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HEEGAARD SPLITTINGS OF THE PAIR OF
THE SOLID TORUS AND THE CORE LOOP

Chuichiro HAYASHI* and Koya SHIMOKAWA'!

Abstract
We show that any Heegaard splitting of the pair of the solid
torus (= D? x S') and its core loop (an interior point xS1) is
standard, using the notion of Heegaard splittings of pairs of 3-
manifolds and properly imbedded graphs, which is defined in this

paper.

1 Introduction

The bridge presentation of a link in the 3-sphere S? is introduced by H.
Schubert[S] and generalized by H. Doll[D] for a link in a closed orientable
3-manifold. In [HS1], [HS2]|, [HS3] we generalize it for a 1-submanifold
properly imbedded in a compact connected orientable 3-manifold possi-
bly with boundary. Here we recall it.

Let I = [0,1] an interval, F a disjoint union of closed orientable
surfaces. A compression body C is a connected orientable 3-manifold
obtained from a 3-manifold W homeomorphic to a ball B or F' x I by
attaching 0 or several 1-handles on 9B or F x {1}. Set 0_C = (} when
W =B,and 0_C = F x {0} when W = F x I. Let 0,C = 0C — 0_C.
In usual definitions 0 C has no 2-sphere component, but in this paper
0_C may have 2-sphere components. A compression body C is called a
handlebody if W = B and 0_C = .

A set of arcs {t1,--- ,t,} properly imbedded in a compression body
C is trivial if there is a homeomorphism C' = Y UV (where Y is a ball or
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homeomorphic to _C x I and V is a disjoint union of 1-handles) such
that each arc t; satisfies one of the following conditions.

(1) t; is wertical, i.e., t; =(a point)xI C 9-C x I and t; NV = ().

(2) t; is O4-parallel, i.e., there is an imbedded disc D C C such that
(Uj tj) ND=t; COD and DNIC =cl (0D — ;) C 0+C.

We call such a disc D as in the condition (2) a cancelling disc of
t;. A standard cut and paste argument allows us to take the cancelling
discs to be disjoint.

It is well known that every compact connected orientable 3-manifold
M has a Heegaard splitting H, i.e., M = C; Ug C, where C; and Cs
are compression bodies and H = 0,.C; = 0,+C5. Let T be a properly
imbedded 1-manifold in M. The Heegaard splitting H of M is a Hee-
gaard splitting of (M, T) if H is transverse to T and T; = TN C; is trivial
in C; for + = 1 and 2. Every pair of a compact connected orientable 3-
manifold and a properly imbedded 1-manifold has a Heegaard splitting
as shown in [Lemma 2.1, HS1]. See also Lemma 2.1 in this paper.

A Heegaard splitting (M, T) = (C1,T1) Uy (Co,Ts) is said to be
weakly T-reducible if there is a disc D; properly imbedded in C; for
1 = 1 and 2 such that D, N T = (), D; is an essential loop in H — T
and D1 N 0Dy = @ in H. Otherwise the splitting H is strongly T-
irreducible. The splitting H is T'-reducible if we can take discs as above
so that 6D = 0D+ instead of the condition 6D1 N 8Dy = (). Otherwise
H is T-irreducible. If H is T-reducible, then we can see that H is weakly
T-reducible by slightly isotoping Dy near dD5 to be disjoint from 0D;. A
Heegaard splitting (M, T) = (C1,T1)Ug (Ca,T?) is said to be cancellable
if there is a cancelling disc D; of an arc component ¢; of T; for i+ = 1 and
2 such that 0 # (0D1N3Dy) C (TN H). We call these discs a cancelling
pair of discs. When H is cancellable and 0D N 0Dy is a single point,
isotoping t; along the disc D; for 7 = 1 and 2, we can obtain another
Heegaard splitting H' of (M, T) such that [TNH'| = |TNH| — 2.

A Heegaard splitting (M, T) = (C1,T1) Ug (Co,Ts) is said to be
stabilized if there is a properly imbedded disc D; disjoint from 7; in C;
for 2 = 1 and 2 such that D1 and 0D> intersect transversely at a single
point in H.

Here we give a characterization of Heegaard splittings of a pair of
solid torus and its core loop. The following theorem is used in the proof
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of [Theorem 1.2, HS1] to extend a result by A.J. Casson and C.McA.
Gordon ([Theorem 3.1, CG]) on irreducible and weakly reducible Hee-
gaard splittings and closed incompressible surfaces. There we use this
theorem to show that the obtained closed incompressible surface does
not bound a solid torus intersecting the 1-submanifold in its core loop.

Theorem 1.1 Let V' be a solid torus, Ty a core loop of V, and H a
Heegaard splitting of (V,Ty). Then H is either stabilized or cancellable.
Moreover, when |H NTy| = 2 and genus(H) > 2, H is stabilized.

Heegaard splittings of handlebodies can be easily classified. See
[Lemma 2.7, ST.

2 Heegaard splittings of imbedded graphs in 3-
manifolds

H. Goda defined bridge presentations for theta curves in [G]. Here we
generalize it for pairs of compact connected orientable 3-manifolds and
‘properly imbedded’ graphs.

Let M be a compact 3-manifold possibly with non-empty boundary,
and T a (possibly disconnected) graph imbedded in M. The graph T is
said to be properly imbedded in M if T N OM consists of all the valency
one vertices of T'. Let 0T denote the union of these vertices.

