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DIRICHLET PROBLEM FOR A
NONLINEAR CONSERVATION LAW

Guy VALLET

Abstract

In this paper we propose the study of a first-order non-linear
hyperbolic equation in a bounded domain. We give a result of
existence and uniqueness of the entropic measure-valued solution
and of the entropic weak solution; for some general assumptions
on the data.

1 Presentation of the model problem

In this paper, we are concerned with a wide range of non-linear scalar
conservation laws, arising from the mechanics of continua. Let us denote
by (P) the following problem :

%‘: +div(f(t,z,u)) + g(t,z,u) =0  inQ, (1)
u=uP on 2, (2)
U = Up on Q, (3)

where :

-) Q2 is a connected bounded open subset of RY, with a smooth boundary
I', and an outward unit normal 7,

-) Q is the cylinder |0, T[x(Q, ¥ its lateral boundary ]0, T[xI" and div =

i) u? and ug are bounded measurable functions on ¥ and Q respectively,
ii) f is a continuous function on @ x R, g and divf are Caratheodory
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functions,
iii) VM > 0, 3gn € L%(Q), VA € [-M, M],

lg(.; -, A)| < gm and |divf(.,.,A)| < gum a.e. in Q.

It is well-known that, even if the data are regular, there is not, in
general, a unique weak solution to a non-linear hyperbolic equation.
One is then used to consider, among all the weak solutions, the one that
satisfies an inequality called "entropy inequality”.

We say that u € L*°(Q) is an entropic weak solution to the equation (1)
if, for all positive v of H}(Q) and all real k, one has :

/ sign(u — k) { (u— k)% + [f(t,z,u) — f(t,z,k)].Vv } dzdt
Q

- / sign(u — k) { divf(t,z,k) + g(t,z,u) } v dzdt > 0.
Q

Since we do not suppose that ug belongs to BV () N L®(Q),

i) Firstly, the usual compactness methods in BV (Q)NL*®(Q) [2] seem to
be deficient. Therefore, we consider here the framework of the measure-
valued solutions [6] & [12]. Moreover, it is known that the finite volume
methods lead to some convergence in the sense of the Young measures.
See for example the entropic process for the Cauchy problem [7], or,
[6]&[16] for bounded domains. Thus, the study of the uniqueness of
such a solution, in a bounded domain, finds here all its interest.

ii) Secondly, u does not belong to BV (Q) N L*(Q), so the trace of u is
not defined from the functional framework. However, as u satisfies an
entropy inequality, it is possible to consider some traces for ¢ = 0, as
well as on ¥ (see the Young measure trace [11]). Thus, we will consider
an entropy inequality including the initial and the boundary conditions,
as introduced by F.Otto in [9] for L*°-functions.

Notations. In order to simplify the writing, let us put :
F(ta z,u, k) = sz’gn(u i k)[f(ts z, ‘U.) - f(t= I, k)],
G(t,z,u, k) = divf(t,z,k) + g(t, z,u),

£(t,z,u,k,v) = |u— k|%% + F(t,z,u,k).Vv — sign(u — k)G(t, z, u, k)v.
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2 Basic properties of the Young measures

We recall here some results concerning the Young measures, which can
be found in [1], [6], [7], [12] and [13].

If £ denotes the Lebesgue measure and B a bounded open subset of R™,
then we have :

Definition 1. A positive Radon measure v on BX R 1s a Young measure
on B x R if for every Borel subset A of B , v(A x R) = L(A). A Young
measure v is described by its disintegration form which is the unique

family of probabilities on R, (dPr)zeB, such that for every Caratheodory
function 1,

Pdv = /Bwa(:c, A) dP;()) dz .

BxR

Example 1. We call Young measure associated to the measurable func-
tion u, the unique Young measure on B x R, denoted by v, defined for
every positive Caratheodory function 4, by :

[ v [B ¥(z, u(z)) dr.

That is, the disintegration form gives dv(\, z) = ddy(z)(A) dz where dy(z)
denotes the Dirac mass centred in u(z).

