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ON THE SINGULAR NUMBERS FOR SOME

INTEGRAL OPERATORS

A. MESKHI

Abstract

Two–sided estimates of Schatten–von Neumann norms for
weighted Volterra integral operators are established. Analogous
problems for some potential-type operators defined on R

n are
solved.

Let H be a separable Hilbert space and let σ∞(H) be the class of
all compact operators T : H → H, which forms an ideal in the normed
algebra B of all bounded linear operators on H. To construct a Schatten-
von Neumann ideal σp(H) (0 < p ≤ ∞) in σ∞(H), the sequence of
singular numbers sj(T ) ≡ λj(|T |) is used, where the eigenvalues λj(|T |)
( |T | ≡ (T ∗T )1/2 ) are non-negative and are repeated according to their
multiplicity and arranged in decreasing order. A Schatten-von Neumann
quasinorm (norm if 1 ≤ p ≤ ∞) is defined as follows:

‖T‖σp(H) ≡
(∑

j

sp
j (T )

)1/p
, 0 < p < ∞,

with the usual modification if p = ∞. Thus we have ‖T‖σ∞(H) = ‖T‖
and ‖T‖σ2(H) is the Hilbert- Schmidt norm given by the formula

‖T‖σ2(H) =
(∫ ∫

|T1(x, y)|2dxdy
)1/2

(1)

for an integral operator

Tf(x) =
∫

T1(x, y)f(y)dy.

We refer, for example, to [2], [6], [7] for more information concerning
Schatten-von Neumann ideals.
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a. meskhi on the singular numbers for some integral operators. . .

In this paper necessary and sufficient conditions for the weighted
Volterra integral operator

Kvf(x) = v(x)
∫ x

0
f(y)k(x, y)dy, x ∈ (0, a),

to belong to Schatten-von Neumann ideals are established, where v is a
measurable function on (0, a) (0 < a ≤ ∞).

Two-sided estimates of Schatten-von Neumann p-norms for the weighted
Riemann–Liouville operator

Rα,vf(t) = v(x)
∫ x

0
f(t)(x − t)α−1dt,

when α > 1/2 and p > 1/α, were established in [13] (for α = 1 and
p > 1 see [14]). Analogous results for the weighted Hardy operator

Hv,uf(x) = v(x)
∫ x

0
u(y)f(y)dy

were obtained in [3]. Similar problems for the Riemann-Liouville oper-
ator with two weights

Rα,v,uf(x) = v(x)
∫ x

0
u(t)f(t)(x − t)α−1dt,

when α ∈ N and p ≥ 1, were solved in [4]. Further, upper and lower
bounds for Schatten–von Neumann p-norms (p ≥ 2) of certain Volterra
integral operators, involving Rα,v,u only for α ≥ 1, were proved in [4]
and [18].

Our main goal is to generalize the results of [13] and [14] for
integral transforms with kernels and to give two-sided estimates of the
above-mentioned norms for these operators in terms of their kernels.

We denote by Lp
w(Ω), Ω ⊆ R

n, a weighted Lebesgue space with
respect to the weight w defined on Ω.

Throughout the paper the expression A ≈ B is interpreted as c1A ≤
B ≤ c2A with some positive constants c1 and c2.

Let us recall some definitions from [10] (see also [8]).
We say that a kernel k : {(x, y) : 0 < y < x < a} → R+ belongs to

V (k ∈ V ) if there exists a positive constant d1 such that for all x, y, z
with 0 < y < z < x < a the inequality

k(x, y) ≤ d1k(x, z)

380 REVISTA MATEMÁTICA COMPLUTENSE
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holds. Further, k ∈ Vλ (1 < λ < ∞) if there exists a positive constant
d2 such that for all x, x ∈ (0, a), the inequality∫ x

x/2
kλ′

(x, y)dy ≤ d2xkλ′(
x, x/2

)
, λ′ =

λ

λ − 1
.

is fulfilled.
For example, if k1(x) = xα−1, where 1

λ < α ≤ 1, then k(x, y) =
k1(x− y) belongs to V ∩Vλ (for other examples of kernel k see [10], [8]).

First we investigate the mapping properties of Kv in Lebesgue spaces.
The following statements in equivalent form were proved in [10] (see

also [8], [11]).

