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STRONG PROXIMINALITY AND

POLYHEDRAL SPACES

G. GODEFROY and V. INDUMATHI

Abstract

In any dual space X∗, the set QP of quasi-polyhedral points is
contained in the set SSD of points of strong subdifferentiability of
the norm which is itself contained in the set NA of norm attaining
functionals. We show that NA and SSD coincide if and only if
every proximinal hyperplane of X is strongly proximinal, and that
if QP and NA coincide then every finite codimensional proximi-
nal subspace of X is strongly proximinal. Natural examples and
applications are provided.

0 Introduction

Let X be a Banach space and Y be a finite codimensional closed subspace
of X. Pick a vector x ∈ X and ε > 0. It follows from the definition of the
distance d(x, Y ) from x to Y that there exists y ∈ Y such that ‖ x−y ‖ ≤
d(x, Y )+ ε. When is it so that such a “nearly best approximant” of x in
Y is necessarily close to an actual best approximant? If this takes place
for every x ∈ X, the space Y has to be proximinal, but the converse fails.
Let us say that Y is strongly proximinal if this condition holds (definition
2.1). We study in this work the class of Banach spaces for which every
finite codimensional proximinal subspace is strongly proximinal. Quite
surprisingly, this class turns out to contain many natural examples of
spaces which are non-reflexive and non strictly convex, and among them
certain polyhedral spaces. Good selections of metric projections (that
is, first Baire class or continuous ones) are also investigated.

We now turn to a detailed description of our results. Section 1 is
devoted to strong sub-differentiability (in short, S.S.D.) in dual spaces.
Lemma 1.1. explains how to find S.S.D. points of X∗ through the predual
X. The more technical section 2 provides a characterization (Theorem
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2.5) of finite codimensional strongly proximinal subspaces among prox-
iminal ones. It follows for instance that if X is reflexive and f ∈ X∗ is
a point of Gâteaux smoothness but not of Fréchet smoothness, then the
corresponding hyperplane is not strongly proximinal. Spaces in which
every proximinal hyperplane is strongly proximinal are characterized
(Proposition 2.6). Quasi-polyhedral points (in short, (QP)-points) in
dual spaces are used in section 3 to formulate a sufficient condition for
the equivalence between proximinality and its strong version, which is
our main result (Theorem 3.4). The proof relies on the results from sec-
tions 1 and 2. A recent result of Fonf and Lindenstrauss ([F-L]) shows
that this theorem applies in particular to every subspace of a polyhedral
predual of l1(N). Section 4 is devoted to selectors of the metric pro-
jection. Jayne-Rogers selection theorem shows that a first Baire class
selector exists when strong proximinality holds (Proposition 4.2) while
Michael’s theorem shows through a different argument that a continuous
selector exists when the orthogonal space is polyhedral (Proposition 4.5).
Therefore, continuous selectors exist under the assumptions of Theorem
3.4.

Notations.
We denote by X a real normed linear space and X∗ its dual. The

closed unit ball of X, {x ∈ X :‖ x ‖≤ 1}, is denoted by BX and the unit
sphere, {x ∈ X :‖ x ‖= 1}, by SX . If Y is a closed subspace of X, the
annihilator space Y ⊥ is given by

Y ⊥ = {f ∈ X∗ : f(y) = 0 ∀ y ∈ Y }.
If A is a closed subset of X and x ∈ X, d(x,A) denotes the distance
infa∈A ‖ x−a ‖ of x from the set A. For x ∈ X, the set of nearest points
to x from Y is given by

PY (x) = {y ∈ Y :‖ x − y ‖ = d(x, Y )}
and for ε > 0 , we set

PY (x, ε) = {y ∈ Y :‖ x − y ‖ < d(x, Y ) + ε}.
Subspaces are always assumed to be closed in the norm topology. We
recall that a subspace Y of X is said to be proximinal if PY (x) �= ∅ for
all x ∈ X.
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For x ∈ X and f ∈ X∗, we set

JX∗(x) = {f ∈ SX∗ : f(x) = ‖ x ‖}
and

JX(f) = {x ∈ SX : f(x) = ‖ f ‖} (1)

We say f ∈ SX∗ is in NA1 if JX(f) �= ∅, and we define

NA = {0} ∪ {f ∈ X∗ :
f

‖ f ‖ ∈ NA1}

It is clear that NA coincide with the set of all elements of X∗ which
attain their norm. A subset B of SX∗ is called a boundary for X if
for all x ∈ SX , B ∩ JX∗(x) �= ∅. We denote by B′ the set of weak*
accumulation points of B.