Proposition 1. ( Gallouét ) [7], [10]

Let v be a Young measure on BxR and let F; be the repartition function
of dP;, the family of probabilities on R that is involved in the disinte-
gration of v. Then, the function u, defined in Bx]0, 1[ by

u(z,a) = inf{t € R, F;(t) > a}

is Lebesque measurable on Bx]0,1[ and for every positive Caratheodory
function ¥,

T /B/R’/’(I"‘) dP;(}) dz = /B/Ol ¥(z, u(z, ) da dz.

Moreover, if Supp(dP;) C [-M, M|, thenu € L= (Bx]0, 1[) and ||u||ec <
M.
u is called the process associated to the Young measure v.
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Proposition 2. Let (up), be a sequence of L*°(B) functions such that
Vn € N, ||up|loo < M. Then, there ezxists a sub-sequence (un, )x and a
Young measure v (v = dP; dz) on B x R with Supp(dP,) C [-M, M],
such that for every L'(B,Cy(R)) function 1,

/B Pl ds—r |  iple d

BxR

Futhermore, if the limit v is the Young measure associated to u, then
Un, converges towards u in LP(B), 1 <p< oo .

Remark 1. In (1], E. J. Balder defines the Young measures and gives the
same kind of results with (B, B, £) being a finite (or o —finite) measured
space. This definition allows us to talk about Young measure trace on
a hypersurface of R™, provided with the Hausdorff measure #™ 1.

3 Definition of an Entropic Measure-Valued So-
lution

Definition 2. A Young measure v is an Entropic Measure-Valued So-
lution (emus) to (1) if :

i) IM > 0, Supp(dP; ) C [-M, M] where dv(t,z,\) = dP ;)()) dzdt.
ii) Vv € H}(Q), v >0, Vk € R, foR L£(t,z, A\ k,v) dv > 0.
Proposition 3. Let v be an emus to (1). Then, for any positive B of
LY(2) and any w in L®(Q),

lim ess/ |A —w(z)|B(z)dP; 4y (N)dz exists.
QxR

t—0+

Proof. Consider in definition 2 ii), v(t,z) = a(t)B(z), a € D*(0,T),
B € D*(Q2). Then it comes that :

T
0< /{; o' (t) /!;XR |A — k| B(z) dPy ) (A) dz dt+

g
/a(t) [ F(t,z, A, k)VB — sign(X — k)G(t,z, A, k)B dP 4)()) dzdt.
0 QxR
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Let us note h¥A(t) = [ oA — k| B(z) dPy4)(A) dz. As h*F is an
essentially bounded function, the above inequality shows that A% is a.e.
a bounded variation function. So, one can talk about Iitm £8 REB(1).

e

As, uniformly with respect to t, 8 — h*#(t) is a continuous linear
functional on L'(f2), a density argument leads to the existence, for any
k in R and any positive 8 in L'(Q), of

t—0+

lim ess/ A = k| B(z) dPy zy(A) dz.
xR

In order to work with an essential limit in the sequel, we only consider
k in Q.
Let w, = E?:u kilp; be a simple function on  with k; belonging to Q.

As, [ —wn(@)|B(z) dPuay(N dz =3 [ [A=kil B()1p, dPyz(N)

QxR i=00xR
dz, lim 8+33hw"6 (t) exists for any positive 8 in L'(Q2) and any’ Q-valued
t—0

simple function w on .

As any w in L*°(f2) is a limit in L*°(2) of a sequence of such simple
functions and since for w and @ in L®(Q), |h®8(t)—h®A(t)| < |B|p1.|w—
|, independently upon ¢, the same argument of density leads to the
result.

Definition 3. An emvs to (1) satisfies the initial condition ( 3) if

t—0+

lim ess/ |A — ug(z)|dPy z)(A)dz = 0.
OxR

Definition 4. ( Szepessy [11] ) Let us introduce, for z in the neighbor-
hood of ', the change of coordinates z — (T,€) : ¢ = T — £.n(T) where
(Z,€) €T x (0,€) for some positive €, 1 is the unit outward normal, and
J(Z,€) is the jacobian determinant associated to this change of coordi-
nates.

