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METRIC THEORY OF SEMIALGEBRAIC
CURVES
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and Alexandre C.G. FERNANDES

Abstract

We present a complete bi-Lipschitz classification of germs of
semialgebraic curves (semialgebraic sets of the dimension one). For
this purpose we introduce the so-called Hélder Semicomplex, a bi-
Lipschitz invariant. Hélder Semicomplex is the collection of all first
exponents of Newton-Puiseux expansions, for all pairs of branches
of a curve. We prove that two germs of curves are bi-Lipschitz
equivalent if and only if the corresponding Holder Semicomplexes
are isomorphic. We also prove that any Hoélder Semicomplex can
be realized as a germ of some plane semialgebraic curve. Finally,
we compare these Holder Semicomplexes with Holder Complexes-
complete bi-Lipschitz invariant of two-dimensional semialgebraic
sets.

1 Introduction

In this paper, we are going to study singular semialgebraic curves (one-
dimensional semialgebraic sets) from the metric viewpoint. Some recent
papers on the metric theory of semialgebraic sets were devoted to intrin-
sic metric properties of semialgebraic surfaces (see [2],[1],[6]). One of the
main questions of this theory is the question of bi-Lipschitz classifica-
tion. This question was investigated in [1], for germs of semialgebraic
surfaces, with respect to the intrinsic (length) metric. The problem of
bi-Lipschitz classification with respect to the induced (euclidian) metric
is more complicated. Namely, if two semialgebraic sets are bi-Lipschitz
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equivalent with respect to the euclidian metric they are bi-Lipschitz
equivalent with respect to the length metric, but the converse is not
true.

The main result of the paper is a bi-Lipschitz classification of germs
of semialgebraic curves with respect to the euclidian metric. We con-
struct an invariant - the so-called Hélder Semicomplez. This invariant
is obtained in the following way. Take two branches X; and X, of
a semialgebraic curve X at the point zy € X. Let z,(r) € X; and
z2(r) € X2 be two points on these branches such that d;nq(z(r), z¢) =
dind(z2(r),z0) = 7. The function ding(z1(r), z2(r)) (the induced met-
ric) is semialgebraic and, thus, admits a Newton-Puiseux expansion at
0. Holder Semicomplex is the collection of all first exponents of Newton-
Puiseux expansions, for all pairs of branches. Note, that this procedure
is closely related to the calculation of Lojasiewicz exponent [4].

We prove that Holder Semicomplex is a complete invariant. It means
that germs of two semialgebraic curves are bi-Lipschitz equivalent if their
Hélder Semicomplexes are combinatorially equivalent (isomorphic). We
prove (Theorem 4.1), moreover, that, for every Hélder Semicomplex,
there exists a germ of a plane semialgebraic curve realizing it (i.e. the
Holder Semicomplex of this curve coincides with the given one) (Theo-
rem 5.1).

We study in section 6 some relations between Holder Complexes
(1] and Hélder Semicomplexes. Holder Complexes defined in [1] are
complete invariants of germs of semialgebraic surfaces. We prove that
if a two-dimensional set X is normally embedded at zo (i.e. intrinsic
and induced metrics are bi-Lipschitz equivalent [3]) then the Holder
Semicomplex of the germ of Sing(X) at z is completely determined by
the Holder Complex of X at z (Theorem 6.2). Some examples presented
in the section 6 show that this result does not remain true if X is not
normally embedded.

Note that all results of the paper are hold for semianalytic set. As a
consequence of this observation we obtain that every germ of a semian-
alytic curve is bi-Lipschitz equivalent to a germ of some semialgebraic
curve (Corollary 5.2).

The authors are grateful to Maria Aparecida Ruas, Jean-Jacques
Risler and the anonymous referee for very useful comments.
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2 Holder Semicomplexes

Definition 1. A complete finite graph I' with a rational valued function
a: Epr - QN [1l,00) defined on the set of edges Ep of I' is called a
Holder Semicomplez if o satifies the following:

Isosceles Property. For every three vertices a;,as,a3 € T', we have: if
a(ar,az) < alas,as) < ala;,as) then ala;,as) = alaz,az). (Note that,
since I' is a complete graph, any edge is completely determined by two
vertices).