The following notations will be used in section 2. Given a set of
linearly independent functionals f1, · · · , fn of X∗, we define the following
sets and numbers as in [I]. Having defined JX(f1) by (1), we inductively
define for 2 ≤ i ≤ n,

JX(f1, f2 · · · fi) = {x ∈ JX(f1, · · · fi−1) : fi(x) = sup
x′ ∈JX(f1···fi−1)

fi(x′)}

We set
M(f1) =‖ f1 ‖= Ñ(f1)

and for ε > 0,

JX(f1, ε) = { x ∈ BX : f1(x) > ‖ f1 ‖ −ε}
Again, for 2 ≤ i ≤ n, we inductively define

M(f1 · · · fi) = sup{fi(x) : x ∈ JX(f1 · · · fi−1)}
Ñ(f1 · · · fi, ε) = sup{fi(x) : x ∈ JX(f1 · · · fi−1, ε) }

Ñ(f1 · · · fi) = inf
ε>0

Ñ(f1 · · · fi, ε)

and finally

JX(f1 · · · fi, ε) = {x ∈ JX(f1 · · · fi−1, ε) : fi(x) > Ñ(f1 · · · fi) − ε}

Other notations are classical and can be found e.g. in [L-T].
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1 Strong sub-differentiability in dual spaces

Let X be a Banach space. A norm ‖ . ‖ on X is said to be strongly
sub-differentiable (SSD) at x (See [F-P], [G-M-Z]) if the one-sided limit

limt→0+ 1/t (‖ x + th ‖ − ‖ x ‖)
exists uniformly in h ∈ SX . In theorem 3.3 from [F-P], it is shown that

f ∈ SX∗ , ‖ . ‖X∗ SSD atf ⇒ f ∈ NA1.

In fact, more is true. The following Lemma provides a crucial link
between the strong sub-differentiability of dual norms and strong prox-
iminality, as defined in Section 2 below.

Lemma 1.1. Let X be a Banach space and f ∈ SX∗. Then the following
are equivalent.

1. The dual norm ‖ . ‖X∗ is SSD at f .

2. We have f ∈ NA1 and for all ε > 0, there exists δ > 0 such that

f(x) > 1 − δ ⇒ d(x, JX(f)) < ε.

Proof. First we show that 2) implies 1). In Theorem 1.2 of [F-P] it is
shown that ‖ . ‖X∗ is SSD at f if and only if given ε > 0, there exists
δ > 0 such that

y ∈ BX∗∗ , y(f) > 1 − δ ⇒ d(y, JX∗∗(f)) < ε.

If 1) does not hold then there is a sequence (yn) ⊆ BX∗∗ and ε > 0 such
that limn→∞ yn(f) = 1 but yn /∈ Cε for all n, where Cε = JX∗∗(f) +
ε BX∗∗ . Now the set Cε is weak* compact and so is weak*closed. Now us-
ing weak* density of BX in BX∗∗ ,we get a sequence xn ∈ BX ∩ (X∗∗\Cε)
for all n and limn→∞ f(xn) = 1. Clearly this contradicts 2).
We now prove that 1) implies 2). Given ε > 0 let δ > 0 be such that

y ∈ BX∗∗ , y(f) > 1 − δ ⇒ d(y, JX∗∗(f)) <
ε

2
.

Select any x ∈ BX with f(x) > 1− δ and t ∈ JX∗∗(f) with ‖ x− t ‖< ε
2 .

Pick (xα) ⊂ BX with (xα) converging weak* to t.
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Fact. For any δ1 > 0, there exists c ∈ conv(xα) ⊂ BX with ‖ x−c ‖< ε
2

and f(c) > 1 − δ1.

Indeed, without loss of generality, f(xα) > 1 − δ1 for all α. If
‖ x − c ‖≥ ε

2 for all c ∈ conv(xα), there exists h ∈ BX∗ such that if c ∈
conv(xα),

h(x − c) ≥ 1
2
(‖ x − t ‖ +

ε

2
)

and thus h(x − t) >‖ x − t ‖ which gives a contradiction.
Choosing properly δ1 > 0 we find x1 ∈ BX such that ‖ x − x1 ‖< ε

2
and d(x1, JX∗∗(f)) < ε

4 .
Following the same steps,we construct inductively a sequence (xn)n≥1

in BX such that

‖ xn − xn+1 ‖< ε

2n+1
; d(xn, JX∗∗(f)) <

ε

2n+1

Clearly
x∞ = lim

n→∞xn ∈ X ∩ JX∗∗(f) = JX(f)

and ‖ x − x∞ ‖< ε.

Remarks 1.2. 1) It is clear from the above proof that for every x ∈ BX ,
d(x, JX∗∗(f)) = d(x, JX(f)).
2) It is easy to see that

JX
w∗(f) ⊆ JX∗∗(f).