Then, there is a sequence &; in (0,¢€), & — 0T and a Young measure u on
L XR, described by its disintegration form : du(A,t,z) = dP(‘;'z) (\) dHY,
where HY is the N dimensional Hausdorff measure on ¥ and where
dP(’:"I)(A) is a family of probabilities on R, satisfying the point i) of
definition 2, such that : for any function v in L}(Z, Cy(R)), the next
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relation holds :

Lim fz fR B(67,N) APy o,y (V) J(@>&5) dHY = [2 /R (b, Z,X) di.

j—o0
u 1s called a Young measure trace on ¥ for v.
Using this trace, we prove :

Proposition 4. Let v be an emus to (1) and p a Young measure trace
for v. Then, for any positive a of L'(Z) and any w in L*°(X), one has:

lim ess/ F(t,z, A, w).n(Z) a(t,T) dP;z)(A) J dHN =
ExR

£—=0+

F(t,z,\,w)na du
xR

Proof. Consider in definition 2 ii), v(¢,z) = a(t,T)B(£), a € DT(T),
B € D*(0,e). Then,

0< - / "B f F(t,z, A\ k).(®) a(t, T) dPqy(N) J dHN dé+
0 xR

% Oa
[ 6@ [ K dPeay) I an® de+

0 ExR
/ B(€) / F(t, 2, A, k) Va—sign(\=k)G(t, z, \, k)a J dPyy o (A dH" de.
0 ExR
Thus, for h¥2(¢) = [ g F(t, 2, A, k)0(T) a(t,T) J dPq)(N) dHN, the
same argument as in the previous proposition leads to the existence of
lign gfshw’“({), for any positive a in L}(X) and any Q-valued simple

iy

function w on ¥. Since f is a continuous function, lim ess BHE) =
€0

/ F(t,7, )\ w)1(%) alt, 5) dy.
xR

Let w be in L*®(X) and let w, = Y -, kil g, be a simple function on X,
with k; € Q, that converges to w in L®(X).

As f is continuous on @ x R and as w, converges in L®(Z), |h¥*(€) —
h¥na(£)| converges to 0 uniformly with respect to £ as n goes to infinity.
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So, lim essh"*(§) = F(t,z,\,w).n(T) a(t,Z) du can be extended
-0+ ExR
to any positive a of L!(X) and any w in L>®(Z).
Following Felix Otto’s idea in [9], we will say that :

Definition 5. An emuvs of (1) satisfies the boundary condition (2) if for
a Young measure trace u, any real k and any positive o of L'(Z) :

/F(t,m,k,uB).na dHN <
)

F(t,z,\ u®)na du+ F(t,z,\ k).na du.
ExR xR

Remark 2. If v is a Young measure associated to a function u and if
there exists a trace y(u) in L*(X) for u, then dP(‘: 2 = O-(u(t,z)) and the
boundary condition is equivalent to

F(t,z,v(u), k).n(z) > 0, Vk € [min(y(u), u?), max(y(u), u?)).

This condition is exactly the one given in [2].

Definition 6. A Young measure v is an Entropic Measure-Valued So-
lution to the problem (P) (EMVS) if it is an emvs to (1) satisfying the
initial and the boundary conditions, as mentioned above in definitions 3
and 5.

Proposition 5. Let v be an EMVS to (P) and p a Young measure
trace, then for any positive B in HY(Q) and any k in R ,

- f £(tz,\ K, B) dv < [ luo — k| (0) do—+
QxR 9]
f F(t,z,\u®)np du - f F(t,z,k,uB)np dH".
ExR b3

Proof. Following [15], let 8 be in D (Q), ¢ (t) = max(0, min(nt, n(T —
t),1)), an(z) = min(né, 1) and consider in definition 2 ii)
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v = B(t,z).an(z).0n(t). By passing n to the limit in the inequality
foR L£(t,z, Ak, Banwn) dv > 0 one has,

e ﬁ(t,:c,)\,k,ﬁ) dv <
QxR

[|uo—k|6(0> dz—/ F(t,, ) k)08 du (1)
0 ExR

for any positive function 8 of D(Q) (and for any positive function 3 of
H'(Q) by density).
To conclude, one has simply to use the definition 5.