Let C be a compression body and 7' a graph properly imbedded in
C. The graph T is said to be trivial in C if there is a homeomorphism
C ZY UV as below, where Y is a ball or homeomorphic to d_C x [
and V is a disjoint union of 1-handles.

(1) Each component t of TNC is an arc or a graph with a single vertex
besides 0t,

2) every arc component of 7N C' is either vertical or d0;-parallel (as
y +
in section 1),

(3) for every component ¢ containing a vertex of T' besides 0t there is
a properly imbedded disc D such that DNT =t and DN oC =
oD c oC,.

We can take the disc D in (3) so that it is inessential in C, by
replacing a disc component D' of D — ¢ with a parallel copy of the disc
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D — D' slightly isotoped off of D— cl (D'). By performing this operation
on every disc of (3), we can take the discs of (3) to be not nested.

Let H be a Heegaard splitting surface of a compact connected
orientable 3-manifold M, and C4,Cs the compression bodies obtained
by cutting M along H. Let T be a graph properly imbedded in M. We
say H is a Heegaard splitting of the pair (M, T) if the vertices of T' are
disjoint from H, the graph T is transverse to H and the graph T'NCj} is
trivial in C; for 1 = 1 and 2.

Let C be a compression body, and T a trivial graph properly imbed-
ded in C. A spine of (C,T) is a (possibly disconnected when 0_C # ()
1-dimensional complex @ (possibly non-properly) imbedded in C' such
that

(1) 8_|_C N Q = wa
(2) all the vertical arcs of T are disjoint from @,

(3) every component ¢ of T intersects @) at precisely one vertex of @
if ¢ is not a vertical arc,

(4) for every component ¢ of T with a vertex p besides 0t, the 1-
complex () intersects ¢ at the vertex p and

(5) C collapses to 0-CUQUT.

When T = 0, we call it a spine of C.

Lemma 2.1. Let M be a compact connected orientable 3-manifold pos-
sibly with boundary, and H be a Heegaard splitting of M. Let T be a
properly imbedded graph in M. Then we can move T by an ambient
isotopy of M so that H gives a Heegaard splitting of (M,T).

Proof. The manifold M is decomposed into two compression bodies
C;1 and Cg, where H = 0,C; = 0+C5. Let X; be a spine of C; for
i =1 and 2. We can isotope T to be disjoint from N(X; U X3). Then
M —int (N(X1) U N(X32)) is homeomorphic to H x I where I = [0,1],
H = H x {1/2} and H x {0} C Cy. Let 7 be the projection H x I —
H x {1/2}. We can take this product structure so that the singular
set of 7(T") consists of double points away from the vertices of T'. Let
v be a vertex of T. Let S be the set consisting of the vertices of T
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and the singular points on 7', the over ones and the under ones, with
respect to the projection map w. We can isotope 7' in M so that short
arcs containing the over singular points are contained in Cy and so that
short arcs containing the under singular points are contained in Cj.
(Note that the points of 9T are also vertices.) We take regular points
of T', one between every pair of adjacent points of S. We take regular
points of T', one more between adjacent points of S if both points are
contained in Cj or in Cy. In addition we take two regular points of T
on every circle component of T" without singular points. Then we can
isotope T' so that T'N H consists of the above regular points and T'N C;
is trivial in C; for 7 = 1 and 2. [ ]

In general, let X be a compact 3-manifold, and 7" a graph properly
imbedded in X. Let F be a union of compact surfaces in X. Suppose
that every surface (connected component) Fy of F satisfies (1) or (2)
below. (1) Fy is properly imbedded in X transversely to T. (2) Fj is
imbedded in X, 0Fy C (0X UT), (FbNodX) C 0Fy, and Fy NT is a
union of edges of T. In addition, suppose that distinct surfaces of F
may intersect each other in a union of edges of T'. Then we say that F'is
T-compressible if there is a disc D such that DNT =0, DNF = 0D is
essential in F' — T, that is, D does not bound a disc in F' —T'. We call
such a disc D a T-compressing disc of F. If F' is not T-compressible,
then it is T-incompressible. We say that F' is T'-0-compressible if there
is a disc D such that DNT =0, DN(FUJX)=0D and 0DNF = «
is an essential arc in F' — T, that is, a does not cobound a disc with a
subarc of 0F —T on F —T. We call such a disc D T-0-compressing disc
of F. If F' is not T-0-compressible, then it is T-0-incompressible.

Lemma 2.2. Let B be a ball, and T a connected graph with a single
vertex v besides OT. Suppose that T is properly imbedded in B and
trivial in B. Let F be a union of compact surfaces in B. Suppose
for every surface Fy of F that Fy is imbedded in B, 0Fy C (0BUT),
(Fo N 0OB) C 0Fy and Fo N'T is a union of edges of T. In addition,
suppose that distinct surfaces of F may intersect each other in a union
of edges of T. If F is T-incompressible and T-0-incompressible, then F
is a union of

(1) spheres disjoint from T,
(2) properly imbedded discs disjoint from T,
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(3) discs such that the boundary loop £ of each of them intersects OB
in an arc « and such that the arc cl(£ — «) is in T,

(4) discs which are unions of discs of the above type (3) (see Figure
2.1) and

(5) properly imbedded discs each of which contains a single edge of T
with one of the endpoints v in its interior.