In general, this inclusion is strict even if f ∈ NA1: consider for instance
the space X = (l1(N), ‖ . ‖1) and f = (1, (1 − 1

n)n≥2) ∈ X∗. However if
‖ . ‖X∗ is SSD at f , then

JX
w∗(f) = JX∗∗(f)

Indeed, pick t ∈ JX∗∗(f). There is (xα) ⊆ BX such that t = w∗ lim(xα).
Since lim f(xα) = 1 there is yα ∈ JX(f) such that lim ‖ xα − yα ‖= 0,
and then t = w∗ lim (yα).
3) When a dual norm is SSD at f , then in general JX(f) is a strict subset
of JX∗∗(f), and thus Lemma 1.1 is not a consequence of Theorem 1.2 in
[F-P]. A simple example is provided by any f ∈ l1 with finite support
(see [G-I]).
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2 Strong proximinality

The following terminology is motivated by the well-known notion of
“strong minimum” in optimization theory. To the best of our knowledge,
the corresponding notion of “strong proximinality” has not been given
a name so far. Hence we state:

Definition 2.1. Let X be a Banach space and Y be a proximinal sub-
space of X. Then Y is said to be strongly proximinal if for every x ∈ X
and every δ > 0, there is ε > 0 such that d(y, PY (x)) < δ for all
y ∈ PY (x, ε).

Remark 2.2. Ka Sing Lau [K] defined the notion of “local uniform
proximinality” as follows. For a closed subspace Y of a normed linear
space X and x ∈ X, set Yx = Y + sp(x) and for ε > 0 denote

α(x, ε) = inf{r > 0 : (1 + ε)BX ∩ (BYx + Y ) ⊆ BX + rBY }.
Then the subspace Y is said to be locally U-proximinal if for each x ∈ X,
one has limε→0 α(x, ε) = 0. It is shown in [K] that locally U-proximinal
subspaces are proximinal. It is easily verified that for x ∈ X with
d(x, Y ) = 1 and any ε > 0,

sup{d(y, PY (x)) : y ∈ PY (x, ε)} ≤ α(x, ε)

and therefore local U-proximinality implies strong proximinality. We do
not have a example showing that the converse implication fails.

We now proceed to find conditions for strong proximinality. We use
the following notation. Let Y be a proximinal subspace of X, let x ∈ X
and ε > 0. We denote

QY (x) = x − PY (x); QY (x, ε) = x − PY (x, ε)

and
RY (x, ε) =

1
1 + ε

QY (x, ε)

It is easy to see that if Y is proximinal then with this notation one has
Y is strongly proximinal

⇔ lim
ε→0

sup{d(y, PY (x)) : y ∈ PY (x, ε)} = 0

⇔ lim
ε→0

sup{d(y, QY (x)) : y ∈ QY (x, ε)} = 0 (2)

⇔ lim
ε→0

sup{d(y, QY (x)) : y ∈ RY (x, ε)} = 0
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and each of the last three conditions in the above equivalence hold for
all x ∈ X if it holds for every x ∈ X with ‖ x ‖= 1 = d(x, Y ).
If x ∈ X satisfies ‖ x ‖= 1 = d(x, Y ) then

QY (x) = {y ∈ X :‖ y ‖= 1 and f(y) = f(x) ∀ f ∈ Y ⊥}

QY (x, ε) = {y ∈ X :‖ y ‖≤ 1 + ε and f(y) = f(x) ∀ f ∈ Y ⊥}

and therefore

RY (x, ε) ⊆ {y ∈ BX : |f(y) − f(x)| < ε ∀ f ∈ BY ⊥} (3)

Let us gather these observations in the following

Fact. A proximinal subspace Y of finite codimension in X is strongly
proximinal if and only if for any x ∈ X with ‖ x ‖= 1 = d(x, Y ) and
ε > 0 , there exists δ > 0 such that if y ∈ BX and |f(y) − f(x)| < δ for
all f ∈ BY ⊥ , then there exists z ∈ BX with x− z ∈ Y and ‖ y − z ‖< ε.

Clearly sufficiency follows easily from (2) and (3). To see the neces-
sity, we observe that given ε > 0, by (2), there exists η > 0 such that
η < ε

2 and

v ∈ QY (x, η) ⇒ d(v,QY (x)) <
ε

2
. (4)

Now since (X/Y )∗ is isometric to Y ⊥, we find δ > 0 such that if y ∈ BX

and |f(y) − f(x)| < δ for all f ∈ BY ⊥ , then there exists w ∈ X with
‖ w ‖< η and f(w) = f(x − y) for all f ∈ Y ⊥.

Then v = y + w ∈ QY (x, η) and (4) concludes the proof of the Fact.

Now a formal verification provides the following equivalent formulations
of strong proximinality for a proximinal subspace Y of finite codimension
n.

Proposition 2.3. Let X be a Banach space and Y be a proximinal
subspace of finite codimension n in X. Then the following are equivalent:

1. Y is strongly proximinal.

2. For any x ∈ X with ‖ x ‖= 1 = d(x, Y ) and every basis f1, · · · , fn

of Y ⊥, given ε > 0 , there exists δ > 0 such that if y ∈ BX and
|fi(y) − fi(x)| < δ for 1 ≤ i ≤ n, then there exists z ∈ BX with

x − z ∈ Y and ‖ y − z ‖< ε. (5)
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3. For any x ∈ X with ‖ x ‖= 1 = d(x, Y ), there is a basis f1, · · · , fn

of Y ⊥ such that given ε > 0 , there exists δ > 0 for which (5)
holds.