Theorem A. Let 1 < p ≤ q < ∞, a = ∞ and let k ∈ V ∩ Vp. Then
(a) Kv is bounded from Lp(0,∞) into Lq(0,∞) if and only if

D∞ ≡ sup
j∈Z

D∞(j) ≡ sup
j∈Z

(∫ 2j+1

2j

kq(x, x/2)xq/p′ |v(x)|qdx
) 1

q
< ∞.

Moreover, ‖Kv‖ ≈ D∞.
(b) Kv acts compactly from Lp(0, a) into Lq(0, a) if and only if D∞ <

∞ and lim
j→+∞

D∞(j) = lim
j→−∞

D∞(j) = 0.

Theorem B. Let 1 < p ≤ q < ∞, a < ∞ and let k ∈ V ∩ Vp. Then
(a) Kv is bounded from Lp(0, a) to Lq(0, a) if and only if

Da ≡ sup
j≥0

Da(j) ≡ sup
j≥0

(∫ 2−ja

2−(j+1)a
|v(x)|qkq(x, x/2)xq/p′dx

) 1
q

< ∞.

Moreover, ‖Kv‖ ≈ Da.
(b) Kv acts compactly from Lp(0, a) into Lq(0, a) if and only if Da <

∞ and lim
j→+∞

Da(j) = 0;

Analogous problems for the Riemann-Liouville operator for α > 1/p
were solved in [9] (For boundedness two-weight criteria of general inte-
gral operators with positive kernels see [5], Chapter 3).

Let 0 < a ≤ ∞, k : {(x, y) : 0 < y < x < a} → R
1
+ be a kernel and

let k0(x) ≡ xk2(x, x/2).
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We denote by lp(L2
k0

(0, a)) the set of all measurable functions g :
(0, a) → R

1 for which

‖g‖lp(L2
k0

(0,∞)) =
(∑

n∈Z

(∫ 2n+1

2n

|g(x)|2k0(x)dx

)p/2)1/p

< ∞

if a = ∞ and

‖g‖lp(L2
k0

(0,a)) =
( +∞∑

n=0

(∫ 2−na

2−(n+1)a
|g(x)|2k0(x)dx

)p/2)1/p

< ∞

if a < ∞, with the usual modification for p = ∞.
We shall need the following interpolation result (see, e.g., [19], p.

147 for the interpolation properties of the Schatten classes, and p. 127
for the corresponding properties of the sequence spaces. See also [1],
Theorem 5.1.2):

Proposition A. Let 0 < a ≤ ∞, 1 ≤ p0, p1 ≤ ∞, 0 ≤ θ ≤ 1,
1
p = 1−θ

p0
+ θ

p1
. If T is a bounded operator from lpi(L2

k0
(0, a)) into

σpi(L
2(0, a)), where i = 0, 1, then it is also bounded from lp(L2

k0
(0, a))

into σp(L2(0, a)). Moreover,

‖T‖lp(L2
k0

)→σp(L2) ≤ ‖T‖1−θ
lp0 (L2

k0
)→σp0 (L2)

‖T‖θ
lp1 (L2

k0
)→σp1 (L2).

The next statement is obvious when p = ∞; and when 1 ≤ p < ∞ it
follows from Lemma 2.11.12 of [15].

Proposition B. Let 1 ≤ p ≤ ∞ and let {fk}, {gk} be orthonormal
systems in a Hilbert space H. If T ∈ σp(H), then

‖T‖σp(H) ≥
(∑

n

|〈Tfn, gn〉|p
)1/p

.

Now we prove the main results.
In the sequel we shall assume that v ∈ L2

k0
(2n, 2n+1) for all n ∈ Z.

Theorem 1. Let a = ∞, 2 ≤ p < ∞ and let k ∈ V ∩ V2. Then Kv

belongs to σp(L2(0,∞)) if and only if v ∈ lp(L2
k0

(0,∞)). Moreover, there
exist positive constants b1 and b2 such that

b1‖v‖lp(L2
k0

(0,∞)) ≤ ‖Kv‖σp(L2(0,∞)) ≤ b2‖v‖lp(L2
k0

(0,∞)).
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Proof. Sufficiency. Note that the fact k ∈ V ∩ V2 implies

I(x) ≡
∫ x

0
k2(x, y)dy ≤ ck0(x) (2)

for some positive constant c independent of x. Indeed, by the condition
k ∈ V ∩ V2 we have

I(x) =
∫ x/2

0
k2(x, y)dy +

∫ x

x/2
k2(x, y)dy ≤ c1k0(x) + c2k0(x) = c3k0(x).

