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CAPACITARY TYPE ESTIMATES IN

STRONGLY NONLINEAR POTENTIAL

THEORY AND APPLICATIONS

Noureddine AISSAOUI

Abstract

In this article a general result on smooth truncation of Riesz
and Bessel potentials in Orlicz-Sobolev spaces is given and a ca-
pacitary type estimate is presented. We construct also a space of
quasicontinuous functions and an alternative characterization of
this space and a description of its dual are established. For the
Riesz kernel Rm, we prove that operators of strong type (A, A),
are also of capacitaries strong and weak types (m, A).

1 Introduction

In this paper, we continue the development of the Potential Theory in
Orlicz spaces, called Strongly Nonlinear Potential Theory, studied in [6,
7, 8, 9, 10, 11].

We begin by establishing, in Theorem 3.5, a general result
on smooth truncation of Riesz and Bessel potentials in Orlicz-Sobolev
spaces WmLA(RN ) such that A and A∗ satisfy the Δ2 condition. This
result has been proven, in the framework of Lebesgue spaces, first by
V. G. Maz’ya for the first order type inequality using truncation in the
class W 1,p. For the Sobolev space W 2,p, Maz’ya used smooth truncation
to get the result. Later, D. R. Adams proved the same result for any
integer. After several intermediate stages, the result was proved in the
generality by K. Hansson.

As a consequence, by showing the equivalence of some capacities, we
obtain, in Theorem 3.7, the capacitary strong type estimates with the
aid of the norms defined on Orlicz spaces.
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On the other hand, for the Bessel capacity B′
m,A in the Orlicz space

LA, the natural question: “does the quantity
∫∞
0 B′

m,A ({x : |ψ| ≥ t}) dt

define a norm on a linear space of functions ψ on RN?”, leads us to
construct the space LA(B′

m,A) of quasicontinuous functions “integrable
with respect to capacity”, with the aid of the Orlicz space LA and the
capacity B′

m,A. We prove, for reflexive Orlicz spaces LA, that LA(B′
m,A)

contains the potential space Lm,A. We give in Theorem 4.6, for re-
flexive Orlicz spaces LA, a characterization of LA(B′

m,A) as the space
of quasicontinuous functions ψ which satisfy the following boundedness
condition:

∫∞
0 B′

m,A ({x : |ψ(x)| ≥ t}) dt < ∞. As a consequence, if the
potential space Lm,A is imbedded in a Banach space B which is partially
ordered in the sense that u, v ∈ B and |u(x)| ≤ |v(x)| everywhere implies
that ‖u‖B ≤ ‖v‖B for a norm of B, then B contains LA(B′

m,A).
We characterize also, in Theorem 4.8, the dual LA(B′

m,A)∗ of
LA(B′

m,A), when A verifies the Δ2 condition, as the space of measures
whose total variation belongs to the dual of the potential space Lm,A.

Finally, in the case of the Riesz kernel Rm, we prove in Proposition
5.1, that operators of strong type (A,A), are also of capacitary strong
type (m,A) if A and A∗ satisfy the Δ2 condition, and of capacitary weak
type (m,A) for any N-function A.

2 Preliminaries

2.1 Orlicz spaces

An N-function is a continuous convex and even function A defined on

R, verifying A(t) > 0 for t > 0, lim
t→0

A(t)
t

= 0 and lim
t→+∞

A(t)
t

= +∞.

We have the representation A(t) =
|t|∫
0

a(x)dx, where a : R+ → R+

is non-decreasing, right continuous, with a(0) = 0, a(t) > 0 for t > 0,
lim

t→0+
a(t) = 0 and lim

t→+∞a(t) = +∞.

The N-function A∗ conjugate to A is defined by A∗(t) =
|t|∫
0

a∗(x)dx,

where a∗ is given by a∗(s) = sup{t : a(t) ≤ s}.
Let A be an N-function and Ω an open set in RN . We note LA(Ω)

the set, called an Orlicz class, of measurable functions f , on Ω, such
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that

ρ(f,A,Ω) =
∫
Ω A(f(x))dx < ∞.

Let A and A∗ be two conjugate N-functions and let f be a measurable
function defined almost everywhere in Ω. The Orlicz norm of f , ||f ||A,Ω

or ||f ||A if there is no confusion, is defined by

||f ||A = sup
{∫

Ω |f(x)g(x)| dx : g ∈ LA∗(Ω) and ρ(g,A∗, Ω) ≤ 1
}

.

The set LA(Ω) of measurable functions f , such that ||f ||A < ∞ is
called an Orlicz space. When Ω = RN , we set LA in place of LA(RN ).

The Luxemburg norm |||f |||A,Ω or |||f |||A if there is no confusion, is
defined in LA(Ω) by

|||f |||A = inf
{

r > 0 :
∫
Ω A

(
f(x)

r

)
dx ≤ 1

}
.

Orlicz and Luxemburg norms are equivalent. More precisely, if f ∈
LA(Ω), then

|||f |||A ≤ ||f ||A ≤ 2|||f |||A.

Let A be an N-function. We say that A verifies the Δ2 condition if
there is a constant C > 0 such that A(2t) ≤ CA(t) for all t ≥ 0.

Recall that A verifies the Δ2 condition if and only if LA = LA.
Moreover LA is reflexive if and only if A and A∗ verify the Δ2 condition.

Note that if A verifies the Δ2 condition,
∫

A(fi(x))dx → 0 as i → ∞
if and only if |||fi|||A → 0 as i → ∞.

Let m ∈ N . The Orlicz-Sobolev space WmLA(Ω) is the space of
real functions f , such that f and its distributional derivatives up to the
order m, are in LA(Ω).