4 Existence of an Entropic Measure-Valued So-
lution

In order to prove the existence of an EMVS, we consider the same hy-
perbolic problem, with some regular data f., g, uf and ug.; and we
study the limit when ¢ goes to 0. This kind of problem is well known
and has been studied in [2] and [8].
Let us give below the assumptions needed for the existence of a

solution (H;) :

i) Ho (cf. first paragraph),

ii) 3ey,c0 € L®(Q), VA € R, (t,z) a.e. in Q,

|g(t13:a )‘)[ <a (t,T)P‘f + Cz(t,l‘),

with ¢;i(g) = |lcilleo 2 = 1,2,
iii) f can be continuously prolonged on (R¥+!\Q) x R by a function
still denoted by f and 3¢}, c, € L®(RV), YA € R, (t,z) a.e. in RN+,

|divf(t, 2, A)| < ) (¢, 2)|A] + (¢, ),

with ¢i(f) = [l¢]lleo i = 1,2,
For € > 0, let us consider the BV (Q) N L*°(Q) solution . of the
hyperbolic problem (F:) :

%%5 + div(fe(t, z,ue)) + ge(t, z,ue) =0 in Q,
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ue=uPon®; and w.=ug,onf,
€ € ) € 0,¢

where ft(t!m; )‘) = fR f]RN+1 f(Sa yaﬁ)ﬁ?()\_f)f’fﬁrﬂ ((t$ I)_(Sa y)) dey d£1
pT and pl,, being the standard mollifier sequences respectively in R and
RN+1 g, is defined in the same way and uf’ and ug . are regularisations
of the boundary and initial data of the problem (P), bounded by the
same constant.

Proposition 6. There exists a unique entropic weak solution u. to this
problem; moreover,
i) uc 1s essentially bounded, independently of €, by :

K,
K,
where K; = ¢;i(f) +ci(g), 1 =1,2.

ii) ue is also a solution, for any positive C?> convez function 6 with

6(0) = 6'(0) = 0, any positive B of Hy(Q) and any k in R, of the
inequality :

M =—= (1T — 1) + (|Juolloo + |[4®|]oo)ef T

/ Al +[6" —k)fe(t, 2, ue) — /k s9”(£—k)f£(t,x,£)d§]-Vﬁ—
[ /k "0 (¢ — k)div . (t, 7, €) dE + 0'(ue — k)ge (t, z,u))B dzdt > 0. (5)

Proof. This result is classical in BV (Q) N L*>°(Q) (see [2] and [8] for i).

Since u, is bounded in L®(Q), it is possible to extract a subsequence
which converges to a Young measure v (in the sense of proposition 2).
Moreover, v satifies the assumption 7) of definition 2.

So, for any positive C? convex function 6 with 6(0) = 6'(0) = 0, for any
positive 8 of H}(Q) and any k in R, (5) leads to :

/Q{BA k-—+[6’,\ k)f(t,z, ) /9”5 k)f(t,z,€) d€).V S~

A
[ (6 ~ v (t,,6) de + 0\~ Bg(t, 2, V] } dv > 0.

Now, considering 0,(¢) = [ [ [pn(s — 1/n) + pn(s + 1/n)] dsdt, one
has:

239 REVISTA MATEMATICA COMPLUTENSE
(2000) vol. XIII, num. 1, 231-250



GUY VALLET DIRICHLET PROBLEM FOR A NONLINEAR CONSERVATION LAW ...

Proposition 7. There ezxists an emuvs to equation (1).
Proposition 8. This emvs is an EMVS to the problem (P).