Consequently, using the Hilbert-Schmidt formula (1) and taking into
account (2), we find that

‖Kv‖σ2(L2(0,∞)) =
(∫ ∞

0

∫ x

0
k2(x, y)v2(x)dxdy

)1/2

=
(∫ ∞

0
v2(x)

(∫ x

0
k2(x, y)dy

)
dx

)1/2

≤ c4

(∫ ∞

0
v2(x)k0(x)dx

)1/2

= c4

(∑
n∈Z

∫ 2n+1

2n

v2(x)k0(x)dx

)1/2

= c4‖v‖l2(L2
k0

(0,∞)).

On the other hand, in view of Theorem A we see that there exist
positive constants c5 and c6 such that

c5‖v‖l∞(L2
k0

(0,∞)) ≤ ‖Kv‖σ∞(L2(0,∞)) ≤ c6‖v‖l∞(L2
k0

(0,∞)).

Further, Proposition A yields

‖Kv‖σp(L2(0,∞)) ≤ c7‖v‖lp((L2
k0

(0,∞)),

where 2 ≤ p < ∞.
Necessity. Let Kv ∈ σp(L2(0,∞)) and let

fn(x) = χ[2n,2n+1)(x)2−n/2,

gn(x) = v(x)x1/2χ[3·2n−1,2n+1)(x)k(x, x/2)α−1/2
n ,
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where

αn =
∫ 2n+1

3·2n−1

v2(y)k0(y)dy.

Then it is easy to verify that {fn} and {gn} are orthonormal systems.
Further, by virtue of Proposition B (for p ≥ 1) we have

∞ > ‖Kv‖σp(L2(0,∞)) ≥
(∑

n∈Z

|〈Kvfn, gn〉|p
)1/p

=
(∑

n∈Z

(∫ 2n+1

3·2n−1

(∫ x

2n

2−n/2k(x, y)dy

)
v2(x)x1/2k(x, x/2)α−1/2

n dx

)p)1/p

≥ c8

(∑
n∈Z

(
α−1/2

n

∫ 2n+1

3·2n−1

2−n/2k(x, x/2)v2(x)(x − 2n)x1/2dx

)p)1/p

≥ c9

(∑
n∈Z

(
α−1/2

n

∫ 2n+1

3·2n−1

k0(x)v2(x)dx

)p)1/p

= c9

(∑
n∈Z

αp/2
n

)1/p

.

Now let
f ′

n(x) = χ[3·2n−2,3·2n−1)(x)(3 · 2n−2)−1/2

and
g′n(x) = v(x)x1/2χ[2n,3·2n−1)(x)k(x, x/2)β−1/2

n ,

where

βn =
∫ 3·2n−1

2n

v2(y)k0(y)dy.

Then it is easy to verify that {f ′
m} and {g′m} are orthonormal sys-

tems. Further,

∞>‖Kv‖σp(L2(0,∞))≥
(∑

n∈Z

|〈Kvf
′
n, g′n〉|p

)1/p

=
(∑

n∈Z

(∫ 3·2n−1

2n

(∫ x

3·2n−2

(3 · 2n−2)−1/2k(x, y)dy

)

×v2(x)x1/2k(x, x/2)β−1/2
n dx

)p)1/p
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≥c10

(∑
n∈Z

(
β−1/2

n

∫ 3·2n−1

2n

2−(n−2)/2k2(x, x/2)v2(x)

×(x − 3 · 2n−2)x1/2dx

)p)1/p

≥ c11

(∑
n∈Z

(
β−1/2

n

∫ 3·2n−1

2n

k0(x)v2(x)dx

)p)1/p

= c11

(∑
n∈Z

βp/2
n

)1/p

,

where p ≥ 1. Consequently

(∑
n∈Z

(∫ 2n+1

2n

v2(x)k0(x)dx

)p/2)1/p

≤
(∑

n∈Z

(βn + αn)p/2

)1/p

≤ c12‖Kv‖σp(L2(0,∞)) + c12‖Kv‖σp(L2(0,∞))

≤ c13‖Kv‖σp(L2(0,∞)) < ∞.