Figure 2.1

Proof. Let N(T') be a small regular neighbourhood of T' in B. We can
take N(T') so that it is a union of a ball neighbourhood N (v) of the
vertex v and very small tubular neighbourhoods of the edges of T', and
each tubular neighbourhood intersects 9N (v) in a very small disc.

Claim 2.3. Let p be an arc which is a union of an arc pg in the
punctured sphere ON(T') N 0N (v), and two essential arcs in the annuli
cl(ON(T) — (ON(v) U9B)). Then p and an arc in 0B together form a
loop which bounds a disc properly imbedded in ¢l (B — N(T)).

Proof of Claim 2.3. We can coordinate B = {(z,y, z) € R®|z? + 42 +
2% <1} so that v = (0, 0,0) and the edges of T' are straight line segments
connecting v and dB. Set B, = {(z,y,2) € R®|z? + y? + 22 < €2} for a
small positive real number e. We can take the coordinates so that N(T')
is a union of B, and line segments connecting v and dB. Let D denote
the disc which is the union of straight line segments connecting v and
0B and intersecting the arc pg. Then DNcl (B — N(T')) gives a disc as
desired. [
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Suppose first that F' contains a surface which contains an arc A C T'
properly imbedded in B. We take the arc A to be outermost in F', that
is, there is a regular neighbourhood @ of v in F' such that AN @ and a
subarc of Q cobound a disc Q' with Q'NT = ANQ’. Then A and an arc
in 0B together form a loop bounding a disc D in B such that DNT = .
By Claim 2.3, we can take D so that D intersects F' precisely in A near
A. Since F' is T-incompressible and T-0-incompressible, by a standard
innermost loop and outermost arc argument we can see that we can take
D so that DN F = A. We isotope D near X slightly so that ' N D is
an arc \' parallel to A. Then X' and a subarc of OF — T together form
a loop which bounds a disc D' on F — T since F is T-0-incompressible.
Hence the surface of F' contains a subdisc of type (3). We repeat the
argument as above for every outermost arc in T'N F', to conclude that
the surface of F' is a disc of type (3) or (4).

Suppose secondly that F' contains a surface which contains an edge e
of T as a connected component of TN F'. Then one of the endpoints v of e
is in the interior of F' and the other endpoint of e is in JF. Hence similar
argument as in the previous paragraph shows that the component is of
type (5).

Thus we can assume that F' is disjoint from 7. There is a disc
R which is properly imbedded in B and contains 7. Since F' is T-
incompressible and T-0-incompressible, we can take R so that it is dis-
joint from F'. Then we obtain two balls by cutting B along R, and F
is properly imbedded in the two balls. Hence F' consists of surfaces of
types (1) and (2). [ ]

Let C be a compression body, and T a trivial graph properly imbed-
ded in C. We cap off each sphere component of 9_C with a 3-ball if
it is disjoint from 7', to obtain a new compression body denoted by
C in the next lemma. Discs and annuli imbedded in (C,T) are called
vertical if they are disjoint union of vertical arcs with respect to some
homeomorphism C 2 Y UV as in the definition for 7" to be trivial.

Lemma 2.4. Let C be a compression body, and T a trivial graph prop-
erly imbedded in C. Let F' be a union of compact surfaces in C. Suppose
for every surface Fy of F that Fy is imbedded in C, 0Fy C (0C UT),
(Fo N 0C) C OFy and Fy N'T is a union of edges of T. In addition,
suppose that distinct surfaces of F' may intersect in a union of edges of
T. If F is T-incompressible and T-0-incompressible, then F is a union
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spheres disjoint from T,

properly imbedded discs disjoint from T,

(1)

(2)

(3) cancelling discs of 04 -parallel arc components of T,

(4) properly imbedded discs which are unions of two cancelling discs,
()

discs such that the boundary loop £ of each of them intersects 0C
in an arc @ and such that the arc cl(£ — «) is in T,

(6) discs which are unions of discs of the above type (5),

(7) properly imbedded discs each of which intersects T in a single edge
of T with an endpoint in its interior,

(8) wertical discs each of which intersects T in two or more vertical
arc components,

(9) wvertical annuli each of which intersects T in zero or more vertical
arc components and

(10) closed surfaces parallel to a component of d_C disjoint from T.

Proof. Let t1,--- ,t, be the components of T" such that each ¢; contains
a vertex of T' besides 0t;. There are discs D1, , D,, properly imbedded
in C such that D; contains ¢; for 1 = 1,--- ,n. We can take these discs
so that D; cuts off a ball B; from C with B, NT = D; NT = t; for
i=1,---,n. We take parallel copies D1,---, D! of these discs so that
D! cuts off a ball B} from C with B/NT =t; for i = 1,--- ,n. Since
F' is T-incompressible and T-0-incompressible, by a standard innermost
loop and outermost arc argument on F N (U;D;), we can deform F to be
disjoint from U; D] as usual. Note that this operation does not change
whether F is a union of surfaces of types (1)-(10) in the statement of
this lemma or not.