4. For any x ∈ X with ‖ x ‖= 1 = d(x, Y ) and ε > 0 , there exists
δ > 0 such that if y ∈ BX and ‖ x − y + Y ‖< δ, then there exists
z ∈ BX with x − z ∈ Y and ‖ y − z ‖< ε.

We now proceed to derive a simpler characterization of strongly prox-
iminal subspaces of finite codimension. We first recall a characterization
of proximinal subspaces of finite codimension from [I], where a slightly
different notation is used.

Theorem [I]. Let X be a normed linear space and Y be a closed subspace
of codimension n in X. Then Y is proximinal in X if and only if for
every basis f1, · · · , fn of Y ⊥

1. JX(f1, · · · , fi) �= ∅ for 1 ≤ i ≤ n.

2. Ñ(f1, · · · , fi) = M(f1, · · · , fi) for 1 ≤ i ≤ n.

We now seek extra conditions under which a proximinal subspace of
finite codimension becomes strongly proximinal, and thus under which
minimizing sequences of “approximate” nearest points can be used for
locating actual nearest points. This querry will eventually lead us to
our main result (Theorem 3.4).

If x ∈ BX with x|Y ⊥ in ext(S(Y ⊥)∗), then x ∈ JX(f1, · · · , fn) for a
suitable basis f1, · · · , fn of Y ⊥, hence {x|Y ⊥} = JX(f1, · · · , fn)|Y ⊥ . In
this case, if

lim
ε→0

sup{d(y, JX(f1, · · · , fn)) : y ∈ JX(f1, · · · , fn, ε)} = 0

then clearly condition 3) of Proposition 2.3 holds for x. If x|Y ⊥ is not in
ext(S(Y ⊥)∗),we need an alternate condition to replace ”x ∈ JX(f1, · · · , fn)”
and hence we need the following result. It is very likely that this simple
proposition is already known.

Proposition 2.4. Let E be a n-dimensional normed linear space and
x0 ∈ SE\ext(BE). Let F be the minimal extremal subset of SE to which
x0 belongs. If F = JE(f1, · · · , fl), l < n, for a suitable set of linearly in-
dependent functionals f1, · · · , fl of E∗, the set f1, · · · , fl can be extended
to a basis f1, · · · , fn of E∗ such that
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inf{fi(x) : fj(x0) = fj(x) for 1 ≤ j ≤ i − 1} < fi(x0) <

sup{fi(x) : fj(x0) = fj(x) for 1 ≤ j ≤ i − 1} for i = l + 1, · · · , n. (6)

Proof. Choose any fl+1 ∈ E∗ such that f1, · · · , fl+1 is a linearly in-
dependent subset of E∗. Clearly, by assumption, x0 /∈ JX(f1, · · · , fl+1)
and x0 /∈ JX(f1, · · · ,−fl+1). Thus (6) is satisfied for i = l + 1. Assume
inductively that (6) is satisfied up to i, for some i, l+1 ≤ i ≤ n. If i = n
there is nothing to prove. Assume l + 1 ≤ i < n. We now proceed to
get fi+1 ∈ E∗ so that f1, · · · , fi+1 is a linearly independent set and (6)
holds when i is replaced by i + 1.

Let r.bd and r.int denote relative boundary and relative interior re-
spectively. Set

L = ∩i
j=1 {x ∈ E : fj(x) = fj(x0)}.

Then L = H + x0 where H = ∩i
j=1Kerfj . We have L∩ r.bd F �= ∅.

Pick any z ∈ L∩ r.bd F . Then z ∈ SE and by theorem 18.2 in [R],
z ∈ r.int G, where G is a face of BE . Also, z ∈ r.bd F ⊆ F and F is
extremal. Hence G is a proper subset F and dim G < dim F . So, there
exists fi+1 ∈ E∗ such that JX(f1, . . . , fl, fi+1) is a proper subset of F
and G ⊆ JX(f1, . . . , fl, fi+1). Clearly

fi+1(x0) < sup
x∈F∩L

fi+1(x) = fi+1(z)

as F is the minimal face to which x0 belongs. With z ∈ L, the above
inequality implies that the functionals f1, · · · , fi, fi+1 form a linearly
independent set.

We now verify that fi+1(x0) > infy∈F∩L fi+1(y). We have x0 ∈
r.intF . For otherwise, as before, using again Theorem18.2 from [R], we
can conclude that xo sits in a face of BE strictly contained in F .

Let l be the line passing through x0 and z and get w in l∩F such that
x0 = λz + (1 − λ)w for some λ, 0 < λ < 1. Clearly fi+1(x0) < fi+1(z)
now implies

inf
y∈F∩L

fi+1(y) ≤ fi+1(w) < fi+1(x0)
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and this completes the proof.