Let us now consider the case a < ∞. We have the following state-
ment:

Theorem 2. Let 0 < a < ∞, 2 ≤ p < ∞ and let k ∈ V ∩ V2. Then Kv

belongs to σp(L2(0, a)) if and only if v ∈ lp(L2
k0

(0, a)). Moreover, there
exists positive constants b1 and b2 such that

b1‖v‖lp(L2
k0

(0,a)) ≤ ‖Kv‖σp(L2(0,a)) ≤ b2‖v‖lp(L2
k0

(0,a)).

Proof. Sufficiency. The Hilbert– Schmidt formula and the condition
k ∈ V ∩ V2 yield

‖Kv‖σp(L2(0,a)) =
(∫ a

0
v2(x)

(∫ x

0
k2(x, y)dy

)
dx

)1/2

≤ c1

(∫ a

0
v2(x)k0(x)dx

)1/2

= c1

( ∞∑
n=0

∫ 2−na

2−(n+1)a
v2(x)k0(x)dx

)1/2

= c1‖v‖l2(L2
k0

(0,a)).
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In view of Theorem B (part (a) ) we arrive at

‖Kv‖σ∞(L2(0,a)) ≈ ‖v‖l∞(L2
k0

(0,a)).

Using Proposition A we derive

‖Kv‖σp(L2(0,a)) ≤ c2‖v‖lp(L2
k0

(0,a))

when p ≥ 2.
To prove necessity we take the orthonormal systems of functions

defined on (0, a):

fn(x) = χ[2−(n+1)a,2−na)(x)(2−(n+1)a)−1/2

and
gn(x) = v(x)x1/2χ[3·2−(n+2)a,2−na)(x)k(x, x/2)α−1/2

n ,

where

αn =
∫ 2−na

3·2−(n+2)a
v2(y)k0(y)dy

and n = 0, 1, 2, · · · . Consequently Proposition B yields

∞ > ‖Kv‖σp(L2(0,a)) ≥
( +∞∑

n=0

|〈Kvfn, gn〉|p
)1/p

=
( ∞∑

n=0

(∫ 2−na

3·2−(n+2)a
x1/2v2(x)k(x, x/2)

×
(∫ x

2−(n+1)a
(2−(n+1)a)−1/2k(x, y)dy

)
α−1/2

n dx

)p)1/p

≥ c3

( ∞∑
n=0

αp/2
n

)1/p

.

If we take the following orthonormal systems:

f ′
n(x) = χ[3·2−(n+3)a,3·2−(n+2)a)(x)(3 · 2−(n+3)a)−1/2,

g′n(x) = v(x)x1/2χ[2−(n+1)a,3·2−(n+2)a)(x)k(x, x/2)β−1/2
n ,
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where

βn =
∫ 3·2−(n+2)a

2−(n+1)a
v2(y)k0(y)dy,

then we arrive at the estimate

‖Kv‖σp(L2(0,a)) ≥ c4

( ∞∑
n=0

βp/2
n

)1/p

.

Finally we have the lower estimate for ‖Kv‖σp(L2(0,a)).

Remark 1. It follows from the proof of Theorems 1 and 2 that the
lower estimate of ‖Kv‖σp(L2(0,a)) holds for 1 ≤ p ≤ ∞.

Now we formulate and prove the next statement.

Proposition 1. Let 1 ≤ p < ∞. Then

‖v‖lp(L2
k0

(0,∞)) ≈ J(v, p),

where

J(v, p) =
(∫ ∞

0

(∫ 2x

x/2
v2(y)k2(y, y/2)dy

)p/2

xp/2−1dx

)1/p

.

Proof. We have

‖v‖lp(L2
k0

(0,∞)) =
(∑

n∈Z

(∫ 2n+1

2n

v2(x)k0(x)dx

)p/2)1/p

≤
(∑

n∈Z

(∫ 2n+1

2n

v2(x)k2(x, x/2)dx

)p/2

2(n+1)p/2

)1/p

= c1

(∑
n∈Z

(∫ 2n+1

2n

v2(x)k2(x, x/2)dx

)p/2

2np/2

)1/p

≤ c2

(∑
n∈Z

∫ 2n+1

2n

yp/2−1

(∫ 2n+1

2n

v2(x)k2(x, x/2)dx

)p/2

dy

)1/p

≤ c2

(∑
n∈Z

∫ 2n+1

2n

yp/2−1

(∫ 2y

y/2
v2(x)k2(x, x/2)dx

)p/2

dy

)1/p

= c2J(v, p).