WmLA(Ω) is a Banach space equipped with the norm

|||f |||m,A =
∑

|i|≤m

|||Dif |||A, f ∈ WmLA(Ω).

Let W−mLA∗(Ω) denote the space of distributions on Ω, which can
be written as sums of derivatives up to the order m of functions in
LA∗(Ω). It is a Banach space under the usual quotient norm.
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If A and A∗ satisfy the Δ2 condition, the dual of WmLA(RN ) coin-
cides with W−mLA∗(RN ).

We recall the following results. Let A be an N-function and a its
derivative. Then, from [19], the following statements are equivalent

i) A verifies the Δ2 condition.
ii) ∀r > 1,∃k = k(r) : (∀t ≥ 0, A(rt) ≤ kA(t))
iii) ∃α > 1 : (∀t ≥ 0, ta(t) ≤ αA(t) )
iv)∃β > 1 : (∀t ≥ 0, ta∗(t) ≥ βA∗(t) )

v)∃d > 0 :
(
∀t ≥ 0,

(
A∗(t)

t

)′
≥ d

a∗(t)
t

)
.

Moreover α in iii) and β in iv) can be chosen such that α−1+β−1 = 1.
We note α(A) the smallest α such that iii) holds.
For more details on the theory of Orlicz spaces, see [5, 19, 20, 21,

23].

2.2 Capacity, Bessel potentials and Quasicontinuity

We define a capacity as an increasing positive set function C given on
a σ-additive class of sets Γ, which contains compact sets and such that
C(∅) = 0 and C(

⋃
i≥1

Xi) ≤
∑
i≥1

C(Xi) for Xi ∈ Γ, i = 1, 2, ... .

Let k be a positive and measurable function on RN and let A be an
N-function. For X ⊂ RN , we define

C ′
k,A(X) = inf{|||f |||A : f ∈ L+

A and k ∗ f ≥ 1 on X},
and

Ck,A(X) = A
(
C ′

k,A(X)
)

,

where k∗ f is the usual convolution and L+
A is the set of positive elements

in LA.
From [10] C ′

k,A is a capacity.
If a statement holds except on a set X where Ck,A(X) = 0, then

we say that the statement holds Ck,A−quasieverywhere (abbreviated
Ck,A − q.e. or (k, A) − q.e. if there is no confusion).

For m > 0, the Bessel kernel Gm is defined through its Fourier trans-

form F(Gm) as [F(Gm)] (x) = (2π)−
N
2

(
1 + |x|2

)−m
2 where [F(f)] (x) =

(2π)−
N
2
∫

f(y)e−ixydy for f ∈ L1.
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The Bessel kernel Gm is a positive and Lebesgue integrable function.
Moreover, for any r and s, Gr+s = Gr ∗ Gs.

For more details on Bessel kernels, see [12, 13, 24].
We note Rm(x) = |x|m−N the Riesz kernel.
We put Bm,A = CGm,A, B′

m,A = C ′
Gm,A, Rm,A = CRm,A and R′

m,A =
C ′
Rm,A.

Let A be an N-function and m ∈ R. We define the space of Bessel
potentials Lm,A by

Lm,A = {ψ = Gm ∗ f : f ∈ LA},

and a norm on Lm,A by

|||ψ|||m,A = |||f |||A if ψ = Gm ∗ f.

From [14] we know that if m ∈ N, then Lm,A = WmLA(RN ) with
equivalent norms.

Recall the following fact (see [19]) : If A verifies the Δ2 condition
and if F is a continuous linear functional over LA, then there is a unique
v ∈ LA∗ such that

F (u) = 〈u, v〉 =
∫

u(x)v(x)dx,∀u ∈ LA.

This implies, for A verifying the Δ2 condition, that (Lm,A)∗ =
L−m,A∗ . The proof is exactly the same as the one in [15] relative to
Lebesgue classes.

We recall the general definition of quasicontinuity.

Definition 2.1. Let C be a capacity on RN and let f be a function
defined C−q.e. on RN or on some open subset of RN . Then f is said
to be C−quasicontinuous if for every ε > 0, there is an open set O such
that C(O) < ε and f |Oc∈ C(Oc).

In other words, the restriction of f to the complement of O is con-
tinuous in the induced topology.

For Bessel capacity B′
m,A, we write (m,A)-quasicontinuous in place

of B′
m,A-quasicontinuous.

Recall the following result. See [9]
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Theorem 2.1. Let A be any N-function. Let f and g be two (m,A)-
quasicontinuous functions, m > 0. Suppose that f(x) = g(x) almost
everywhere. Then f(x) = g(x) (m,A)-quasieverywhere.

Note M = M(RN ) the vector space of Radon measures on RN . Then
any (m,A)-quasicontinuous function f is measurable with respect to any
μ ∈ M that is absolutely continuous with respect to (m,A)-capacity in
the sense that |μ| (E) = 0 for every Borel set E with Bm,A(E) = 0. In
fact, from Definition 2.1 and the Tietze extension theorem, it follows that
a quasicontinuous function is the pointwise limit of continuous functions
outside some Gδ set of (m, A)-capacity zero.

Thus
∫
RN fdμ is well defined as soon as

∫
RN |f |d |μ| < ∞. It follows

from Theorem 2.1 that
∫
RN fdμ =

∫
RN gdμ even if we only know that

f = g a.e., in addition to being quasicontinuous.
On the other hand, for any positive measure μ and any Borel set E,

we have for all f ∈ L+
A such that k ∗ f ≥ 1 on E,

μ(E) ≤ ∫
(Gm ∗ f)dμ ≤ ∫

(Gm ∗ μ).fdx ≤ |||f |||A.||Gm ∗ μ||A∗ .

Thus

μ(E) ≤ Bm,A(E).||Gm ∗ μ||A∗ .

