q) x L*(Q) — H Q) x H1(Q) is the nonlinear contin-
uous mapping given by
Ri({u,v}) = {f + V- (B(v)(X)(u)),g + V- (5'(v) X (u))}
V{u,v} € L?() x L?(Q),

e Ry : HYQ) x HYQ) — HLQ) x H(Q) associates to each

{f, g} € H Q) x H~1(Q) the unique solution {w, z} of the fol-
lowing linear system

—Aw=f in Q,
—Az=yg in €,
w,z € H} (),

e Rjis the compact embedding of H}(Q)x Hg () into L2(£) x L?(€2).

Since R§ maps the whole space L?(2) x L?(Q2) inside a ball, Schauder’s
theorem can be applied and (6) possesses at least one solution {u®,v®}.

Second step. A priori estimates and weak convergence.
Choosing uf and v® as test functions in the first and second equation in
(6) respectively, one finds:

/ VuEVu + / B (XY (u) - Ve = (fu o (8)
Q Q

/ VoV + / B (v°) X (uf) - Vo© = (9: %) 1 - (9)
Q Q
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For € sufficiently small, X = X o T}, = X¢, whence we can replace

X (u®) by X¢(u®) in (9).
Let us introduce the function H = (Hy, Ha, ..., Hy,), with

) = [ " B(0)(XE)(60)d0 + | #ox:
Then,

/B Vu+/ﬁ Vv—/VHuv)O

thanks to Stokes’ theorem. Summing (8) and (9), we obtain

Jvu [ 196 = (e + 0.0
Q Q
and

2 + 1012 < 171 + gl

Consequently, at least for a subsequence, still indexed by e, we can
conclude that

u® — u, v° — v weakly in H}(), 10)
10
u® — u, v° — v strongly in LP(Q2) Vp € [1,2*) and a.e.

Here, we have denoted by 2* the exponent furnished by the Sobolev
embedding theorem, that is

{2*—2]_V if N >3,

2
2* < +o0 arbitrarily large if N = 2.

Third step. The strong convergence of v¢ in Hg.
It is easy to see that v is a weak solution to the problem

{ —Av—V-(f(v)X(u) =g inQ, a1)
v=0 on 9

Indeed, since 8’ and X are continuous and bounded, it is clear that
B'(v¢) — ['(v) strongly in LP for all p € [1,2*) and X (u®) — X(u)
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strongly in L" for all » € [1,4+00). This enables us to pass to the limit
in the second equation in (6).
From (11), we also see that

/Q\VUIZ:—/Qﬂl(v)X(u)'Vv—i-/ﬂgv. (12)

Let us use v° as a test function in the second equation in (6). We find:

/QVU€|2:/Qﬂ’(ve)X(ue)-Vv€+/ng5. (13)

Arguing as above, we can pass to the limit in the right hand side in (13).
Accordingly, we have:

/Q|VU‘5]2—>—/Qﬁ'(v)X(u)-Vv+/ng.

This, combined with (12), gives the convergence in norm in H{ for v°
and, consequently,
v® — v strongly in H}. (14)

Fourth step. The strong convergence of u® in Hg.
We will first prove that

lim limsup/ |Vuf|? | =0 (15)
Koo\ e=0 J{jus|>K}

Thus, let us consider the test functions u® — T (u®) in the first equation
in (6). Notice that

Vue if |uf| > K,
v<uf—TK<ua>>:{ s

0 if |uf| < K.
Hence,
/ [Vur|? + / BF)(1 = Ty (u)) (XY (u) - Vi
{lus|>K} Q

= (f,u® = Tk (u)).

(16)
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We can put (1 — Ty (u®))(X®) (u°) - Vue = V - Y (uf), where

(VE)i(t) = /0 (1~ T}c(6))(X°)'(9) db.

Thus, the second term in the left hand side of (16) can be written in the
form

/ (V- YE () Br) = — / YE(uf) - VA(P).
Q Q

Moreover,
X¢e(s) — X°(K) if s > K,
Yi(s)=4 0 if juf| < K,
Xe(s) — X°(—K) if s < —K.

Since X € C)(R)Y, for e > 0 sufficiently small, Y3 is independent of &
and Yz (u®) is bounded by a constant independent of . We also have

limsup [V (u”)] < | X (u) = X (K) M iy + [X (0) = X (= K)[Tuc k3

e—0

for all K > 0. Therefore,

fimsup [V < [ 1X() = X V80 Lunry
{Jus|>K} Q

e—0

T /Q X(w) — X(~K)| - [V00) Mue sy + (0 — Trc(w)),

(17)
whence
lim lim sup / |VU€|2
K—+o0 e—0 {|lus|>K}
< I X(u) — X(K)|-|V 1,
< din | [ IX0) - XU W80r

+/Q|X(u)—X(—K)\'|Vﬂ(U)]1{u<K}]

+ dm (fu = Tic(w) =0,
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This proves (15). Let us introduce the sets F?

/L?J’
Py ={z € Q:u° = Tj(u)| < i}
We are now going to prove that

lim | limsup /
Jj—+oo e—0 JFe

¥

|V (uf — Tj(u))F) =0 Vi>1. (19)

Thus, let us use T;(u® — T;(u)) as test function in the first equation of
(6). We obtain

/QVuE‘VTZ'(uE—Tj(u))—i—/ﬂﬂ(vE
fiTi(uf —

)(X5) (u) - VT (u® = T;(w))
= (LT Tj(w)))-

(20)
Let us notice that

VTi(u® = Tj(u)) =0 in Q\ F,.