By Lemma 2.2 the components of F' in B] are surfaces of types in
the statement of this lemma. By similar argument as in [Lemma 2.1,
HS2] the remainder components of F' are also surfaces of types in the
statement of this lemma. [ |
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The next theorem is a generalization of Haken’s theorem [Theorem
in section 7, H]. The proof of the next theorem is the same as that of
[Theorem 1.3, HS1]. We omit the proof. The only difference is that we
use the above Lemma 2.4 in this paper instead of Lemma 2.4 in [HS1].

Let M be a compact connected orientable 3-manifold, and T
a properly imbedded graph in M. The pair (M,T) is split if the
complement M — T contains an essential sphere S, that is, S does not
bound a ball in M — T'. This sphere S is called a splitting sphere.

Theorem 2.5. Let H be a Heegaard splitting of (M, T), and S a disjoint
union of splitting spheres in (M, T) and T-compressing discs of OM.
Then there is a disjoint union S' of splitting spheres and T -compressing
discs such that

(1) S’ is obtained from S by 2-surgeries and isotopy in (M, T),

(2) each sphere of S’ intersects H in at most one simple closed curve
and

(3) each disc of S' intersects H in precisely one simple closed curve
essential on H — T.

Here a 2-surgery on S is such an operation as taking a disc D with
DNS = 9D and DNT = () and replacing a small annular neighbourhood
of dD in S by two parallel copies of D.

3 Proof of Theorem 1.1, 1

Let M be a compact 3-manifold possibly with boundary, 7" a graph
properly imbedded in M, and H a Heegaard splitting surface of (M,T).
Let C1 and Cy be compression bodies obtained by cutting M along H,
and set T; = TN C; for ¢+ = 1 and 2. The splitting H is said to be
cancellable if there is a disc D; imbedded in C; for 4 = 1 and 2 such that
(1) t; = D; N'T; C OD; is an arc properly imbedded in C; for i = 1 and
2, (2) cl(0D; — t;) = D; N 0.C; for 1 = 1 and 2, (3) D1 N Dy consists
of one or two points of TN H and (4) either ¢; and o are 0;-parallel
arc component of 71 and T3 respectively, or the components of T; which
are adjacent to t; are 0;-parallel arc components of T} for (i, j) = (1,2)
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r (2,1). See Figure 3.1. We call the discs D; and D3 a cancelling pair
of discs. When Dy N Dy consists of precisely one point, we say that H
is strongly cancellable. We assume that H is strongly cancellable and %;
and ty are J4-parallel arc components of T and T5 respectively. Then
we can obtain another Heegaard splitting of (M, T') by isotoping t5 along
the disc D9 and further isotoping it slightly into C'; beyond H. Next
assume that H is strongly cancellable, that {5 contains precisely one
vertex v of T' with its valency equal to 3 and that the components of
T, adjacent to t9 are O4-parallel arcs. Let e; and ey be the edges of T5
which together compose ¢35 such that e, is adjacent to 1 =T ND; on T'.
Then we can obtain another Heegaard splitting of (M,T') by isotoping
eo along the disc Do and further isotoping it slightly into C7 beyond
H. In this operation, the vertex v is slid into the compression body C}
along the edge e;. This can also be pursued by moving 7' by an ambient
isotopy of M. We call these two operations cancelling operations.

Ti

Figure 3.1

Let M be a compact connected orientable 3-manifold, and T" a graph
properly imbedded in M. A Heegaard splitting (M,T) = (C1,T1) Uy
(Cq,Ty) is said to be stabilized if there is a properly imbedded disc D;
disjoint from T; in C; for ¢ = 1 and 2 such that dD; and D3 intersect
transversely at a single point in H.

Now we concentrate on our situation. Let (V,Tj) be the pair of the
solid torus and the core loop. We take a meridian disc D of V so that D
intersects Ty transversely in exactly one point p. We take an imbedded
annulus A such that T, C 04, ANOV = A —Ty and AN D is an arc T"
connecting the point p and a point in V. Let T'= Ty UT’ the properly
imbedded graph in V with the vertex p of valency 3 and the vertex 0T
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of valency 1.

Theorem 3.1 Every Heegaard splitting H of (V,T) is stabilized or can-
cellable. Moreover, H is stabilized when genus(H) > 2 and when H is
not strongly cancellable. In addition, if two closed surfaces of genus 1
give Heegaard splittings of (V,T) which are not strongly cancellable, then
they are isotopic in (V,T).

We will give a proof of Theorem 3.1 later. Theorem 1.1 follows from
Theorem 3.1 as below.

Proof of Theorem 1.1 assuming Theorem 3.1. Let H be a Hee-
gaard splitting surface of the pair (V,T}) of the solid torus and the core
loop. Let C7 and Cy be the compression bodies obtained by cutting V'
along H. Assume that Cs contains the boundary torus dV. We take a
point, say p, in Ty — H. We take a meridian disc D of V' and an imbed-
ded annulus A so that D intersects T transversely in the single point
p and that Ty C A, ANOV = A — Ty and AN D is an arc, say T'.
Let T =Ty UT" a graph with the vertex p of valency 3 and the vertex
OT of valency 1. We will isotope the arc T” so that H gives a Heegaard
splitting of (V,T).

Let X; be a spine of C; for 7 = 1 and 2. Then M —int (N(X;UX5)) is
homeomorphic to H x I where I = [0,1], H = H x{1/2} and H x {0} C
Ci. Let w: H x I — H x {1/2} be the projection.