We can now state and prove a technical but usable characterization
of strongly proximinal subspaces of finite codimension.

Theorem 2.5. Let X be a normed linear space and Y be a proximinal
subspace of finite codimension n in X. Then Y is strongly proximinal if
and only if for every basis f1, · · · , fn of Y ⊥

lim
ε→0

[sup{d(x, JX(f1, · · · , fi) : x ∈ JX(f1, · · · , fi, ε)}] = 0

for 1 ≤ i ≤ n.

Proof. We first prove necessity. Consider any basis f1, · · · , fn of Y ⊥.
Fix i ∈ {1, 2, · · · , n} and let η > 0 be given. It suffices to show that
there exists ε > 0 such that

y ∈ JX(f1, · · · , fi, ε) ⇒ ∃ z ∈ JX(f1, · · · , fi)with ‖ y − z ‖< η.

By condition 4) of Proposition 2.3, given x ∈ X with ‖ x ‖= 1 = d(x, Y )
and η > 0 there exists δ > 0 such that

y ∈ BX , ‖ x − y + Y ‖< δ ⇒ ∃ z ∈ BX with ‖ y − z ‖< η (7)
and x − z ∈ Y.

Since Y is of finite codimension, given δ > 0 we can get ε > 0 by a
compactness argument, so that

y ∈ JX(f1, · · · , fi, ε) ⇒ d(y + Y, JX(f1, · · · , fi) + Y ) < δ

that is,

y ∈ JX(f1, · · · , fi, ε) ⇒ ∃x ∈ JX(f1, · · · , fi)with ‖ x − y + Y ‖< δ.

It is easily verified that ‖ x ‖= d(x, Y ) = 1. Hence, by (7), there exists
z ∈ BX with x − z ∈ Y and ‖ y − z ‖< η. Clearly z ∈ JX(f1, · · · , fi)
and this completes the proof for the necessity.

We now prove that the condition is sufficient. Choose any x0 with

‖ x0 ‖= d(x0, Y ) = 1
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We prove that condition 3) of Proposition 2.3 holds for x0.
We first assume that x0|Y ⊥ ∈ ext(S(Y ⊥)∗). Then there exists a basis

f1, · · · , fn of Y ⊥ such that x0 ∈ JX(f1, · · · , fn), hence

{x0|Y ⊥} = JX(f1, · · · , fn)|Y ⊥ .

Now if y ∈ BX satisfies, for some ε > 0 and all i ≤ n

|fi(y) − fi(x0)| < ε (8)

then clearly y ∈ JX(f1, · · · , fn, ε). By assumption, given η > 0, choosing
ε small enough we can get z ∈ JX(f1, · · · , fn) with ‖ y − z ‖< η, hence
z ∈ BX ∩ (x + Y ).

If x0|Y ⊥ /∈ ext(S(Y ⊥)∗), by Proposition 2.4, there is a basis f1, · · · , fn

of Y ⊥ such that x0 ∈ JX(f1, · · · , fl), l < n, and the inequalities given
by (6) hold. Now if y ∈ BX satisfies (8), we first approximate y by a
z ∈ JX(f1, · · · , fl) and at the second step we proceed by induction to
“shift” this z and fix the equations fi(z′) = fi(x0) for l + 1 ≤ i ≤ n.

Without loss of generality we assume that ‖ fi ‖= 1 for 1 ≤ i ≤ n.
For l + 1 ≤ i ≤ n set

αi = sup{fi(x) : fj(x0) = fj(x) for 1 ≤ j ≤ i − 1} −
inf{fi(x) : fj(x0) = fj(x) for 1 ≤ j ≤ i − 1}.

Select α > 0 such that

2α < min{αi : l + 1 ≤ i ≤ n}.

Choose any ε > 0 and η > 0 satisfying η < min{ ε
2n , αε

8n , α
2 }. By assump-

tion, we can get δ, 0 < δ < η
2 so that if y ∈ BX satisfies (8) with δ,

there exists z ∈ JX(f1, · · · , fl) satisfying ‖ y − z ‖< η. We have

|fl+1(z − x0)| ≤ |fl+1(z − y)| + |fl+1(y − x0)|
< η + δ < 2η < α

It is clear from the above inequality that we can select w ∈ JX(f1, · · · , fl)
so that |fl+1(w − z)| > α and either

fl+1(w) < fl+1(x0) ≤ fl+1(z)
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or
fl+1(w) > fl+1(x0) ≥ fl+1(z).

Therefore there exists a suitable convex combination z1 = λz +(1−λ)w
so that fl+1(z1) = fl+1(x0). We have

2η > |fl+1(x0 − z)| = |fl+1(z1 − z)| = (1 − λ)|fl+1(w − z)|

and so

1 − λ <
2η

|fl+1(w − z)| <
2η

α
<

ε

4n
(9)

Now, z, w and x0 are in JX(f1, · · · , fl) and so

fi(z1) = fi(x0) for 1 ≤ i ≤ l + 1.