Hence all (m,A)-quasicontinuous functions f are measurable with
respect to all μ such that |μ| ∈ (Lm,A)∗, (respectively |μ| ∈ L−m,A∗ if A
verifies the Δ2 condition) and equality (m,A)-quasieverywhere implies
equality μ-a.e.

We know also from [9] that if A verifies the Δ2 condition, then every
element in Lm,A has an (m,A)-quasicontinuous representative. Thus if
ψ ∈ Lm,A, there is f ∈ LA such that Gm ∗ f is (m,A)-quasicontinuous
and ψ = Gm ∗ f .

Hence, for any μ ∈ M(RN ) such that |μ| ∈ L−m,A∗ , we get∫
RN |ψ| d|μ| ≤ ∫

RN Gm ∗ |f | d|μ|

By Fubini’s Theorem∫
RN Gm ∗ |f | d|μ| =

∫
RN |f | .(Gm ∗ |μ|)dx.

Hölder inequality in Orlicz spaces gives
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∫
RN |f | .(Gm ∗ |μ|)dx ≤ |||f |||A.||Gm ∗ |μ| ||A∗ < ∞.

Hence
∫
RN |ψ| d|μ| < ∞.

We deduce for such measure, that ψ belongs to L1(|μ|), and that
Lm,A is continuously imbedded in L1(|μ|). Moreover, in this case the
duality between L−m,A∗ and Lm,A is given by

〈μ, ψ〉 =
∫
RN ψ dμ =

∫
RN (Gm ∗ μ).fdx.

This result is extended in Theorem 4.8 below.
Notice also that if μ ∈ M+(RN ) ∩ L−m,A∗ , then μ(E) = 0 for every

μ-measurable set E such that Bm,A(E) = 0.
In [7] we have extended this result to signed measures.
In this paper, the letter C will denote various constants which may

differ from one formula to the next one even within a single string of
estimates. We make no attempt to obtain the best values for these
constants.

3 A capacitary type estimate

In this section we begin with some lemmas

Lemma 3.1. Let A be an N-function, f ∈ LA and Ω a measurable set
in RN . Then

||f ||A,Ω = ||f.1Ω||A and |||f |||A,Ω = |||f.1Ω|||A.

Proof. We omit the proof.

Lemma 3.2 Let A be an N-function, f ∈ LA and (Ωj)j a sequence of
measurable sets such that Ωj ∩ Ωl = ∅ if j �= l. Then∑

j

||f ||A,Ωj ≤ ||f ||A, and
∑

j

|||f |||A,Ωj ≤ 4|||f |||A.

Proof. For ε > 0 and j ∈ N, there is ϕj such that∫
Ωj

A∗ (ϕj(x)) dx ≤ 1 and ||f ||A,Ωj ≤ ∫
Ωj

f.ϕj(x)dx + ε
2j .
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Define ψj = ϕj .1j . Then
∫

A∗ (ψj(x)) dx ≤ 1 and ||f ||A,Ωj ≤∫
f.ψj(x)dx + ε

2j .
Let ψ = supψj . Since A∗ is non decreasing, the Beppo-Levi Theorem

gives ∫
(A∗ ◦ ψ)(x)dx = lim

∫
(A∗ ◦ ψj)(x)dx ≤ 1.

Moreover
∑
j
||f ||A,Ωj ≤ ∑

j

∫
Ωj

f.ϕj(x)dx + ε ≤ ∫
f.ψ(x)dx + ε.

Hence
∑
j
||f ||A,Ωj ≤ ||f ||A.

The second inequality is a consequence of the equivalence between
Orlicz and Luxemburg norms.

Let M be the Hardy-Littlewood maximal operator. Recall the fol-
lowing Lemma..

Lemma 3.3. [9] Let A be any N-function. For all multiindices ξ such
that |ξ| < m < N, there is a constant C such that for all f ∈ LA and
for almost every x,∣∣∣Dξ(Gm ∗ f)(x)

∣∣∣ ≤ CMf(x)
|ξ|
m (Gm ∗ |f | (x))1−

|ξ|
m .

For Riesz kernel, we have the correspondent result which is very
simple to verify.

Lemma 3.4. Let A be any N-function. For all multi-indices ξ such that
|ξ| < m < N, there is a constant C such that for all f ∈ LA and for
almost every x,∣∣∣Dξ(Rm ∗ f)(x)

∣∣∣ ≤ CMf(x)
|ξ|
m (Rm ∗ |f | (x))1−

|ξ|
m .

Remark 3.1. From [8] we know that if A verifies the Δ2 condition
and if α = α (A) is such that m < N/α, then all non empty balls are
of strictly positive Rm,A capacity. Hence, the restriction m < N/α is
essential when working with Riesz capacity R′

m,A. Note that this is the
same restriction as in the case of Lp.

Theorem 3.5. Let A be an N-function such that A and A∗ verify the
Δ2 condition, α = α (A) and m is a positive integer. Let Tj∈Z be a
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doubly infinite sequence of Cm (R) functions identically zero for t < 0
with T ′

j having disjoints supports in (0,∞) and such that

sup
t>0

∣∣∣tk−1T
(k)
j (t)

∣∣∣ ≤ L < ∞, k = 0, 1, ...,m. (1)

Then for all f ∈ L+
A, there is a constant C depending only on

N, m, L and A such that∑
j

|||DβTj(Sm ∗ f)|||A ≤ C|||f |||A,

where β is a multi-index such that |β| = m, and Sm is either Gm if m is
a positive integer, or Rm if m is a positive integer such that m < N/α.