Proof. Remark that the Young measure associated to the weak solution
ue (see example 1) is also an EMVS to problem (P.) in the sense of
definition 6. Thus, as mentioned in inequation (1), for any positive
function 8 in H'(Q) ,

_/ﬁs(ta:ﬂsussk}ﬁ) dzdt S
Q
/|uo,£ — k|B(0) dx — /Fe(t,x,us,k).nﬁ dHN.
Q

s
Let us make € go to 0, then :

-[ A=K 4 F(t,2,0, K).V8 — xalt, 5)Bdv <
QxR ot

[ luo — k| B(0) dz —
0 Ex

where xj is the L*°(Q) * limit of sign(u, — k)Ge(t, z,u., k) and i the
Young measure on X x R, limit of (¢race(ug)) in the sense of proposition
2 (see the remark that follows this proposition and also [1]).

Firstly, consider B(t,z) = a(z). min((1 — nt)*, 1).

F(t,z, A\ k).np di
R

t=0+ Jaxr
k by uo as shown in the demonstration of proposition 3, implies that v
satifies the initial condition.
Secondly, consider B(t, z) = a(t,z). min((1 — né)™ 1) with the variables
introduced in definition 4 (i.e. z =T — ¢n(ZT) ). As

/F(t,:r,/\,k)-n(f)a(t,f) dp > /F(t,x1)~,k}-n(f)a(t1f) di, (6)
xR xR

Since lim ess/ IA = k|la dPy 4y ()) dz < / |ug — k| @ dz, replacing
Q

replacing k by u? as shown in the demonstration of proposition 4, gives
that

f F(t,z,\, uB)n(Z)a(t, T) du > / F(t,, A u®)n(Z)a(t, 7) di.
xR ExR

(7)
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Since u, is a solution of (P;), it satisfies the boundary condition :
Fe(t,z,k,uf).n < F.(t,z,ue, k).m + Fg(t,z,ue,uf).n ae. onL (8)

Then, since « is a positive function, let us next pass to the limit in (8)
as € goes to 0. The upper semi-continuous properties (6) and (7) of the
trace imply that v satisfies the boundary condition.

5 Uniqueness of the Entropic Measure - Valued
Solution to Problem (P) and existence of a
weak solution

In many non linear problems, compactness results are essential in order
to obtain the existence of solutions. Usually, one manages to extract a
sub-sequence that converges a.e. in order to identify the limits of the
non linear terms. When L' sequencial compactness fails, one looks for
Young measure solutions (see [6], [12], [9], [8] and [14] for the study
of hyperbolic equations, or (7], [4], [3], [5], [11] and [16] for numerical
estimations).

For non linear hyperbolic equations, thanks to the uniqueness result
for entropic measure valued solutions, it is possible to prove that the
Young measure solution is associated to a function. This function is
then the weak entropic solution. Moreover, proposition 2 transform the
weak convergence of (uc). (see the previous paragraph) into a strong
convergence in LP, for all finite p. It is therefore important to have a
result of uniqueness of measure-valued solutions, this result leading to
the existence (and the uniqueness) of a weak solution.

We say that a measurable function h on Q x R satisfies the property
(R) if
i) VM >0, 3gp € L®(Q), VA € [-M,M], |h(.,.,N)| < gm a.e. in Q,
ii) V(z,t) a.e. in Q,Ye > 0,3n > 0, |a—pB| < n = |h(t,z,a)—h(t,z,B)] <
E.

Let us give below the assumptions needed for the uniqueness of the
solution (H3) :

i) Hy (cf. first paragraph),
ii) Assume that ¢t = f(¢,z,)) and z; — f(t,z,)), i € {1,..,N} are
absolutely continuous functions (i.e. for a fixed A, f(.,.,A) € WH(Q))
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and %t[ and %,V’é € {1, .., N}, satisfy property (R),
iii) a) g satisfies property (fR) and

b) 3c € L®(Q), lg(t,z,a) — g(t,z,B)| < cft,z)|la — B Yo, B €
R, (t,z) a.e. in @, with c(g) = ||c||co-

Remark 3. Hy, iii) b) entails property () if g(.,.,0) € L®(Q);
div f satisfies property (R) because %,W € {1, .., N} satisfy it.