Remark 1. A Holder Semicomplex can be defined in the following
equivalent way. Let A be a finite set with a symmetric function « :
AxA — diag(AxA) — QN [1,00). If a satisfies the isosceles property
then the pair (A, @) can be identified with a Holder Semicomplex.

Remark 2. Consider a function d : AxA — Q such that

d(ay,a2) =0 if @ =a2 and d(ay,az)= 2 otherwise.
a(ay, az)
Then (A, d) is an ultrametric space if and only if (4, «) is a Holder
Semicomplex.

Definition 2. Two Holder Semicomplezes (I'y, ;) and (Iz, ) are
called isomorphic (or combinatorially equivalent) if there exists a graph
isomorphism h : 'y — I's such that, for each pair of vertices ay,as of
I'y, we have:

az(h(a1), h(az)) = ai(ar,as).

Definition 3. A morphism of (A}, ;) to (Az,an) isamapm: Ay — A,
such that, for all ay,as € A,

az(m(a;), m(az)) > ai(ar,az2) if m(a;) # m(ag).

Thus, we obtain that the set of all Holder Semicomplexes is a cat-
egory, the isomorphism defined in Definition 2 is an isomorphism in
this category and Remark 2 defines a functor from this category to the
category of metric spaces.
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3 Semialgebraic curves and Holder Semicom-
plex

Let X C R"™ be a semialgebraic curve and zo € X. By the standard
conic structure theorem, we have the following statement:

There exists a neighbourhood Uy, of 2o in R™ such that X N U,, =
k

U X; where the sets X; have the following properties:
i=1
(1) X; is a semialgebraic subset of R* and homeomorphic to a semiseg-
ment [1,0) by a homeomorphism h; : [1,0) — X; such that h;(0) = zg;
(2) For every i # j, X;NX; = {zo};
(3) There exists a number ry such that, for every ¢ and 0 < r <
ro, #(Xi N Sr(z0)) = 1, for every i. (Here S,(zg) means a sphere
centred at zg of radius r).

Remark 3. The collection {X;}¥ , is a 1-dimensional version of the so-
" called pancake decomposition of (X, zo) (see (3], [8], [11]). The elements
of this decomposition we call branches (in the similar way t2 the complex
algebraic geometry) or pancakes (in the similar way to the real algebraic
geometry).

Let A be a k-elements set A = {a,,...,ax}. We define a Hlder Semi-
complex on A in the following way. Consider a map z;(r) = X; N Sy (zo)
(for sufficiently small 7 this function is well defined and semialgebraic).
Let fi;(r) = ||lzi(r) — z;(r)|. By the Newton-Puiseux Theorem we ob-
tain, for sufficiently small r,

f,;j('r) — bij‘f‘a"j + o(r®), Q45 € Q, b;‘j cR.
Put a(ai, ;) = ayj.

Proposition 3.1. (A, a) s a Hélder Semicomplexz.

Proof. Since zi(r) and z;(r) belong to S;(z¢), we obtain f;;(r) < 2r.
Thus, 1 < «a(aj,a;). Let us prove the isosceles property. Let X;, X,
and X3 be three different branches of X. Let a(a1,a2) < a(az,a3) <
a(ay,a3). Consider three points z1(r), zo(r) and z3(r). We have:

Cyr(ene) 4 o(r2(e192)) = g, (r) — 22(r)|| <
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lz1(r) — z3(r)ll + llz2(r) — z3(r)ll =
Ogra(az,a;-,) + O(,r,cr(«rzz,a;;))1

for some positive constants C}, Cy. Thus, a(a;,a2) = alas,a3)

The Holder Semicomplex (A, @) constructed above is called a Holder
Semicomplez associated to (X, zp). We denote it by sh(X, zg).