Proof. Let g = Sm ∗ f , and |β| = m. Then

Dβ (Tj ◦ g) =
m∑

k=1

T
(k)
j ◦ g

∑
cβDβ1g...Dβkg,

where the last sum is for the multi-indices {β1, ..., βk} such that β1 +
... + βk = β. The value of the coefficients cβ is of no importance.

Let Ωj be the support of T ′
j ◦ g. Then Ωj∩ Ωl = ∅ if j �= l.

By hypothesis
∣∣Dβ (Tj ◦ g)

∣∣ ≤ CL
m∑

k=1

g1−k
∑∣∣Dβ1g...Dβkg

∣∣ .1Ωj

For k > 1, we estimate these derivatives with the aid of the two
previous Lemmas. We get

∣∣Dβkg
∣∣1Ωj ≤ CMf(x)

|βk|
m (Sm ∗ |f | (x))1−

|βk|
m .1Ωj

Since
k∑

l=1

(
1 − βl

m

)
= k − |β|

m = k − 1, we obtain

m∑
k=2

g1−k
∑∣∣Dβ1g...Dβkg

∣∣1Ωj ≤ C
m∑

k=2

g1−k(Mf).gk−1 = C(Mf).1Ωj

By adding the term for k = 1, we get∣∣Dβ (Tj ◦ g)
∣∣ ≤ CL (Mf)1Ωj+

∣∣Dβg
∣∣ .1Ωj .

By Lemma 3.1
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|||(Mf)1Ωj |||A = |||Mf |||A,Ωj and |||(Dβg).1Ωj |||A = |||Dβg|||A,Ωj .

And by Lemma 3.2∑
j
|||Mf |||A,Ωj ≤ 4|||Mf |||A and

∑
j
|||Dβg|||A,Ωj ≤ 4|||Dβg|||A.

By [16], |||Mf |||A ≤ C|||f |||A, and from [14] we have |||Dβg|||A ≤
C|||f |||A.

This completes the proof.

Let m be a positive integer. We define for a compact set K in RN ,

Γm,A (K) =

inf

{ ∑
|β|=m

|||Dβg|||A : g ∈ D
(
RN

)
, g ≡ 1 in a neighborhood of K

}
.

We extend the definition of Γm,A to all the class of all subsets of RN

as an inner capacity. Hence for any X ⊂ RN , Γm,A (X) is defined as

Γm,A (X) = sup {Γm,A (K) : K compact and K ⊂ X} .

Since Γm,A is monotone, this definition agrees with our first one when
X is compact.

The Lp version of the following Lemma can be found in [1] and in
[4] .

Lemma 3.6. Let A be an N-function such that A and A∗ verify the
Δ2 condition, m a positive integer such that m < N/α. Then there is a
positive constant C such that

C−1R′
m,A (K) ≤ Γm,A (K) ≤ CR′

m,A (K) ,

for all compact K, C independent of K.

Proof. We adapt Adams proof in [1] relative to Lp Lebesgue spaces to
our case.

We begin by proving the first inequality. Let g ∈ D
(
RN

)
, g ≡ 1 in a

neighborhood of K. From [24] we have the representation for g ∈ D
(
RN

)
g(x) =

∑
|β|=m

cβKβ ∗ Dβg(x),
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where Kβ is the convolution operator Kβ1 ∗ ... ∗ KβN , β =
(
β1, ..., βN

)
,

Kβj is the convolution operator whose kernel is ω−1
N−1.xj |x|−N convoled

βj-times.

We get |g(x)| ≤ CRm ∗
( ∑

|β|=m

∣∣Dβg
∣∣) (x).

Set f = C

( ∑
|β|=m

∣∣Dβg
∣∣) . We have Rm ∗ f ≥ 1 on K and

R′
m,A (K) ≤ |||f |||A ≤ C

∑
|β|=m

|||Dβg|||A.

This implies the first inequality.
For the second inequality, we apply Theorem 3.5 for one J-function

defined by J(t) ≡ 0, for t ≤ 1/2, and J(t) ≡ 1, for t ≥ 1, and J ∈ C∞(R)
otherwise.

Let ϕ ∈ D
(
RN

)+ be such that suppϕ ⊂ B(0, 1) and
∫

ϕ(x)dx = 1.

Set ϕh(x) = h−Nϕ (x/h) , h > 0. Choose an open bounded set G ⊃
K and any f ∈ L+

A such that Rm ∗ f ≥ 1 on G.

Then for sufficiently small h, ϕh ∗ (Rm ∗ f) ≥ 1 on G1, where K ⊂
G1 ⊂ G, G1 an open with G1 ⊂ G.

Set g(x) = J ◦ (Rm ∗ (ϕh ∗ f))(x). Clearly g ∈ D
(
RN

)
and g ≡ 1 on

G1.

By Theorem 3.5

Γm,A (K) ≤ ∑
|β|=m

|||Dβg|||A ≤ C|||ϕh ∗ f |||A.

By [14 or 22], we know that |||ϕh ∗ f |||A ≤ ||ϕh||1.|||f |||A = |||f |||A.

Thus Γm,A (K) ≤ CR′
m,A (G), for all G ⊃ K.

From [10] , R′
m,A is an outer capacity, and the result follows.

For f ≥ 0, Rm ∗ f is lower semi-continuous. Hence the set Xt =
{x : Rm ∗ f ≥ t} is a Gδ-set and by [6] it is capacitable since A and
A∗ verify the Δ2 condition. Consequently, there is a positive constant,
independent of Xt, such that

C−1R′
m,A (Xt) ≤ Γm,A (Xt) ≤ CR′

m,A (Xt) .
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Remark 3.2. Let f ∈ D(RN ). Since Yt = {x : Gm ∗ f ≥ t} is a compact
set, we know from [8] that there is a positive constant C, independent
of Yt, such that

C−1R′
m,A (Yt) ≤ B′

m,A (Yt) ≤ CR′
m,A (Yt) .