Also, using (9) we have,

‖ y − z1 ‖ ≤ ‖ y − z ‖ + ‖ z − z1 ‖
< η + (1 − λ) ‖ w − z ‖
≤ η + 2(1 − λ)
< ε

2n + ε
2n

< ε
n

Now we repeat the arguement with z replaced by z1 and the set
JX(f1, · · · , fl) replaced by the set {x ∈ X : fj(x) = fj(x0), 1 ≤ j ≤
l + 1}. Proceeding thus inductively, we get z′ = zn−l ∈ SX satisfying

fi(z′) = fi(x0) for 1 ≤ i ≤ n and ‖ y − z′ ‖< ε

and this concludes the proof of the theorem.

Considering the special case when the subspace of X is a hyperplane,
we have

Proposition 2.6. Let X be a Banach space. The following statements
are equivalent.

1. Every proximinal hyperplane is strongly proximinal.

2. NA1 = {f ∈ SX∗ : ‖ . ‖X∗ is SSD at f}
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Proof. This follows easily from Lemma 1.1 and Theorem 2.5.
Using Proposition 2.6. it is easy to construct a reflexive space with

an hyperplane which is not strongly proximinal, by constructing a dual
norm which is not everywhere SSD. Note however that when X is reflex-
ive, the set of hyperplanes which are not strongly proximinal is always
“meager”, since the dual norm is Fréchet differentiable (and thus SSD)
outside a meager set. On the other hand, there are separable spaces
which contain no strongly proximinal hyperplane. Such an example is
provided by the natural predual of the Hardy space H1(D), since the
natural norm of H1(D) is nowhere SSD, as follows from ([D-G-Z], Prop.
III.4.5).

3 Quasi-polyhedral points in dual spaces

In [A-D], Amir and Deutsch defined the notion of quasipolyhedral point
((QP)-point). Wegmann showed [W] that their notion is equivalent to
the one given below. We refer to [D-P] and references therein for defini-
tions and basic properties of polyhedral spaces.

Definition 3.1. Let X be a Banach space and x ∈ SX . Then x is a
quasipolyhedral point((QP)-point) if there is α > 0 such that JX∗(y) ⊆
JX∗(x) for every y ∈ SX ∩ B(x, α).

Remark 3.2. Assume there exists a convex, open subset C of a Banach
space X, x ∈ C∩SX and D dense in C∩SX , such that JX∗(x)∩JX∗(y) �=
∅ for every y ∈ D. Then x is a (QP)-point.
Indeed, observe that

JX∗(x) ∩ JX∗(y) �= ∅ ∀ y ∈ D ∩ C ⇒‖ x + y ‖= 2 ∀ y ∈ D ∩ C
⇒‖ x + y ‖= 2 ∀ y ∈ SX ∩ C.

We select α > 0 such that B(x, 2α) ⊆ C. If y ∈ SX ∩ B(x, α) then
considering the 2- dimensional subspace generated by x and y, and using
the above implications, we see that there exists z ∈ SX ∩ C so that y
is an interior point of the line segment joining x and y. It is now clear
that JX∗(y) ⊆ JX∗(x).

Below we give an easy but useful connection between (QP)-points
and strong sub-differentiability. Note that the converse implication in
Lemma 3.3 below is clearly false; however, every point of a SSD norm
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with the property β of Lindenstrauss is quasi-polyhedral ([G-JS-M],
Prop.3.2).

Lemma 3.3. Let X be a Banach space and x ∈ SX be a (QP)-point.
Then the norm of X is SSD at x.

Proof. We recall that the norm is SSD at x if

lim
t→0+

1
t
[‖ x + th ‖ − ‖ x ‖]

is uniform in h ∈ SX . If x is a (QP)-point, then there exists α > 0
such that if y ∈ B(x, 2α) ∩ SX then JX(y) ⊆ JX(x). For any h ∈ SX

and t ∈ (0, α), we have ‖ x − w ‖< 2α where w = x+th
‖x+th‖ . Thus

JX(x + th) = JX(w) ⊆ JX(x) which implies that ‖ . ‖X is linear over
the line segment joining x and x + th. Clearly in this case we have

1
t
[‖ x + th ‖ − ‖ x ‖] = lim

t→0+

1
t
[‖ x + th ‖ − ‖ x ‖].

and hence the lemma.

We can now state and prove the main result of this paper. Let us
recall that the if Y is a finite codimensional subspace of a Banach space
X, the condition “Y is proximinal in X” is in full generality strictly
weaker than (b) and strictly stronger than (a) below (see [I2]).

Theorem 3.4. Let X be a Banach space such that every f ∈ NA1 is a
(QP)-point of ‖ . ‖X∗. If Y is a closed, finite codimensional subspace of
X then the following are equivalent:
(a) Y ⊥ ⊆ NA.
(b) Y is strongly proximinal in X.