Proposition 9. (Krushkov inequality) Assume that v and U are two
admissible EMVS to problem (P) with two initial conditions ug and 1

and two boundary conditions u® and 4B, and let us note dv(\,t,z) =
dP 4)(A) dzdt and dU(A,t,x) = dPy;)(\) dzdt. Then for t a.e. in
10,7 -

IX = k| dPyy 2y (N) dPyy ) (k) dz+
NxRk2

t
/0 /ﬂ - Sgn(X — k)[g(s,z,A) — g(s,z, k)] dP(s,x)(A) dP z)(k) dzds <
x

t
f /A(s,x,uB,ﬁB) d’HN*ids+/ |ug — G| dz
0o Jr Q

where A(t,z, A, B) = Sup |f(t, z,¢) — f(t,z,d)|
min(A,B)<c,d<max(A,B)

Proof. Let us note 3(t,s,z,y) = v(t)p}(t — s)pk(z — y) where v is a
positive function of D(]0,T[) and p} and p}; are the standard mollifier
functions indexed by n. Then,

= [ = kO - s)ekla - v) dult2, ) dD(s, R+
(QxR)
/( s S ORNC,0 B)=C 5,3,k NI (0)6R (t—s)pfy (=) do d—
/(~Q ]R):! ’Y{t)p?(t = 8)[F(t,$, /\v k) - F(S, Y, k! ’\)]vzp}l\"{m = y) dv d;’) S
[ lio() — N7 O (= — 3) dy dult,z, N+ (9)
OxQxR

[ F(t,2,\,45) 97000 (t — 8)p% (@ — y) du dP(s, y, k)+
IxRxQxR
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/ F(s,y, k,48) ny(t)pt(t — s)p(z — y) di dv(t,z,N)~
ExRx@QxR
[ F(t,2,k,uB) ()03 — 5)pk (@ — y) dHY d(s,y, k)
ExQxR

f F(s,y, )\, @%) ny(0)0 (¢ — 8)o (z — v) dHY dv(t,z, N).
ExQxR

In order to pass to the limit in (9) as n goes to infinity, let us denote
by I1, Iz, I, Iy, Is, Is bis, Is and Igpis each of the previous integrals. Thus
(9) is equivalent to : —Iy + Io — I3 < Iy + Is + Ispis — I6 — Igbis-

According to the notations of Th. Gallouét (cf. proposition 1 ), we
will note u(t, z, @) the entropic process associated to v and (s, y, §) the
one associated to 7. Finally, let us note A,(t, s, z,y) = pt(t—s)pR(z—y).

The study of the limit in (9) will be done in seven steps.

Step 1. lim I) = / ~'(t) f |\ — k| dPg 2)(X) dPyy zy (k) dadt.
n—oo Q Rz

Proof. See [7] and [15].

Lemma 10. Assume that h is a measurable function on Q X R that

satisfies property (R). Then,

i) [ {lh(s,y,u(s,y,0)) — h(s,y,u(t,z,a))| ¥(t)An} dadzdtdyds
Q2x]0,1]

converges towards 0 as n goes to infinity (Resp. with ).

ii) Let us note H(t,z,a,b) = sign(a — b)[h(t,z,a) — h(t,z,b)] then

[ () An (H(t 2, ult, 2, @), (5,1, B))-
(@x]0,1))2

H(t,z,u(t,z,a) — u(t,z, B)) } dadBdzdtdyds
converges towards 0 as n goes to infinity.

Proof. [15] Since h satisfies property () and since the functions u
and 4 are bounded, one can suppose that h is bounded by a L*(Q)
function.