We can then write (20) in the form

Vit VI - Ty + [ AR () VI~ Tyw)

L

€
i %

= (f, Ti(u® — T;(u))). o)
21
Since
|uf| < |u® = Tj(u)| + |Tj(u)| <i+j ifxe F{fj,

we can write 7' /. (u®) = Ti1j(u®) for all z € F; whenever ¢ is sufficiently
small. This gives:
(X' () = X' (i (u)) Ty (u°) = X' (T (u)) in F.

7

Thus, for small € > 0, the second term in the left in (21) is

. B X (Ti45(u)) - VTi(u® = Tj(u))

and converges to

/Q B0)X!(T (1)) - VTi(u — T () (22)
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as € — 0, since
T;(uf — Tj(u)) — Tj(u — Tj(u)) weakly in Hj
and B(v°) X' (Ti+;(u®)) is bounded in (L°°(Q))" and converges a.e. to

B(0) X' (T 5(). o
Let us introduce H* = (H}?, Hy?, ..., Hy), with

.. s ’ ’
H"(s) = /0 T; (6 = T(0))(1 — T5(0) X' (Tiy5(6)) d6.
Then (22) can be rewritten in the form

/ (V- B (w)B(v) = / H'(u) - VB()
Q Q

Moreover, it is not difficult to check that

Hi’j(u)— X(2+])_X(]) ifj<|u‘<i+j7
0 otherwise.

For any 4, we have H"/(u) — 0 a. e. as j — +oc. Since X is bounded,
H%J(u) is also bounded. Thus, we obtain from Lebesgue’s theorem that

/ H" (u)-VB(v) =0 asj— oo.
Q

for all ¢ > 1. Recalling (20) we see we have proved the following:

lim (hm VuE-VTi(ua—Tj(u))> = lim (f, Ti(u —Tj(u))).

j—+oo \ e—0 Fisj j——+oo
(23)
On the other hand,
lim (hm / VTj(u)-VE(uE—I}(u))>
j——+oo \ e—=0 FiEj
— lim /VTj(u)-VTi(u—Tj(u)).
J—+to Jo
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Consequently,
Jlim | lim |V (u® — T](u))|2>
J—+o0 (aHO /F’z] (24)
— tim (T D)) - [ 9T VT - 1)

Notice that, the terms on the right hand side of (24) can be bounded as
follows:

Umeﬂwm»—szw»VEw—nw»
< (M fllz=s + ful) flu = T5(w)]

and this converges to 0 as j — +o0o. Therefore, (19) is satisfied.
We can now prove that u® converges strongly in H}. Indeed, obseve
that, if z € Q\ Ff;, then
| = |u® = Tj(u)| = [T (u)] = i —j,

so that Q\ F7; C Ef_;, with

1—70
Ei ;={reQ:u(z)| >i-j}.

Therefore,

%/Q’V(ua—u)IQS ;/E ]V(ua—u)]2+;/ IV (uf — )2

i, i—j

< [ 1V =P+ [V o (25)

i, 0]
+/
Ef_j

We have seen in (19) that

Va2 + /E Vul? < 2(45 + B + C5 + D).

—J

lim limsup A7; =0 Vi>1 (26)

J—otoo e—0

The second term ij satisfies

lim sup By </ V(T (u) —u)?,
e—0 Q
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whence we also have

lim limsup Bj; =0 Vi>1 (27)

J—=+0 e—0 !
From (15) we know that

lim limsupC}; =0 asi,j — 400, i —j — +o0. (28)

Jj—+oo e—0

Finally, this is also true for D5, since u € H}:

137

lim limsup Dj; =0 asi,j — +00, i — j — +00. (29)

J—=t10 £50
From (25) and (26)—(29), we deduce at once that u® — u strongly in H}
as € — 0.

Fifth step. End of the proof of theorem 1.1.

Let us chose h € C}(R) and ¢, € D. Multiplying the first equation
in (6) by h(u®)p and the second one by 1 and integrating by parts, we
obtain:

[ (90 + )X () - T la o) = (5. )
“ (30)
/Q (VoF + F(0%) X2(u)) - Vb = (g,0).

Since h and h’ have compact support on R, for ¢ sufficiently small we
have

(XEY () = X (W), (XZ)@ON () = X' (0N (1).

Both functions belong to (C°(R) N L>°(R))". Thus, we can write (30)
as follows

/Q h(u) Vel - Vi + / W ()| VP + / B )h(u®) X' (u°) - Vig

+ [ B @)X w) - Tup = (£ () 3)
Q

/ VoETY + / B (09X (4)) - Vb = (g, ).
Q Q
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Now, using the strong convergence of u® to u in HZ(Q), it is easy to
pass to the limit in each term of (31); this yields

tLMMVwV¢+Ahﬁwwﬁw+45@MWMﬂw-Wp

+/ﬁ@wmxxwwvm¢=vmwm>
Q

/ Vo Vi + / (0)X (u) - Vo = (g,).
Q Q

This completes the proof.
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