Proof. If (a) holds, the annihilator space Y ⊥ is polyhedral by Lemma
1 of [G-I]. Moreover, it follows from the proof of Theorem 3 in [G-I] that
Y is proximinal in X. Now since every f ∈ SY ⊥ is a (QP)-point, by
Lemma 3.3, ‖ . ‖X∗ is SSD at every point of SY ⊥ and hence at every
point of Y ⊥. Therefore condition 2) of Lemma 1.1 holds.

Since Y ⊥ is polyhedral, it follows from ([W], Theorem 4.4) and an
easy induction that given any basis f1, · · · , fn of Y ⊥ and i, 1 ≤ i ≤ n,
we can get appropriate scalars λj > 0 for 1 ≤ j ≤ i so that

JX(f1, · · · , fi) = JX(
i∑

j=1

λjfj)
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Hence, given ε > 0 , we can easily get ε′ > 0 such that

JX(f1, · · · , fi, ε
′) ⊆ JX(

i∑

j=1

λjfj , ε)

Now condition 2) of lemma 1.1 shows that we can apply Theorem 2.5
and conclude to the strong proximinality of Y .

Conversely if Y is strongly proximinal, Y is proximinal. As Y is
of finite codimension, Y ⊥ ⊆ NA by a characterization of proximinal
subspaces of finite codimension given in [G]. This concludes the proof.

Examples 3.5. Fonf and Lindenstrauss showed in [F-L] that if a Banach
space has a boundary B such that B′∩NA1 = ∅ then every f ∈ NA1 is a
(QP)-point. This property is hereditary and it is satisfied in particular
by every polyhedral Lindenstrauss space [G-M]. In fact , it is shown
in [F-L] that if X is a separable Banach space the following facts are
equivalent:

1. There exists a boundary B such that B′ ∩ NA1 = ∅.
2. For any sequence (fn) ⊆ NA1 converging weak* to f ∈ NA1 there

exists a positive integer N such that JX(fn)∩JX(f) �= ∅ for n ≥ N .

3. Same as (2) with JX(fn) ⊆ JX(f) for n ≥ N .

We refer to Remark 3.2. for the derivation of the (QP)-property from
the above condition 2), even when weak-star convergence is replaced by
convergence in norm.

A special case (considered in [G-I]) of the above is when X is a
subspace of c0(N).

Remarks 3.6.

1. As mentioned above, the Fonf-Lindenstrauss condition is hered-
itary. However, if Y is a closed subspace of a Banach space X
and g ∈ NA1(Y ), assuming that every norm preserving extension
f ∈ BX∗ of g is a (QP)-point does not imply in general that ‖ . ‖Y ∗

is SSD at g. Here is an example:

Take Y such that ‖ . ‖Y ∗ is Gateaux smooth on Y ∗\{0} and
nowhere Frechet smooth (e.g. Y = the natural predual of the
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Hardy space H1(D); see [D-G-Z], Prop.III.4.5). Then ‖ . ‖Y ∗ is
nowhere SSD except at {0}. Put Y ⊆ X = C((BY ∗ , w∗)). Pick
a weak* exposed point g of BY ∗ . Then:

a) The Dirac measure δg at g is the only f ∈ BX∗ such that
f |Y = g. Indeed, if y in SY exposes g, then |h(y)| < 1 for all
h ∈ BY ∗ . It is now clear that any measure other than δg in
S(C(K))∗ , where K = (BY ∗ , w∗), takes value strictly less than 1
at y.

b) It is easy to see that the measure δg is a (QP)-point of SX∗ .

However ‖ . ‖Y ∗ is not SSD at g and this together with a) and b)
proves the claim.

2. For a given f ∈ NA1, condition b) in Example 3.5 is in general
stronger than the corresponding property with ‖ . ‖ convergence.
For instance, set N̂ = N ∪ {∞}, X = (C(N̂, ‖ . ‖∞), f = δ∞ and
fn = (1− 1/n)δn − 1/n δ∞. Clearly, f ∈ NA1, (fn) ⊆ NA1, (fn)
converges weak* to f and JX∗∗(fn)∩JX∗∗(f) = ∅ for all n. However
δ∞ is a (QP)-point of X∗.

3. Fonf and Lindenstrauss [F-L] have also shown: 1) there exists a
polyhedral Banach space containing a 2-codimensional proximi-
nal subspace Y (in particular Y ⊥ ⊆ NA) such that Y ⊥ is not
polyhedral. 2) there exists a polyhedral space which contains a
2-codimensional subspace Y such that Y ⊥ ⊂ NA but Y is not
proximinal.

4 Selections of the metric projection

In this section we show that the metric projection onto a closed proximi-
nal subspace Y of finite codimension, with Y ⊥ polyhedral, has a contin-
uous selection. Before proving this result, we gather some observations
about metric projections onto strongly proximinal subspaces.

Lemma 4.1. Let Y be a strongly proximinal subspace of a normed linear
space X. Then the metric projection PY is upper semi-continuous.

Proof. This follows easily from the definition of strong proximinality
and the triangle inequality.