The relation i) follows from the property (R) and from the fact that
there exists a sequence of simple functions u; = Zle kil g,, converging
towards z in L®(Q x R) with ||ug|lec < ||%]|oo-
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Point ii) follows from Lusin theorem that allows us to replace i by a
continuous function, excepted for a set with small Lebesgue measure.

Step 2. lim I, =
n—oo

[ Sqn(A—R)G(t,, A k)~ G(t, 2, k, N}(t) dPyz) (N) APy zy (k) dadt.
QxR?

Proof. I, = [ Sgn(A—k)[G(t,z,\,k)—G(s,y,k,N)] v(t) Andv dv =
(@xR)?

] {[G(t, 2, u(t, z,), i(s,9, 8)) — Gls,9, 8(s,9, B), ult, 7, )]
(@xJo,1))?

v(t) An(t,s,z,y)Sgn(u(t,z,a) — i(s,y,B)) } dadp dz dtdyds.

Let us note

Ié = / {[G(t,m,u(t,m,a),ﬂ.(t,x,ﬁ)) - G(t-; I, ﬁ(t,m,ﬂ),u(t,z,a))]
(@x]0,1[)?

v(t) An(t,s,z,y)Sgn(u(t,z,a) — u(t,z,B)) } dzdtdydsdadp.

Thanks to the Lebesgue set properties of integrable functions and to the
previous lemma, one shows that ILm |I> — I3| = 0 and concludes.
n—roo

Step 3. lim I3 =
n—oo

- / v(t) sign(A—k) [divf (¢, z, \)—divf(t, z, k)] dP(t‘z}()t)dﬁ{t'z) (k) dtdz.
QxR2

Proof. I3 = [ ~(t)p}(t — s)[F(t,z,\ k) — F(s,y,k,A)].Vzpi(z —
(@xR)?

y) dv dv.

Using,

F(t,z,u(t,z,a),4(s,y, B)) — F(s,y,u(t,z, @), d(s,y,B)) =

F(t,z,u(t, z, @), u(t, z, B)) f-F(s y,u(t,z,a),a(t, z, B))+
F(t,z,u(t, =, a),d(s,y, B)) — F(s,y,ul(t, =, 0) u(s,y,B))+
F(s,y,u(t,z,a),i(t,z, B)) — F(t,z,u(t, z, @), z, B)),
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one may write, I3 = I3; + I32 + I33. Let us consider firstly I3, then
I3 + I3 3.
i)I3;=— f(Qx]{J.l[)” ¥(t) pT(t — ) sign(u(t, z,a) — a(t, z, B))

[divf(s,y,u(t, z,a)) —divf(s,y,a(t,z, B))] py(z — y) dt dz dads dy dB—
[F(t,z,u(t, z,a),4(t, 2, B)) — F(s,y,ult, z,a),i(t, z, B))].n(y)
QxEx]0,1[2

v(t) P (t — 5)pf (x — y) dt dzdadsdH™ ' (y) dp.

f is uniformly continuous on @ x [~M, M] and thanks to lemma 10 i)
and using the Lebesgue set properties of the L'-functions, one shows
that I3; converges towards

- f +(8) sign(ult, z,a) — i(t, 2, B))
Qx]0,112

[divf(t,z,u(t,z,a)) — divf(t,z,4(t, z, B))] dtdzdadp.

ii) I3 2 + I3 3. Let us note S the sign function.
As F(t,z,u,0) — F(s,y,u,4) = S(u—a)[f(¢,z,u) — f(s z,u)+
f(s,z,u) = f(s,y,u) — f(t,z,4) + f(s,2,4) — f(s,2,9) + f(s,y,4)],

it comes that
F(t,z,u(t,z,a),a(s,y, B)) — F(s,y,u(t,z, @), u(s,y, B))