We can move X; and the arc T" by a small isotopy and take a neigh-
bourhood so that TN N(X; U X3) = (0 and so that T is transverse to
H. We can isotope T" so that the singular set of 7(T') consists of double
points disjoint from the vertices p and 0T. Suppose there is a double
point z of w(T") N 7(Tp) such that the point 7 !(z) N T} is contained in
an arc, say a, of TN Cy and the point 7 (z)NT" is contained in an arc,
say 3, of T' N Cy, and that 7 (z) N B is over 7 !(z) N a with respect
to the second coordinate of the product structure H x I. By retaking
the point z if necessary, we assume that x is outermost along m(«), that
is, there is neither such a double point nor the vertex p between x and
an endpoint, say y, of m(a). Let p be the subarc of 7(a) between z and
y. We isotope T" so that 7(T") is isotoped along p. See Figure 3.2. By
repeating this operation, we can eliminate such double points. If there
is a double point z of 7w(T') N w(Ty) such that the point of 7 1(2) N Tp
is contained in an arc, say -y, of Ty N C; and the point 7 1(z) NT" is
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contained in an arc, say d, of 7' N C4, and that 7='(z) N § is under
771(2) Ny, then in the same way we can eliminate z. Note that these
operations do not yield such a new double point as above. Hence these
repetitions terminate in finite times.

T T

To

|
Ty |
| o

Figure 3.2

Then as in the proof of Lemma 2.1, we let S be the set consisting of
the vertices p, T and singular points of 7" with respect to the projection
map 7. We take regular points of 77, one between every pair of adjacent
points of S. We take regular points of 7", one more between every pair
of adjacent points of S if both points are Then we isotope T” so that
T' N H consists of the above regular points and T; = T'N C; is trivial in
C; for i =1 and 2.

Now, H gives a Heegaard splitting of (V,T). By Theorem 3.1, H is
stabilized or cancellable. Moreover, H is stabilized when genus (H) > 2
and when H is not strongly cancellable.

If H is stabilized as a Heegaard splitting of (V,T), then it is also
stabilized as a Heegaard splitting of (V,Tj).

Suppose that the Heegaard splitting H of (V,T') is cancellable. Let
Dy C €y and Dy C (5 be a cancelling pair of discs, and set t;, = D; N T
for i = 1 and 2. Then ¢; is an arc properly imbedded in C;. (Note that
0C; does not go through an edge of T; two or more times by condition
(1) of the definition of cancellability.) There are three cases.

(1) (t1 U tg) C TI,
(2) t1 Ut is entirely contained in neither Ty nor T, or
(3) (tl U tg) C Tp.

In the cases of (1) and (2), since 7" is an arc, D1 N Dy is a single point
of T'N H. Hence in both cases we can obtain a new Heegaard splitting
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H' of (V,T) by a cancelling operation such that [T'"NH'| = |[T'"NH|—2
in the case (1) and |[T" N H'| = |T" N H| — 1 in the case (2). (This holds
even when %9 is an arc component of Ty N Cy, and when ¢; is a union of
a subarc of Ty N C; and a subarc t} of T'. Because the component of
T'NCs which is adjacent to the subarc t] is a 0;-parallel arc component
by condition (4) of the definition of cancellability.) By repeating these
operations, we can assume that the cases (1) and (2) never occur.
Hence the case (3) happens. Then it follows that H is also cancellable
as a Heegaard splitting of (V,Ty). (This holds even when ¢; Uty contains
the vertex p since all we have to do is forgetting the arc 7".) When
|[H N Ty| = 2 and genus (H) > 2, H is not strongly cancellable as a
Heegaard splitting of (V,T). Hence H is stabilized by Theorem 3.1. m

We will prove Theorem 3.1 in this and the next sections.

Lemma 3.2. The Heegaard splitting H of (V,T) is stabilized if it is
T-reducible.

Proof. If H is T-reducible, then there is a sphere S disjoint from T
and intersecting H in a single simple closed curve essential in H — 7.
Since V is irreducible, T' is connected and T'N OV # 0, S bounds a ball
disjoint from 7. Hence H is stabilized by [Satz 3.1, W]. |

Let C71,C5 be the compression bodies obtained by cutting V' along
the Heegaard splitting surface H, and set T; = T N C; for i = 1 and
2. Assume that Cy contains the boundary torus 0V. Then C] is a
handlebody. We can isotope D U A fixing on T so that D U A intersects
C7 in a union of Tj-incompressible and T7-0-incompressible surfaces.
Moreover, we take D U A so that the number [(D U A) N H| of the
intersection loops and arcs is minimal. Then (D U A) N C; is a union of
surfaces of types (2)—(7) in the statement of Lemma 2.4. The discs of
type (2) are Ti-compressing discs of 94 Cy since |[(DUA)N H| is minimal.
In addition, a standard cut and paste argument shows that (DU A)NCs
is Tp-incompressible in (Cy, T2) by the minimality of [(D U A) N H|.
Proposition 3.3. The intersection (DU A)NCy is a union of surfaces

of types (3)—-(7) in the statement of Lemma 2.4.