387 REVISTA MATEMÁTICA COMPLUTENSE
(2001) vol. XIV, num. 2, 379-393



a. meskhi on the singular numbers for some integral operators. . .

To prove the reverse inequality we observe that

J(v, p) =
(∑

n∈Z

∫ 2n+1

2n

yp/2−1

(∫ 2y

y/2
v2(x)k2(x, x/2)dx

)p/2

dy

)1/p

≤
(∑

n∈Z

(∫ 2n+1

2n

yp/2−1dy

)(∫ 2n+2

2n−1

v2(x)k2(x, x/2)dx

)p/2)1/p

≤ c3

(∑
n∈Z

2np/2

(∫ 2n

2n−1

v2(x)k2(x, x/2)dx

)p/2)1/p

+c3

(∑
n∈Z

2np/2

(∫ 2n+1

2n

v2(x)k2(x, x/2)dx

)p/2)1/p

+c3

(∑
n∈Z

2np/2

(∫ 2n+2

2n+1

v2(x)k2(x, x/2)dx

)p/2)1/p

≤ c4‖v‖lp(L2
k0

(0,∞)).

From Theorem 1 and Proposition 1 we easily derive the following
statement:

Theorem 3. Let 2 ≤ p < ∞ and let k ∈ V ∩ Vλ. Then

‖Kv‖σp(L2(0,∞)) ≈ J(v, p).

A result analogous to Theorem 1 was obtained in [13] for the Riemann-
Liouville operator Rα,v, assuming that α > 1/2 and p > 1/α (see [14]
for α = 1 and p > 1).

Let us now consider the multidimensional case. In particular, we
shall deal with the operator

Bα
+,vf(x) = v(x)

∫
|y|<|x|

(
|x|2 − |y|2

)α

|x − y|n f(y)dy, α > 0,

where v is a Lebesgue-measurable function on R
n with v ∈ L2({2n <

|y| < 2n+1}) for all n ∈ Z (for the definition and some properties of
B+,v, where v ≡ 1, see, e.g., [16], Chapter 7, and [17], Section 29).

388 REVISTA MATEMÁTICA COMPLUTENSE
(2001) vol. XIV, num. 2, 379-393



a. meskhi on the singular numbers for some integral operators. . .

Let w be a measurable a.e. positive function on R
n. We denote by

lp(L2
w(Rn)) a set of all measurable functions ϕ : R

n → R
1 for which

‖ϕ‖lp(L2
w(R)) =

(∑
k∈Z

( ∫
2k<|x|<2k+1

ϕ2(x)w(x)dx

)p/2)1/p

< ∞.

The next result is from [19] (pp. 127, 147).

Proposition C. Let 1 ≤ p0, p1 ≤ ∞, 0 ≤ θ ≤ 1, 1
p = 1−θ

p0
+ θ

p1
. If T is

a bounded operator from lpi(L2
w(Rn)) into σpi(L

2
w(Rn)), where i = 0, 1,

then it is also bounded from lp(L2
w(Rn)) into σp(L2(Rn)).

In the sequel we shall use the notation lp(L2
|x|β (Rn)) ≡ lp(L2

β(Rn)).
First we formulate some statements concerning the mapping prop-

erties of Bα
+,v.

Theorem C ([12]). Let 1 < p ≤ q < ∞, α > n
p . Then Bα

+,v acts
boundedly from Lp(Rn) into Lq(Rn) if and only if

F ≡ sup
j∈Z

F (j) ≡ sup
j∈Z

( ∫
2j<|x|<2j+1

|v(x)|q|x|q(2α−n/p)dx

)1/q

< ∞.

Moreover,
∥∥Bα

+,v

∥∥ ≈ F.

The following result can be obtained in the same as Theorem 5 from
[12], therefore we omit the proof (see also [11]).

Theorem D. Let 1 < p ≤ q < ∞ and let α > n
p . Then Bα

+,v acts com-
pactly from Lp(Rn) into Lq(Rn) if and only if F < ∞ and lim

j→−∞
F (j) =

lim
j→+∞

F (j) = 0.