120 REVISTA MATEMÁTICA COMPLUTENSE
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Proposition 4.2. Let X be a normed linear space and Y be a strongly
proximinal subspace of X. Then the metric projection PY onto Y has a
first Baire class selector.

Proof. By Lemma 4.1 above, the set valued map PY is upper semi-
continuous and by Jayne-Rogers selection theorem ([J-R]), PY has a
first Baire class selector.

Remark 4.3. A finite dimensional subspace is always strongly prox-
iminal as can easily be seen with a compactness argument. However,
continuous selections are not available in general for metric projections
onto finite dimensional subspaces. A.L.Brown [B] has contructed an in-
teresting counterexample of a 3-dimensional space that contains a one
dimensional subspace whose metric projection has no continuous selec-
tion.

The following simple lemma is a special case of a much more general
result ([D]) on “stable” convex sets.

Lemma 4.3. Let E be a finite dimensional polyhedral space and let
ext(BE) = {e1, · · · , ek}. Then there exists a continuous map φ : BE →
(R+)k such that

φ(x) = (λi(x))1≤i≤k

where
∑

i

λi(x) = 1 , x =
k∑

i=1

λi(x)ei

for all x ∈ BE.

Remark 4.4. It is well-known that there may not be any continuous
selection of a representing measure supported by extreme points, even in
3-dimensional spaces. An example is provided by the space R

3 equipped
with the norm whose unit ball is the convex hull of

{(x, y, 0) : x2 + y2 = 1} ∪ {(±1, 0,±1)}.

We can now prove

Proposition 4.5. Let X be a Banach space and Y be a closed prox-
iminal subspace of finite codimension in X such that Y ⊥ is polyhedral.
Then the metric projection PY onto Y has a continuous selection.
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Proof. Recall that for x ∈ X with d(x, Y ) = 1,

QY (x) = x − PY (x) = {z ∈ X :‖ z ‖= 1, f(z) = f(x) ∀ f ∈ Y ⊥}

Let ext(B(Y ⊥)∗) = {e1, · · · , ek}. Pick xi ∈ BX such that xi|Y ⊥ = ei.
Consider any x ∈ X with d(x, Y ) = 1 and choose continuously, as in
Lemma 4.3, positive scalars

μi(x) = λi(x|Y ⊥) for 1 ≤ i ≤ k

so that
k∑

i=1

μi(x) = 1 and x|Y ⊥ =
k∑

i=1

μi(x) ei.

Fact.
∑k

i=1 μi(x)QY (xi) ⊆ QY (x).

We have

QY (xi) = {z ∈ X :‖ z ‖= 1, f(z) = f(xi) ∀ f ∈ Y ⊥} (10)

Now

t ∈
k∑

i=1

μi(x)QY (xi) ⇒ t =
k∑

i=1

μi(x)zi

where zi ∈ QY (xi) for 1 ≤ i ≤ k. By (10) we have for f ∈ Y ⊥,

f(t) =
∑k

i=1 μi(x)f(zi) =
∑k

i=1 μi(x)f(xi)

= f(
∑k

i=1 μi(x) xi) = f(x).

Moreover, ‖ t ‖≤ 1, hence t ∈ QY (x).
Now the map x → (μi(x))k

i=1 is continuous. Hence the set valued
map

x →
k∑

i=1

μi(x)QY (xi)

is continuous (hence in particular lower semi-continuous) on the domain

{x ∈ X : d(x, Y ) = 1}
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and so is

TY (x) = x −
k∑

i=1

μi(x)QY (xi) ⊆ PY (x)

We now extend TY to whole of X by scaling and clearly this extension
is continuous on X. Finally Michael’s selection theorem ([M]) provides
a continuous selection for TY and hence for PY .

Examples 4.6. Let X be a Banach space such that every norm at-
taining functional in SX∗ is a (QP)-point of SX∗ . If Y is a finite codi-
mensional subspace of X, then by Theorem 3.5. Y is proximinal if and
only if Y ⊥ is contained in NA, if and only if Y is strongly proximinal.
Moreover, by the proof of Theorem 3.5, Y ⊥ is polyhedral when these
conditions hold. Now by the above proposition, the metric projection
PY has a continuous selection.

By [F-L], this applies in particular when X is a separable Banach
space such that there exists a boundary B for X with B′ ∩ NA1 = ∅.
Acknowledgement. This work was completed while the first named
author was visiting the University of Pondicherry in January 1999. He
is glad to express his thanks to this Institution for its warm hospitality
and support. The financial support of the National Board for Higher
Mathematics is also gratefully acknowledged.

References

[A-D] D. Amir, F. Deutsch: Suns, moons and quasi-polyhedra, J. Approx.
Theory, 6 (1972), 176-201.

[B] A.L. Brown: Some problems in linear Analysis, Ph.D dissertation,
Cambridge University, 1961.

[D] G. Debs: Applications affines ouvertes et convexes compacts stables,
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