We utilize a method introduced by W. Haken in [section 7, H], and
extended by W. Jaco in [Theorem II1.7,J], M. Ochiai in [O] and H. Doll
in [D].
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Proof. We assume for a contradiction that (D U A) N C; contains a
disc of type (2). Then (D U A) N Cy contains a Th-incompressible non-
disc planar surface with a boundary component disjoint from 7' and
in 9;C9, and hence has a Ts-0-compressing disc D; by Lemma 2.4.
Set Ry = DU A. We can isotope a small neighbourhood of the arc
a1 = Dy N Ry along the disc Dy into C;. Then the resultant union of
surfaces in Cy are homeomorphic to the surfaces obtained by cutting
RyN Cy along the arc aq, and a band is attached to the surfaces RyN C;
in Cy. Let Ry be the resultant union of surfaces in V. Note that R NCs
is Ty-incompressible. Again, it has a Ty-0-compressing disc Ds if it does
not consist of surfaces of types (2)-(7) and (9). Thus we can perform
isotopy along a Th-0-compressing disc D; of R; 1 N Cy for i =1,--- ,n,
until R, N Cy consists of surfaces of types (2)-(7) and (9). Then the
arcs o; = D; N R;_1 C Ry N Cy divide Ry N Cy into surfaces of types
(2)—(7) and (9). We can retake the T5-0-compressing discs Dy, -+, Dy,
so that the endpoints of a1, - - - , @, are in the boundaries of the surfaces
Ry N Cy. Note that each «; is essential in (Rg N C2) — Ty. The arc o; is
called a self-connector if it has distinct endpoints in the same component
of (Ry N Cy) — Ty. Suppose that every Ti-compressing disc of 94+C, in
Ry N C7 has a self-connector incident to it. Then there must be an
inessential arc a; in (Rp N C2) — T» because Ry — T' is a union of discs.
This is a contradiction. Hence there is a T;-compressing disc () among
Ry N C1 to which no self-connector is incident. Let oy be the first arc
incident to ). The arc oy connects @) to another surface Q' of Ry N C1.
Then the argument in Lemma 1 in [O] or Lemma 3.3(a) in [D] shows
that we can reduce the number (D U A) N H| as below.

The 0-compression of R; 1 N Cy along the disc D; can be reversed
by a 0-compression of R; N C;. We call it the dual 0-compression. Let
D denote the dual disc for D;, that is, one which gives the dual 0-
compression.

First suppose that Dy N Ry = ai. Then an isotopy of Ry along Dy,
would reduce |[RN H]|.

Secondly suppose that (Dy N Ry) — ap # 0. Then there are dual
0-compressing discs of R;y_1 N Cy intersecting By = Dp N H among
Di,---,D;_,. If we isotope Ry_; along the discs Dj_,,---, D} in this
order, then we obtain Ry. The interior of the discs Di,--- ,Dj;_, may
intersect Ry 1. The arc f connects @ and Q'. Let D} (j < k) be the
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dual disc intersecting S5 and the nearest to ). Let E be the subdisc of
ON(Bk) N C1 between @ and D7. We retake the dual disc D so that
the subdisc D’ NN (B) is replaced by E'U (Q — N(B)), and we isotope
the new D;. slightly off of (). We perform the above deformation of dual
discs for each intersection point of dual discs and (i, so that dual discs

Di,---,D; are disjoint from ;. Then we can isotope the disc Ry_;
along the discs D} (i =k —1,---,1), and further isotope along the disc
Dy, to reduce |[R N H|. This is a contradiction. ]

4 Proof of Theorem 1.1, II

By Proposition 3.3, we can take R = D U A so that it intersects C7 in
surfaces of types (3)—(7) in the statement of Lemma 2.4. Let @ be a
spine of (C1,T7). We can take @ to be a connected 1-complex which
intersects R in vertices of @ so that (Q N R) C T. We think of C; as
being a very small neighbourhood of (). Let G be the ball obtained by
cutting the solid torus V along the union R of the meridian disc D and
the annulus A. Then Qg = Q NG is a graph.

The next lemma is essentially Proposition 2.5 in [ST], and this proof
is essentially due to [F].

Lemma 4.1. We can assume that every component of Qg is a tree.
Otherwise, H is stabilized.

Proof. Suppose not. Then Q¢ contains a (possibly knotted) simple
closed curve c¢. Let e be an edge of Qg contained in ¢. We slide an
endpoint ¢ of e along the arc ¢ — e, to deform e into a loop edge. We
slide ¢ slightly on e passing through the other endpoint, and obtain a
loop £ C e imbedded in the interior of G. We take a small neighbourhood
N(2) of £ in C;. Then C;—intN(£) is a compression body, and H is a
Heegaard splitting of (V—intN(£),T). We push the sphere 0G slightly
into int G and obtain a splitting sphere S of (V—intN(£),T'), that is, S
does not bound a ball in V—int N (£) — T. Then by Theorem 2.5 there is
a sphere S’ which is disjoint from T and intersecting H in a single simple
closed curve essential in H —T'. Then H is T-reducible as a splitting of
(V—intN(£),T), hence also as a splitting of (V,T'). Thus the splitting
H is stabilized by Lemma 3.2. [ |