Let us define another structure associated to X at the point zy. Let
X; and X; be two branches of X. Put

g,‘j(r) = dist(X; — Br(zo), X; — By (z0))

(here B,(zg) is the ball centred at zy of radius r). By the definition
of gij(r) and the quantifier elimination version of the Tarski-Seidenberg
Theorem, we obtain that g;; is a semialgebraic function. Thus, by the
Newton-Puiseux Theorem,

9i5(r) = ¢t + o(r?9).

Put B(a;, a;j) = Bij-

Remark 4. Note that g;;(r) is not necessary equal to f;;(r). To see it
consider the set X C R? defined as a union of graphs of functions y = z2
and y = z* at the point zy = (0,0).

Order Comparison Lemma. For all i,j we have : fi; = aj.

Proof. Without loss of generality we can suppose that £ = 0. Let
v € R™ be a vector such that ||v|| = 1. Define a cone

Ce(v) = {u € R™; £(u,v) < €}.

Suppose that two branches X; and X; have different unit tangent
vectors at 0. Let v; be the unit tangent vector to X; at 0 and v; be the
unit tangent vector to X; at 0. Then there exist 79 > 0 and € > 0 such
that, for r < rg,

Xi N B.(0) C Ce(v;) N Br(0);
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Xj M B,.(O) C Cs(”j) N B,-(U);
Ce(vi) N Ce(v;) = {0}.

Thus, gi; > dist(Ce(v;) — B-(0), C(v;) — B-(0)) > cr, for some ¢ > 0.
It means that §;; = o;; = 1.

Now suppose that X; and X; have the same unit tangent vector vy
at 0. Clearly, a;; < Bi;. Suppose that a;; < fi;. Observe that, for
sufficiently small r, we can choose the points y;(r) € X; and y;(r) €
X; such that g;;(r) = |lyi(r) — y;(r)l| depends semialgebraically and
continuously on r. Observe that either y;(r) = z;(r), or y;(r) = z;(r),
for sufficiently small 7 (otherwise the function g;;(r) has to be locally
constant what contradicts to semialgebraicity). Suppose that y;(r) =
zi(r). Consider a triangle with vertices z;(r),y;(r) and z;(r). Since
Bij > a;j, we have:

llz:(r) =y ()l < llzi(r) = z;(r)ll,

for small 7. Thus, the angle between z;(r) — z;(r) and y;(r) — z;(r)
tends to zero as r tends to zero. But, since

y;(r) — z;(r)
lly;(r) — z; ()l

— Vg, as 1 — v,

we obtain that Z(zi(r) — z;(r),v9) — 0 as r — 0.

On the other hand, X; and X; have the same tangent vector vy at 0.
Thus, for every sufficiently small € > 0, there exists rg > 0 such that, for
every r < rq, we have z;(r) € C¢(v9)NS;(vo) and z(r) € Cc(vo)NSr (o).
It means that

L(zi(r) = 25(r),v0) 2 3 — 8(e)

where 6(¢) — 0, as € = 0. This is a contradiction.
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4 Holder Semicomplexes as bi-Lipschitz invari-
ants

Theorem 4.1. Germs of closed semialgebraic curves (X1,z1) and (X2, z3)
are bi-Lipschitz equivalent if and only if the corresponding Holder Semi-
complezes (A1, 1) = sh(Xy,z1) and (Az,az) = sh(Xs,z9) are combi-
natorially equivalent.

Proof. (=)Let @ : (X,,2z;) — (X2,z2) be a given bi-Lipschitz map.
Let {X}}¥, and {Xf};‘il be pancake decompositions of (X;,z;) and
(X2,z2). Since ® is a homeomorphism, we have k; = ko = k and, for
each i, ®(X}) = X? (we can choose another renumeration if necessary).
Let (A1,1) and (Asz,a2) be the Holder Semicomplexes corresponding
to (X1,71) and (X2,22). Let A) = {al}k,, let Ay = {a? ¥ | and put
h(a}) = a?. Let us prove that a; (a},a}) = ay(a?, a?), for each 4, j. Since
® is a bi-Lipschitz map, there exists K > 0 such that, for sufficiently
small r, we have:

(X} — Br(z1)) C X? — Brr(z2), (1)
®(X;} — Br(z1)) C X? — Bir(z2). (2)