Hence, there is a positive constant C, independent of Yt, such that

C−1
m,AΓ (Yt) ≤ B′

m,A (Yt) ≤ CΓm,A (Yt) .

Let Sm as above and set

S ′
m,A (X) = inf

{|||f |||A : f ∈ L+
A and Sm ∗ f ≥ 1 on X

}
.

Theorem 3.7. Let A be an N-function such that A and A∗ verify the
Δ2 condition and m a positive integer. Then there is a constant C
depending only on N , m and A such that for all f ∈ L+

A∫ ∞

0
S ′

m,A ({x : Sm ∗ f(x) ≥ t}) dt ≤ C|||f |||A.

Proof. Since A verifies the Δ2 condition, there is a sequence (fi)i ⊂
D(RN ) such that |||f − fi|||A → 0 as i → ∞. Hence

{x : Sm ∗ f(x) ≥ 2t} ⊂ {x : Sm ∗ |f − fi| (x) ≥ t}∪{x : Sm ∗ fi(x) ≥ t} .

Thus

S ′
m,A ({x : Sm ∗ f(x) ≥ 2t}) ≤ |||f−fi

t |||A + S ′
m,A ({x : Sm ∗ fi(x) ≥ t}) .

So

lim
i→∞

S ′
m,A ({x : Sm ∗ fi(x) ≥ t}) ≥ S ′

m,A ({x : Sm ∗ f(x) ≥ 2t}) .

This implies that it suffices to prove the theorem for f ∈ D(RN ).
But from Lemma 3.6 and Remark 3.2, it suffices to consider only

Γm,A in place of S ′
m,A.

Let g = Sm ∗ f. Then
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∞∫
0

Γm,A ({x : g(x) ≥ t}) dt =
+∞∑

k=−∞

2k+1∫
2k

Γm,A ({x : g(x) ≥ t}) dt

≤
+∞∑

k=−∞
Γm,A

({
x : g(x) ≥ 2k

})
2k.

Remark that
{
x : g(x) > 2k−1

}
is a neighborhood of the compact{

x : g(x) ≥ 2k
}

.
As in [1] define T (x) ≡ 0, for x ≤ 0, T (x) ≡ 1, for x ≥ 1, and

T ∈ C∞ (R) otherwise.
Let Tk (x) = 2kT

(
22−kx − 1

)
. Then

Tk ◦ g ∈ D(RN ) and 2−kTk ◦ g ≡ 1 on
{
x : g(x) > 2k−1

}
.

Hence
+∞∑

k=−∞
Γm,A

({
x : g(x) ≥ 2k

})
2k ≤

+∞∑
k=−∞

∑
|β|=m

|||Dβ (Tk ◦ g) |||A ≤
C|||f |||A

by Theorem 3.5, since the sequence (Tk)k∈Z verifies (1).

4 A space of quasicontinuous functions

This part is devoted to generalize some results in [2] and in [17] relative
to the Lp Lebesgue classes.

From Theorem 3.7, it is natural to seek when the quantity

∫ ∞

0
B′

m,A ({x : |ψ| ≥ t}) dt (2)

defines a norm on a linear space of functions ψ on RN . Although the
answer is not known in general, we shall show that (2) is equivalent to
a certain norm of ψ.

Definition 4.1. for ψ a function on RN , define for m > 0, Kψ and
Λm,A(ψ) as

Kψ =
{
f ∈ L+

A : Gm ∗ f(x) ≥ |ψ(x)| ,∀x ∈ RN
}

Λm,A(ψ) = inf {|||f |||A : f ∈ Kψ} .
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Proposition 4.1. Λm,A has the following properties

Λm,A(ψ1) ≤ Λm,A(ψ2), if |ψ1| ≤ |ψ2| ; (3)
Λm,A(χE) = B′

m,A(E), for all E;

Λm,A

(
ψ.χ(∪jKj)

)
≤

∑
j

Λm,A(ψ.χKj ).

Proof. The first two properties are immediate. For the last one we
proceed as in proof of subadditivity of B′

m,A. See [10] .
If

∑
j

Λm,A(ψ.χKj ) = +∞, there is nothing to prove.

Let
∑
j

Λm,A(ψ.χKj ) < ∞. Then Λm,A(ψ.χKj ) < ∞, for all j. Hence

∀ε > 0,∃fj ∈ L+
A: Gm ∗ fj ≥ ∣∣ψ.χKj (x)

∣∣ on RN and |||fj |||A ≤
Λm,A(ψ.χKj ) + ε

2j .
We pose f = sup

i
fi. Then from [10], |||f |||A ≤ ∑

j
|||fj |||A.

Hence |||f |||A ≤ ∑
j

Λm,A(ψ.χKj ) + ε.

This implies f ∈ L+
A. But Gm ∗ f ≥| ψ.χ(∪jKj) | on RN . Thus

Λm,A(ψ.χ(∪jKj)) ≤
∑
j

Λm,A(ψ.χKj ).

The proof is finished.

Proposition 4.2. 1. Let A be any N-function and m ∈ R+. The
function Λm,A defines a norm on C0 = C0(RN ), and

1
4
Λm,A(ψ) ≤

∫ ∞

0
B′

m,A ({x : |ψ(x)| ≥ t}) dt

for all continuous functions ψ.
2. Let A be an N-function such that A and A∗ verify the Δ2 condition

and m a positive integer. Then there is a constant C such that

1
4
Λm,A(ψ) ≤

∫ ∞

0
B′

m,A ({x : |ψ(x)| ≥ t}) dt ≤ CΛm,A(ψ)

for all continuous functions ψ.