Since Ty is a loop, @ NTy # 0. In addition, Q NT" # () since the arc
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T’ has an endpoint in V' = d_Cy and the other endpoint at the vertex
p = TyNT'. However, it is possible that @ NT" = p. Because RN is a
union of surfaces of types (3)—(7) in the statement of Lemma 2.4, each of
the discs obtained by cutting D and A along T intersects Cs in a disc.
Hence the union of surfaces RN Cy is Ty-incompressible. Then RN Cy is
T-0-compressible by Lemma 2.4. Note that ANCs is To-0-compressible
even when QQ N7 = p. We can isotope R along T5-0-compressing discs
Dy,---, D, to deform RN Cj into a union of surfaces of types (3)—(7)
and (9) in the statement of Lemma 2.4. Note that the disc of type (2)
cannot appear since RNC; does not have the disc component of type (2)
and since Dq,--- , D,, are Th-0-compressing discs. Set Ry = R, and let
R; be the resultant union of surfaces obtained by the i-th isotopy along
the disc D;. Let 7; be the arc R; 1 N dD;, and §; the arc 0D; N 94 Cs.
We can isotope the discs D1, --- , D, so that the endpoints of vyq,--- , v,
are in the boundary of the discs Ry N C;. Let I'; be the graph with the
edges U;:fyj, regarding the disc components of Ry N (' as vertices. Let
T'; be the intersection of I'; and the sphere G. The sphere G contains
two copies of D, two copies of A cut along T", a copy of Tj cut at p and
four copies of T". Note that the graph I'; contains two copies of each
edge 7;. See Figure 4.1.

>

D D

NS \]I oy \IJ
D

=

Figure 4.1

G

We concentrate on the patterns of T'; as below.
(1) An edge e of T; in A.

(2) An edge e of T'; in D such that e connects two points in the same
copy of T' (Figure 4.2).
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(3) Two edges of T in a copy of D such that they connects distinct
copies of T" and such that they have an endpoint at the same point
(Figure 4.3).

A

Figure 4.2

; A

A

o

Figure 4.3

We allow the edge e of the above types (1) and (2) to be incident
to the vertex p = Top N T". Let k be the smallest number such that I'
contains such a pattern. Note i < k, that T; is a disjoint union of arcs
for i < k.

We perform the i th isotopy of R; 1 along the T5-0-compressing disc
D; for i < k by sliding edges of the spine @ as below. (The description
of deformation is completed right after Lemma 4.3.) Let @); denote the
spine after the ¢ th deformation. The original spine is denoted by Q.
We will deform the spine so that Q; N R; = [';. That is, we allow 7 edges
of QQ; to be contained in R;. Let QQg; denote the graph Q; N G. The
edges (Q; N R; = T'; appear twice in the graph Qg;-
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Lemma 4.2. We can assume that every component of Qq; s a tree for
1 < k. Otherwise, H is stabilized.

Proof. The proof is similar to that of Lemma 4.1, and we omit the
detail. Suppose that Q¢g; contains a cycle ¢. Since T'; does not contain
a cycle, the cycle ¢ contains an edge e such that e is not contained in
[';. We slide the edge e as in the proof of Lemma 4.1, and the same
argument shows that H is stabilized. [ |

We can assume that the condition of Lemma 4.2 are kept after any
sliding operations on edges of Qg; —I'; in G. Otherwise, H is stabilized.

We can extend the T5-0-compressing disc D; so that §; C Q;_1, and
isotope D; so that d; is a sequence of edges of Q(;_1), where the same
edge possibly appears more than once.

Lemma 4.3. We can deform Q;—1 by sliding edges of Qg(i—1) — L'i-1
and isotope D; so that §; does not intersect an edge of Qg(;—1) more than
once.

Proof. Let z and y be points of §; which are in the same vertex v of
Qa(i-1)- We can choose z and y so that the subarc p connecting = and
y in §; contains no such pair of points. Then by Lemma 4.2 p consists of
two successive subarcs of d; contained in the same edge of Qg(; 1). See
Figure 4.4. Now, we can easily slide edges of Qg(;_1) — T';_1 and isotope
D; to shrink p into a point at the vertex v. [

Figure 4.4

Then for 1 < 7 < k we perform the 7 th deformation of the spine
Qi—1 along D; as below. Note that 0D; cannot entirely be contained
in G since every connected component of T'; is an edge in a copy of D
such that it connects distinct copies of T'. Hence §; contains an edge e

of Qg(i—1) — I'i-1, we slide the edge e along the arcs ¢; — e and isotope
along the disc D;, to push e into 9G. Then e is in the place of ;.
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We consider the case where a copy of 7 is of type (3) as in Figure
4.3. In the case of type (2), the proof is similar to that of this case and
easier, and we omit it.

When a copy of y, is of type (3), in the graph T'; a copy of the edge
v and a copy of some edge 7, have an endpoint in the same vertex v
of Qgr. We call these copies of edges v, and 7, for simplicity.

The other endpoints vy C 07, and v, C 07y, are in distinct vertices
in the same copy t of T". Let ' be the subarc of ¢ between v, and vy,.
See Figure 4.5.

Lemma 4.4. If vy is of type (3), then H is strongly cancellable.

Proof. Let E be the disc bounded by # U~y U, in Ry right after the k
th deformation. Note that F is disjoint from the other edges of T’ than
Ym and - because of the definition of the number k.

First, suppose that ¢’ contains no other vertices than v; and v,,.
Then t' is a 0y-parallel arc component of T, and F gives a cancelling
disc of ¢’ in (Co,Ty). The vertex v, does not coincides with the vertex
p. Hence the ball neighbourhood N (v,,) contains a cancelling disc E’ of
the d;-parallel arc of T} corresponding to v,,. We can take E’ so that
E' is perpendicular to the sphere G inside G and so that E’ is disjoint
from the interior of the edges of Q. Then E and E’ give a cancelling
disc pair, and we see that H is strongly cancellable.