Let y;(r) € X} — B;(z1) and y}(r) € X} — B;(z1) be points such
that

llyi (r) = w3 ()l = dist(X] — By(21), X} = Br(x1))
Thus, by (1),(2) we obtain:
@ (y; () — ®(y; ()| = g2(Kr)
(here g}j, gfj mean the function g;; defined for X; and X, correspond-

ingly, see section 3). Since ® is a bi-Lipschitz map, there exists a con-
stant L > 0 such that

935(r) = llyi () — v} ()| = L@y} (7)) — Sy} ().
Thus,
94;(r) > Lg¥(Kr).
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Using the Newton-Puiseux Theorem and the Order Comparison Lemma,
we obtain that a1 (aj,a}) < aa(a?,a?). Using the fact that ! is also a
bi-Lipschitz map we obtain that oy (al,a J) > a(a? j). The first part

of the theorem is proved.

(<) Let (A;,a1) and (A3, @) be combinatorially equivalent. We
suppose that the isomorphism preserves the enumeration. Let {Xl}
and {X2 , be pancake decompomtlons of (X,z;) and (X9, z2). Let
ro > 0 be a. number such that z!(r) and z?(r) are well defined semi-
algebraic functions, for every r < ry and for every i. Consider the
semialgebraic function r : X; U X — R defined by

_ [ llz—=z|, for ze€ Xy
?‘(.’12} N { H;B = :!'22”, for z € X,.

Define ® : X; N By, (z1) = X2 N Byy(z2) by &(z) = z2(r(z)), for
T € X,jl-

Claim. There exists § > 0 such that ®| x,nBs(z,) is a bi-Lipschitz map.

Proof of the claim. Each X! and X? has a tangent vector at z;
and z,, respectively, hence, for some dy > 0, we have: (I)leﬂB,s (z1) is
a bi-Lipschitz map, for all . It is enough to prove that, for each pair
(X}, X}), the map @|(x1ux!)nBs, (1) 18 bi-Lipschitz, for some 6, > 0.

Let z € X! and y € X} be two points sufficiently close to z;. We
can suppose that r(z) < r(y). Let z € X} such that 7(z) = r(z).
Consider the triangles (z,y, z) and (®(z), ®(y), ®(z)). Since the curves
X1, X}, X2, XJ2 are semialgebraic sets, for sufficiently small r, they are
close enough to their tangent vectors. Thus, the angle at the vertex z
in the triangle (z,y, 2) and the angle at the vertex ®(z) in the triangle
(®(z), ®(y), ®(2)) are bounded away from zero. Using this fact we obtain
that there exist K, K, > 0 such that

Kimax(r(y) — r(z), fi(r(z))) < lly — z|| (3)
and
ly — 2| < Komax(r(y) — r(), f;(r(z))) (4)

(here flL, f% mean the function f;; defined for X; and X, correspond-
ingly, see section 3). By the same way, we obtain that there exist
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Ly, Ly > 0 such that
Limax(r(®(y)) — r(®(2)), f5(r(®(2))) < |8(y) — &(z)]  (5)

and

12(y) — @()|l < Lomax(r(®(y)) - (®(2)), f3(r(®(2))).  (6)

Since a(a},a;) = @ (a?,a?), there exist constants M;, M > 0 such

that ’
M f(r) < fE(r) < Mafli(r). (7)

Using the inequalities (3),(4),(5),(7) and the facts that 7(y) = r(®(y))
and r(z) = r(®(z)) we obtain that ® is a bi-Lipschitz map. The claim
is proved. And, thus, Theorem 4.1 is proved.

5 The Realization Theorem

Theorem 5.1. Let (A, a) be a Holder Semicomplex. Let #+A = k. Then
there ezists a semialgebraic subset X C R? with dimX = 1 satisfying
the following conditions:

(1) (A, ) is a Holder Semicomplez corresponding to (X, 0);
(2) (X,0) has a pancake decomposition {X;}5_, such that X; is a
graph of an algebraic function ; : [0,€] = R with 4;(0) = 0.