Proof. 1 . If ψi ∈ C0 and fi ∈ Kψi
, for i = 1, 2, then f1 + f2 ∈ Kψ1+ψ2 ,

and thus
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Λm,A(ψ1 + ψ2) ≤ |||f1 + f2|||A ≤ |||f1|||A + |||f2|||A.

Hence

Λm,A(ψ1 + ψ2) ≤ Λm,A(ψ1) + Λm,A(ψ2).

It is obvious that Λm,A (0) = 0, and Λm,A(dψ) = |d|Λm,A(ψ).
Let ψ ∈ C0 be such that Λm,A(ψ) = 0. Then

∀ε > 0,∃f ∈ L+
A : Gm ∗ f ≥ |ψ(x)| ,∀x ∈ RN and |||f |||A ≤ ε.

Recall that |||Gm ∗ f |||A ≤ ||Gm||1.|||f |||A. See [14 or 22].
Since C0 ⊂ LA, we get |||ψ|||A ≤ |||Gm ∗ f |||A ≤ ||Gm||1.|||f |||A =

|||f |||A ≤ ε, and ψ ≡ 0.

This shows that Λm,A is a norm on C0.

Let j ∈Z and γ > 1. Set Kj =
{
x : γj ≤ |ψ(x)| ≤ γj+1

}
, and Ej ={

x : γj ≤ |ψ(x)|} .

From Proposition 4.1, it follows that

Λm,A(ψ) ≤ ∑
j∈Z

Λm,A(ψ.χKj ) ≤
∑
j∈Z

γj+1B′
m,A(Ej).

On the other hand

∫∞
0 B′

m,A ({x : |ψ(x)| ≥ t}) dt ≥ ∑
j∈Z

γj(1 − γ−1)B′
m,A(Ej).

Hence

Λm,A(ψ) ≤ γ2

γ − 1
∫∞
0 B′

m,A ({x : |ψ(x)| ≥ t}) dt.

The function h(γ) =
γ2

γ − 1
attains the minimum at γ = 2, and

h(2) = 4.

2. Let f ∈ Kψ. Then by Theorem 3.7, there is a constant C such
that

∫∞
0 B′

m,A ({x : |ψ(x)| ≥ t}) dt ≤ C|||f |||A.
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This completes the proof.

We define a new Banach space, LA(B′
m,A), as the completion of

D(RN ) in the norm Λm,A.

Lemma 4.3. Let A be an N-function such that A and A∗ verify the Δ2

condition and m a positive integer. Then Lm,A ⊂ LA(B′
m,A).

Proof. Let f ∈ LA and choose a sequence (fi)i ⊂ D(RN ) such that
|||fi − f |||A → 0 as i → ∞. Then by Proposition 4.2 and Theorem 3.7

Λm,A(Gm ∗ fi − Gm ∗ f) ≤
4
∫∞
0 B′

m,A ({x : Gm ∗ |fi(x) − f(x)| ≥ t}) dt ≤ C|||fi − f |||A.

Hence Gm ∗ fi − Gm ∗ f → 0 in LA(B′
m,A).

Define Gm,R(x) = Gm(x) for |x| ≤ R and Gm,R(x) = 0 for |x| > R.
Then Gm,R ∗ fi ∈ D(RN ) and

(Gm − Gm,R) ∗ |fi| (x) ≤ ‖fi‖∞
∫
|y|>R Gm(y)dy ↘ 0, as R → ∞.

This implies that Gm ∗ fi, and thus Gm ∗ f belongs to LA(B′
m,A).

Lemma 4.4. Let A be an N-function such that A and A∗ verify the Δ2

condition and m a positive integer. Any continuous compactly supported
function belongs on LA(B′

m,A).

Proof. Let f be such function. Then there is a sequence (fi)i ⊂ D(RN )
supported in a fixed ball such that (fi)i converges uniformly to f. Hence
by Lebegue’s Theorem,

∫
A(|f − fi| (x))dx → 0. Since A verifies the Δ2

condition, |||fi−f |||A → 0. But there is ϕ ∈ L+
A such that fi−f = Gm∗ϕ.

Hence

Λm,A(fi − f) ≤ |||ψ|||A = |||fi − f |||A.

The proof is complete.

Lemma 4.5. Let A be an N-function such that A and A∗ verify the Δ2

condition and m a positive integer. If ψ ∈ C is such that∫ ∞

0
B′

m,A ({x : |ψ(x)| ≥ t}) dt < ∞,

then ψ ∈ LA(B′
m,A).
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Proof. Let ψ ∈ C be such that
∫∞
0 B′

m,A ({x : |ψ(x)| ≥ t}) dt < ∞.

By Proposition 4.2 we have Λm,A(ψ) < ∞. So there is an f ∈ L+
A

such that Gm ∗ f ≥ |ψ(x)| on RN .

Let h ∈ C0 be arbitrary, and let η ∈ C0 be a cut off function such
that η(x) = 1 on supph, and 0 ≤ η ≤ 1. Thus ηψ ∈ C0, and (1−η)h = 0.

Hence |ψ(x) − η(x)ψ(x)| ≤ (1 − η(x)) |Gm ∗ f(x) − h(x)| .
Then from Proposition 4.1, Λm,A(ψ − ηψ) ≤ Λm,A(Gm ∗ f − h).
From Lemma 4.4, ηψ ∈ LA(B′

m,A).
So, for ε > 0, there is v ∈ D(RN ) such that Λm,A(v − ηψ) ≤ ε

2 .

And from Lemma 4.3, Gm ∗ f ∈ LA(B′
m,A).

So, there is h ∈ D(RN ) such that Λm,A(Gm ∗ f − h) ≤ ε
2 .