Secondly, suppose that ¢’ contains other vertices than vy and wv,,.

Let wq,--- ,w, be the vertices contained in ¢ other than v, and v,,,
appearing in this order in ¢’ so that w; is the nearest to vy. The arc t' is
divided into r 4+ 1 arcs when it is cut at the vertices wq,--- ,w,. Let t;

be the subarc of ¢ between w;_1 and w;, where vy = wg and v,;, = wy1.
The arc t; is a O4-parallel arc component of T5. Let E; be a cancelling
disc of t; in (Cy,T3). We can take Ey,--- , E. ;1 so that they are disjoint
and they intersect the disc £ only properly imbedded arcs connecting
vertices of Q. Let £ = UF;. See Figure 4.5.

If several arcs of £ N F are incident to the vertex v, then we isotope
& along the edge 7y, to deform such arcs into arcs incident to the vertex
vg. See Figures 4.6 and 4.7.

Suppose there is an arc p of £ N E such that p has two endpoints in
the same vertex ¢. Then we can take p to be the outermost one among
such arcs on E. That is, there is a disc E’ cut off by p from E such that
E' is disjoint from such arcs other than p. We perform a surgery on &
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Figure 4.6

Figure 4.7
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along the disc E’ and discard the component disjoint from T, to obtain
a union of cancelling discs which intersects F in fewer number of arcs.
Hence we can assume that £ N E does not contain such an arc.

We say that an arc of £ N E is good if it connects adjacent vertices.
We say a vertex w; is good if all the arcs incident to w; are good. There is
such a good vertex w; since every polygon has at least two vertices with
no diagonal arc incident when divided into triangles by diagonal arcs.
Then all the arcs incident to w; have the other endpoint in the adjacent
vertices w;_1 and w;4+1. Hence there is a cancelling disc E; such that
(a) F; is a cancelling disc of ¢; or t;11, (b) F; intersects F transversely
in arcs, and (c) only good arcs of E; N E are incident to w;. Among
such discs, we take F; so that the number of intersection arcs F; N FE is
minimum.

We will show that no arc of E; N F is incident to w;. Suppose there
is an arc p of F; N FE either connecting w; 1 and w; or connecting w; and
w;4+1- We consider the former case. The proof of latter case is similar
and we omit it. We take u to be the outermost one on F. The arc y
divides E; into two discs, one of which, say E; intersects neither ¢; nor
tit1. Let E' be the subdisc of E cobounded by ¢; and . Then E'U E
is a cancelling disc of #; which intersects in fewer number of arcs than
FE; after an adequate small isotopy. This is a contradiction.

Thus there is no arc of F;NE which is incident to w;. Let N(w;) be a
ball neighbourhood of the vertex w;. The disc N(w;) N E is a cancelling
disc of the arc component of 77 corresponding to the vertex w;. Then
the discs F; and N(w;) N E show that H is strongly cancellable. ]

The proof of the next lemma is similar to that of Lemma 4.4. We
omit it.
Lemma 4.5. Suppose that vy is of type (2). Then the Heegaard splitting

H is strongly cancellable.

The next lemma completes the proof of the first sentence of Theorem
3.1.

Lemma 4.6. Suppose that vy is of type (1). Then the Heegaard splitting
H is cancellable. Moreover, if H is not strongly cancellable, then TNQ =
p and v is an edge connecting the two copies of p in a copy of A.

Proof. The arc 7" and the edge v divides the annulus A into two discs,
one of which, say F, is disjoint from the toral boundary 9V .
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Then similar argument as in the proof of Lemma 4.4 will show that
the Heegaard splitting H is cancellable.

When the arc 0F — v, does not contain a vertex of QQgg, then we can
take a disc E' in N(0v) so that E and E’ together form a cancelling
pair of discs. In addition, if 0y = p, then we can take a cancelling disc
of the arc To N N(p) in N(p), and see that H is cancellable. Since we
can also take a cancelling disc of the arc 9E N N(p) in N(p), we see that
H is strongly cancellable unless T'N @ = p and 7y, is an edge connecting
the two copies of p in a copy of A.

When the arc OF — 7y contains a vertex of QQgg other than 0y, the
proof is very similar as in that of Lemma 4.4. [ |

The next lemma implies the second and third sentences of the state-
ment of Theorem 3.1.

Lemma 4.7. If H is not stabilized and not strongly cancellable, then
genus (H) = 1. Moreover, such splitting surfaces are isotopic in (V,T).

Proof. Suppose that H is not stabilized and not strongly cancellable.
Then by Lemmas 4.4, 4.5 and 4.6 the edge y; is contained in a copy of
A and connects two copies of the vertex p =Ty NT' = T N Q}, as in the
statement of Lemma 4.6. Then before the deformation Q¢ is a connected
tree intersecting G in the two copies of the vertex p by Lemma 4.1. We
can shrink Q)¢ to be an edge e connecting the two copies of p. Thus @)
consists of a loop edge incident to p, and this implies that genus (H) = 1.
Moreover, the edge e is not knotted in G since Cy is homeomorphic to
(a torus) xI. |
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