Remark 5. This theorem means that each Holder Semicomplex can

be realized as a plane semialgebraic curve. X is called a realization of
(A, ).

Proof of the theorem 5.1. We use induction on k. For k = 1, the
statement is obvious. Suppose that the statement is proved, for some
k. Let (A,a) be a Holder Semicomplex such that #A4 = k + 1. Let
ay = rr}:-}x a(a;,a;). We can suppose that ap = alak,ars1). Put
A=A—{ak1} and & = a4, ;. Let X be a realization of (4,&). Let
X; be a pancake corresponding to a, (i = 1,...,k). By the induction

hypothesis, we have that X; is a graph of some algebraic function ¥; :
[0,€0] — R such that ;(0) = 0. Put
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Yer1(2) = 52 + P ().

Since X contains a finite number of branches, there exist s and £ < g

such that 94, (z) # ¥i(z), forevery i = 1,... k, if z #£ 0.
k+1
Put o; = 1131-|[0‘£] and let X; be the graph of 1;. Let X = U X;. By
1=1
straightforward calculations we obtain that (A, ) is a Hélder Semicom-
plex corresponding to (X, 0).

Corollary 5.2. Every semianalytic subset X C R™ such that dimX =1
is locally bi-Lipschitz equivalent to some semialgebraic subset X C R2.

6 Holder Semicomplexes and Holder Complexes

Here we are going to compare the bi-Lipschitz invariants of germs of
semialgebraic curves defined in this paper with bi-Lipschitz invariants
of germs of semialgebraic surfaces (see [1]). A complete intrinsic bi-
Lipschitz invariant of two-dimensional semialgebraic sets is called Holder
Complez. Holder Complex is a pair (I, 8) where I is a finite graph and
p is a rational valued function defined on the set of edges of I. One can
find all the definitions and results related to this subject in [1] and [6].

Let (I', ) be a Holder Complex. A vertex a of I is called essential
if, for every neighbourhood U, of a, we have: U, is not a topological 1-
manifold (in other words, a is neither artificial nor a loop vertex of T', see
[1]). We are going to define a Holder Semicomplex (A, &) corresponding
to (T, 8) in the following way:

(1) The set V3 of vertices of A be the set of all essential vertices of
Bt

(2) Let ay,a2 be vertices of A. Let P be the set of all finite paths
¥ =1{91,--.,9s} (here g1,...,9s € Er) connecting a; and ay. We define

max min S(gx).

1, if a1, a2 belong to different connected components of T';
alay,a) =
YEP gr€Y
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Proposition 6.1. (121', @) is a Holder Semicomplez.

Proof. Let us prove the isosceles property. Let ai,as,as be three ver-
tices of A such that &(a;,as) < @&(az,a3) < a(a;,as). We can suppose
that ay,as,a3 belong to the same connected component of I". (Other-
wise the proposition is trivial). Let {g;,...,gx} be a path in I’ con-
necting a; and ap. Let {g],...,9,} be a path connecting a; and as.
Clearly, {gx,..-,91,91,--.,9.} is a path connecting as; and a3. Thus,
a(az,a3) < min {&(ai,asz),d&(ay,as3)}. Since &(ay,as) < alay,az) we
obtain @(aq,a3) = a(ay,as).

Let ¥ C R™ be a two-dimensional semialgebraic set. Let ¥ =
Yo U Y!' U Y? be the canonical topological stratification of Y. This
stratification can be obtained in the following way. Let Y2 be the set of
all points y € Y such that there exists a neighbourhood U, C R" such
that Uy NY is a topological two-dimensional manifold. Let Y! be the
set of points of Y — Y2 such that, for each § € Y, there exists a neigh-
bourhood Uy such that Uy N (Y — Y?) is a topological one-dimensional
manifold. Set Y? =Y — Y2 - Y. By [5], Y°,Y! and Y? are semialge-
braic sets and, thus, Y? is finite (see also [9]).