Now Λm,A(ψ − v) ≤ Λm,A(ψ − vψ) + Λm,A(v − ηψ) ≤ ε.

Theorem 4.6. Let A be an N-function such that A and A∗ verify the Δ2

condition and m a positive integer. Then a function ψ on RN belongs
to LA(B′

m,A) if and only if it is (m,A)-quasicontinuous, and

∫ ∞

0
B′

m,A ({x : |ψ(x)| ≥ t}) dt < ∞. (4)

Proof. Let ψ ∈ LA(B′
m,A). Then there is a sequence (ψi)i of continuous,

compactly supported functions such that

∫∞
0 B′

m,A ({x : |ψ(x) − ψi(x)| ≥ t}) dt ≤ 4−i.

This implies

B′
m,A

({
x : |ψ(x) − ψi(x)| ≥ 2−i

})
.2−i ≤ 4−i.

Hence

B′
m,A

({
x : |ψ(x) − ψi(x)| ≥ 2−i

}) ≤ 2−i.

Since B′
m,A is an outer capacity (see[10]), there is an open set such

that

Oi ⊃
{
x : |ψ(x) − ψi(x)| ≥ 2−i

}
and B′

m,A(Oi) ≤ 2−i+1.
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Pose O =
∞⋃

i=k

Oi. Then B′
m,A(O) ≤

∞∑
i=k

B′
m,A(Oi) ≤ 2−k+2.

Moreover ψi(x) → ψ(x) uniformly on Oc, and k is arbitrary. Thus
ψ is (m,A)-quasicontinuous on RN .

Let ψ be an (m,A)-quasicontinuous function that satisfies (4). We
can assume that ψ is real valued. Define, for R > 0, ψR by ψR(x) = ψ(x)
when |ψ(x)| ≤ R, ψR(x) = R when ψ(x) > R, and ψR(x) = −R when
ψ(x) < −R. Then ψR is also quasicontinuous, and

∫∞
0 B′

m,A ({x : |ψ(x) − ψR(x)| ≥ t}) dt =∫∞
0 B′

m,A ({x : |ψ(x)| ≥ R + t}) dt

≤ ∫∞
R B′

m,A ({x : |ψ(x)| ≥ t}) dt,

which is arbitrarily small.
Since ψR is quasicontinuous, for ε > 0, we can find an open set O

with B′
m,A(O) < ε such that ψR restricted to Oc is continuous. By

the Tietze extension theorem there is a continuous function ϕ such that
ϕ|Oc = ψR|Oc and ‖ ϕ‖∞ ≤ R. Then

∫∞
0 B′

m,A ({x : |ϕ(x) − ψR(x)| ≥ t}) dt ≤ 2RB′
m,A(O) < 2Rε,

and the proof is finished.

Corollary 4.7 Let A and m be as in the previous theorem. If ψ ∈
LA(B′

m,A), and if ϕ is an (m,A)-quasicontinuous function such that
|ϕ| ≤ |ψ| a.e., then

ϕ ∈ LA(B′
m,A), and ‖ϕ‖LA(B′

m,A) ≤ ‖ψ‖LA(B′
m,A).

Moreover, if Lm,A is imbedded in a Banach space B such that ‖.‖B

is monotone in the sense that ‖u‖B ≤ ‖v‖B for all u and v such that
|u(x)| ≤ |v(x)| everywhere, then B contains LA(B′

m,A).

Proof. By [9] the assumptions imply that |ϕ| ≤ |ψ| (m,A)-q.e. It
follows that ϕ verifies (4), and thus ϕ ∈ LA(B′

m,A). An easy extension
of (3) gives the norm inequality.

For the second part, suppose that ‖u‖B ≤ C‖u‖m,A for all v ∈ Lm,A.
Let v ∈ D(RN ). Then ‖v‖B ≤ ‖Gm ∗ f‖B ≤ C‖Gm ∗ f‖B = C|||f |||A for
all f ∈ Kv. Hence ‖v‖B ≤ CΛm,A(v).

Since LA(B′
m,A) is the closure of D(RN ), the conclusion follows.

We describe now the dual space to LA(B′
m,A).
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Theorem 4.8. Let A be an N-function such that A verifies the Δ2

condition and m > 0. Then the dual space LA(B′
m,A)∗ can be identified

with the space of all μ ∈ M(RN ) such that Gm ∗ |μ| ∈ LA∗ . If ψ ∈
LA(B′

m,A) and μ ∈ LA(B′
m,A)∗, then ψ ∈ L1(|μ|), and the duality is

given by

〈μ, ψ〉 =
∫

RN

ψdμ.

Moreover, the norm of μ in LA(B′
m,A)∗ is ||Gm ∗ |μ| ||A∗ .

Proof. Let μ ∈ M(RN ) be such that ||Gm ∗ |μ| ||A∗ < ∞ , and ψ ∈ C0.
Let f ∈ Kψ. Then

∫
RN |ψ| d |μ| ≤ ∫

RN (Gm ∗ f) d |μ| =
∫
RN f(Gm ∗ |μ|) d x ≤

|||f |||A.||Gm ∗ |μ| ||A∗ .

Hence
∫
RN |ψ| d |μ| ≤ Λm,A(ψ).||Gm ∗ |μ| ||A∗ .