Now we state and prove the following Theorem:

Theorem 4. Let 2 ≤ p < ∞ and let α > n/2. Then Bα
+,v ∈ σp(L2(Rn))

if and only if v ∈ lp(L2
4α−n(Rn)). Moreover, there exist positive constants

b1 and b2 such that

b1‖v‖lp(L2
4α−n(Rn)) ≤ ‖Bα

+,v‖σp(L2(Rn)) ≤ b2‖v‖lp(L2
4α−n(Rn)).
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Proof. For sufficiency, we use the Hilbert-Schmidt formula (1) and the
condition α > n

2 . Thus,

‖Bα
+,v‖σ2(L2(Rn)) =

(∫
Rn

v2(x)
( ∫
|y|<|x|

(
|x|2 − |y|2

)2α

|x − y|2n
dy

)
dx

) 1
2

≤ c1

(∫
Rn

|x|2αv2(x)
( ∫
|y|<|x|

|x − y|(α−n)2dy

)
dx

) 1
2

≤ c2

(∫
Rn

|x|4α−nv2(x)dx

) 1
2

= c2

( +∞∑
k=−∞

a2
k

) 1
2
,

where

ak =

⎛
⎜⎝ ∫

2k<|y|<2k+1

|x|4α−n v2(x)dx

⎞
⎟⎠

1/2

.

Moreover, using Theorem C we arrive at the following two-sided inequal-
ity:

c3‖v‖l∞(L2
4α−n(Rn)) ≤

∥∥Bα
+,v

∥∥
σ∞(L2(Rn))

≤ c4 ‖v‖l∞(L2
4α−n(Rn)).

By Proposition C we conclude that∥∥Bα
+,v

∥∥
σp(L2(Rn))

≤ c5 ‖v‖lp(L2
4α−n(Rn)) , 2 ≤ p < ∞.

Now we prove necessity. For this we take the orthonormal systems {fk}
and {gk} , where

fk(x) = χ{2k−2<|y|<2k−1}(x)2−(k−2)n/2 · λ− 1
2

n ,

gk(x) = χ{2k≤|y|<2k+1}(x) |x|2α−n
2 v(x)α

− 1
2

k ,

λn = (2n − 1)πn/2/Γ(n/2 + 1) and

αk =
∫

2k≤|x|<2k+1

v2(x) |x|4α−n dx.
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Then in view of Proposition B we have

∞ > ‖Bα
+,v‖σp(L2(Rn)) ≥ c6

(∑
k∈Z

(
α
−1/2
k

∫
2k<|x|<2k+1

v2(x)|x|2α−n
2

×
( ∫

2k−2<|y|<2k−1

(|x|2 − |y|2)α

|x − y|n 2−(k−2)n/2dy

)
dx

)p) 1
p

≥ c7

(∑
k∈Z

α
p/2
k

)1/p

= c7 ‖v‖lp(L2
4α−n(Rn))

which completes the proof.

The following result is also true:

Theorem 5. Let 2 ≤ p < ∞ and let α > n/2. Then Bα
+,v ∈ σp(L2(Rn))

if and only if

I(v, p, α) ≡
(∫

Rn

( ∫
|x|
2

<|y|<2|x|

v2(y)|y|4α−2ndy

)p/2

|x|np/2−ndx

) 1
p

< ∞.

Moreover,

c1I(v, p, α) ≤ ∥∥Bα
+,v

∥∥
σp(L2(Rn))

≤ c2I(v, p, α)

for some positive constants c1 and c2.

Proof. Taking into account Theorem 4, the statement will be proved if
we show that

‖v‖lp(L2
4α−n(Rn)) ≈ I(v, p, α).

Indeed, we have

‖v‖lp(L2
4α−n(Rn)) ≤

(∑
k∈Z

( ∫
2k<|x|<2k+1

v2(x)|x|4α−2ndx

)p/2

2(k+1)np/2

) 1
p

= b1

(∑
k∈Z

∫
2k<|y|<2k+1

|y|np/2−n

( ∫
|y|
2

<|x|<2|y|

v2(x)|x|4α−2ndx

)p/2

dy

)1/p
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= b1I(v, p, α).

The reverse inequality follows similarly.

Remark 2. Some results of this paper were announced in [11].
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