Let yo € Y° and yo € CI(Y?) (here CI(Y!) means a closure of Y'!).
Then the germ of CI(Y!) at yp is a germ of one-dimensional semialge-
braic set. Let (A, a) be a Hélder Semicomplex associated to (CI(Y'!), yo)
(i.e. (A,@) = sh(CI(Y?),y0)). Let (T, B) be a canonical Holder Complex
of Y at yo (see[1]). Let (A, @) be the Hélder Semicomplex corresponding
to (T, B) defined above.

Theorem 6.2.

(1) There ezists a morphism m : (A, &) — (4, ).

(2) If Y is locally normally embedded at yo (see [3]) then (A, &) and
(A, @) are isomorphic.
Proof. (2) Let ¥;' and Y}' be two branches (pancakes) of CI(Y!).
Let a; and a; be the corresponding vertices in (I', ). Suppose that
a; and a; belong to the same connected component of I'. Let v =
{91,...,9s} be a “maximal” path in ' connecting a; and a; (it means
that &(a;, a;) = xé:;ﬁ(gk)). By results of [1], the union of the curvilinear

triangles corresponding to the edges gy, ..., gs is bi-Lipschitz equivalent
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to the standard &(a;, a;)-Holder triangle. Let a;(r) € ¥;! and a;(r) € Y!
be points such that

dina(ai(r),y0) = dind(a;(r),yo0) = -

Using results of [1] or [10] we obtain that there exist two constants
K, and K5 such that

Kidy(ai(r),yo) < r™%%) < Kody(ai(r),yo)

(here d; is the length metric). Since Y is locally normally embedded at
we obtain (using results of sections 2-4) that a(a;,a;) = @(ai,q;). If a;
and a; belong to different connected components of I then a(a;, a;) =1
(because Y is locally normally embedded).

(1) Let Y be not locally normally embedded at 1. Let Y be
the“normalization” obtained in [3]. Let YOUY'UY? be a topologi-
cal canonical stratification of Y. Let ® : Y — Y bea semialgebraic map
satisfying the following conditions:

(a) @ is a bi-Lipschitz map with respect to the length metric. (b) ® is a
Lipschitz map with respect to the induced metric. Existence of this map
is shown in [3]. Clearly, (YI UY% =Y!lUuYO. Let Y1 and Yl be two

branches of Y and let §ip = ®~!(yo). Let a;(r) € Y;! and a; (r) IS Y;l be
two points such that

dind(ai(r): g()) = diﬂd(&j(r):g(]) =T
By [3], we have
dind(@i(r),@;(r)) > ding(ai(r),a;(r)),

for sufficiently small r. Since Y is normally embedded, we obtain that
(A,a) is a Holder Semicomplex associated to (CL(YY), §o). Since

dind(&i(r), &j(f‘)) = r&(ahﬂj) 3 o(rd{a.-,aj})

and
dina(ai(r), aj(r)) = ro(@) 1 o(re(eisa),

we have that :
&(aiiaj) S Q’(ai,a_j)- (8]
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Set m(a;) = a4, for all i. By (8), m is a morphism of Holder Semicom-
plexes. |

Remark 6. If Y is not normally embedded (4,a) and (A, &) are not

necessary isomorphic. To see it consider the following example. Let

(", B) be a Holder Complex such that I" has more than one essential

vertices. Let a; and ay be two essential vertices. Let IV be a new graph

obtained from I' by adding a new edge h connecting a; and as. Set

B'(h) > ;ré%xﬁ(g). Then (I, 3’) is a Holder Complex. Using the algo-
r

rithm from [6] we construct a set Y and a point yg such that (Y, ) is
a Geometric Holder Complex corresponding to (I, 8). We can suppose
that Y is normally embedded (otherwise we can obtain it using [3]).
Consider now a semialgebraic set Y’ obtained from Y by cutting the
triangle corresponding to the edge h. For this set the Holder Semicom-
plexes considered above are not isomorphic.

Proposition 6.3. Let (Y1,y1) and (Ya2,y2) be two germs of 2-dimensional
semialgebraic sets such that (Y1,y1) and (Ya2,y2) are bi-Lipschitz equiv-
alent with respect to the induced metric. Then the corresponding Holder
Semicomplezes (A1,a1) and (A, an) are isomorphic.

The proof is straightforward.
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