This implies that any Cauchy sequence in LA(B′
m,A) is Cauchy in

L1(|μ|) and thus LA(B′
m,A) ⊂ L1(|μ|) since LA(B′

m,A) is the completion
of C0. Moreover

∫
RN ψdμ ≤ |||f |||A.||Gm ∗ |μ| ||A∗ ,

so μ defines a linear functional on LA(B′
m,A) with norm ‖μ‖ ≤

||Gm ∗ |μ| ||A∗ .
Conversely, consider μ : ψ �→ 〈μ, ψ〉 a bounded linear functional on

LA(B′
m,A) with norm ‖μ‖. Let K be a compact set, and let χ ∈ C0

such that 0 ≤ χ ≤ 1, and χ|K = 1. Then for any ψ ∈ C0(K) we have
|ψ| ≤‖ ψ‖∞.χ, and thus

|〈μ, ψ〉| ≤ ‖μ‖.Λm,A(ψ) ≤ ‖μ‖. ||ψ||∞ .Λm,A(χ).

This implies that μ is a bounded linear functional on C0(K) for each
compact K. By the Riesz representation theorem, μ can be identified
with a Radon measure so that 〈μ, ψ〉 =

∫
RN ψdμ for all ψ ∈ C0. It only

remains to prove that ||Gm∗|μ| ||A∗ ≤ ‖μ‖ since C0 is dense in LA(B′
m,A).

We have
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∫
RN ψd |μ| = sup

{∫
RN ϕdμ : ϕ ∈ C0, |ϕ| ≤ ψ

}
.

By assumption
∣∣∫

RN ϕdμ
∣∣ ≤ ‖μ‖.Λm,A(ϕ), and thus

∫
RN ψd |μ| ≤

‖μ‖.Λm,A(ψ) for all positive ψ in C0.
By approximation from below, here C0 is dense in LA because A

verifies the Δ2 condition, it follows that for all f ∈ L+
A∫

RN f(Gm ∗ |μ|) d x =
∫
RN f(Gm ∗ |μ|) d x ≤ ‖μ‖.Λm,A(Gm ∗ f)) ≤

‖μ‖.|||f |||A.

But we know that

||Gm ∗ |μ| ||A∗ = sup
{∫

RN

f(Gm ∗ |μ|) d x : |||f |||A ≤ 1
}

,

so

||Gm ∗ |μ| ||A∗ ≤ ‖μ‖.

This completes the proof.

5 Maximal operators and capacity

Let (θj)j be a sequence of convolution operators. Define the maximal
operator J by J(f) = supj |θj ∗ f |, where f is initially taken to be in
the Schwarz class of rapidly decreasing C∞ functions on RN denoted by
S = S(RN ).

An operator H : LA → LA is of strong type (A, A) if

|||H(f)|||A ≤ C|||f |||A, ∀f ∈ LA,

where C is a constant dependent only on A.
For more details, see [25].

Definition 5.1. An operator H : LA → LA is of capacitary weak type
(A, A) if

∀f ∈ LA,∀t > 0, R′
m,A ({x : H(Rm ∗ f)(x) ≥ t}) ≤ CA

|||f |||A
t

,

where CA is a constant dependent only on N , m and A.
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H is of capacitary strong type (m, A) if

∀f ∈ LA,

∫ ∞

0
R′

m,A ({x : H(Rm ∗ f)(x) ≥ t}) dt ≤ C|||f |||A,

where C is a constant dependent only on N , m and A.

Proposition 5.1. 1. Let A be an N-function such that A and A∗

verify the Δ2 condition, α = α (A) and m is a positive integer such that
m < N/α. If J is of strong type (A, A ), then it is also of capacitary
strong type (m, A).

2. Let A be any N-function. If J is of strong type (A, A) and
0 < m < N, then it is also of capacitary weak type (m,A).

Proof. Let f ∈ S. Then θj ∗ (Rm ∗ f) = Rm ∗ (θj ∗ f).
This implies J(Rm ∗ f) ≤ Rm ∗ (J(f)).
By Theorem 3.7,

∫∞
0 R′

m,A({x : J(Rm ∗ f)(x) ≥ t})dt ≤ C|||J(f)|||A ≤ C|||f |||A.

For the second statement, we have the obvious inequality

R′
m,A({x : Rm ∗ f(x) ≥ t}) ≤ |||f |||A

t
.

Hence

R′
m,A({x : J(Rm ∗ f)(x) ≥ t}) ≤ C

|||f |||A
t

.

The proof is finished.

6 Some open questions

1. The first natural question is: whether or not Theorem 3.7 is valid
for m ∈ R+.

2. We recall the definition of radially decreasing convolution kernel.
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Definition 6.1. A function g defined on RN × RN is a radially de-
creasing convolution kernel if g(x, y) = g0(|x − y|), where g0 is a posi-
tive lower semicontinuous, non-increasing function on R+ and such that∫ 1
0 g0(t)tN−1dt < ∞.

As in Lebesgue case, can Theorem 3.7 be extended to radially de-
creasing convolution kernels?

3. For Lp Lebesgue case, we have the obvious capacitary weak in-
equality

Sm,p ({x : Sm ∗ f(x) ≥ t}) ≤
( ||f ||p

t

)p

=
||f ||pp

tp
.

Here Sm,p(X) = inf
{||f ||pp : f ∈ L+

p and Sm ∗ f ≥ 1 on X
}

Hence

Sm,p ({x : Sm ∗ f(x) ≥ t}) .tp ≤ ||f ||pp.

And we know the following stronger version of Theorem 3.7
∫∞
0 Sm,p ({x : Sm ∗ f(x) ≥ t}) dtp ≤ C||f ||pp.

For Orlicz case, we have the obvious capacitary weak inequality

Sm,A ({x : Sm ∗ f(x) ≥ t}) ≤ A

( |||f |||A
t

)
.

Then the question is: whether or not the following stronger version
of Theorem 3.7 holds

∫∞
0 Sm,A ({x : Sm ∗ f(x) ≥ t}) dA(t) ≤ CA(|||f |||A).

Here dA(t) = a(t)dt, and Sm,A(X) = A(S ′
m,A (X)).
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