+F(s,y,u(t,m,a),ﬂ(t,z,ﬁ}) - F(r’sxsu(taxu a),ﬁ(t,a:,ﬁ)) =

t
[ stuttz,0) = 5,080 | G 6.0t 3,0 - Ttz i) -

S(ult,,2) — ilt,, ) | 3162, u(t,2,0)) = G (€,2,0(t,2,8) | de+

Z f St 0)—le,a0, 8)) [g‘&{;(s,&,uu,x,a)> - g—;(s,éi,ﬂ(s,y,ﬁ))]

~S(u(t,2,0) ~i(t,2,8)) | 3L (5,60 u(t.2,00) - 2L 0,610,280 de

1
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where, for i € {1! ":N}! we note & = (zl)'-axi—hf)yi-l-ls --syN)'
Using again the Lusin theorem (cf. lemma 10 ii)) and thanks to the
following property of the sequence (p},) :

3F > 0,such that Vi € {1,.., N},¥n € N,¥z € Q,Vt € [0, T,
[|x-— gt — ) < F
A i y:-axiPN-T y)lay

0
[ [ 1= slioi(e = ot - 5) dyds < F:
10,71 /0 T;
one has : lim I39 + I3 3 = 0 and concludes.
n—o0
Step 4. lim Iy = 0.
n—oo
Proof. Thanks to the fact that y belongs to D(0,T).

1
Step 5. lim I; = - F(t,z,\uB).ny(t) du.
n—o0 2 Jexr

Proof. Thanks to the fact that fQ pr(t — s)pk(z — y) dsdy converges
towards % as n goes to infinity.

B =

In a similar way, one has : lim I ;s = / F(s,y,k,a%).n ~(s) dp.
n—oo xR

n—0o0

: 1 &
Step 6. lim I = 2 [2  F(s,,k, 0 (5,)1(0) 7(5) B

Proof. Iy = / F(t,%, k,uB(t,7)).n(Z) v(t) An
ExRx]0,e[xZ

J(7,€) dHN (t,7) dP,, (k) d¢ dH" (s,7).

Let 6 > 0.

There exist a continuous function %? on T and a borelian K, K ¢ &
with HV(Z\K) < § and @8 = u® on K.

Since f is a bounded function on Q x [—M, M], one can write Ig =
I + o(d) where

1= f F(t,7, k, @ (t, 7)).0(Z) 7(t) An

ExRx]0,e[xE
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J(7,€) dHN (t,%) dP,, (k) d¢ dHY (s,7).

As supp(vy) is a compact set of |0, T[, F(t,T, k, w2 (t,Z))y(t) is uniformly
continuous and I has the same limit, when n goes to infinity, as

Pig= / F(s,y,k,uB(5,9))1(Z) 7(5) An
IxRx]0,e[xX
J(7,€) dHN (t,T) dP (k) d€ dH" (s,7).

Then, using a technique of local map ([14] and [9]), one shows that

= ” 1 bt _—
lim 7 = 1 / F(s,y,k, 58 (s,)).n(y) 7(s) d.

n—00
RxX

Thus, the conclusion leads from

F(s,y,k,u®(s,y)).n(y) v(s) dit
QxRxZ

_ / F(s,y, k, uB(s,9)).n(y) 7(s) 4 + o(3).
QxRxZ

In a similar way, one has :

: 1 :
lim I pis = 5 [E Pt P (¢, z)).n(z) v(t) du.
X

n—oco

Step 7. Conclusion. As we have
|F(t,z,u,uB) + F(t,z,4,45) - F(t,z,u,4?) - F(t,z,4,uP)| <
2A(t, z,uB, 0B),

it comes :

= /Q ~+(t) /R 1A = K| dPyz)(X) dP) (k) dadt+

/Q [ San(— K)lo(t,2,%) — g(t, 2, DY (0) dP(a) (N) APy (k) dadt <
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/ A(t, z,u?,4B) y(t) dHV.
X

Since ug and g are initial conditions in the sense of definition 3, for ¢
a.e. in |0, T,

/ﬂ . A = k| APy 2y(X) dPyy 2y (k) dez+
x

t -~
[ Sanh = Rlg(s,,0) = gls,2,K)| aPt ) (A) 4By k) dirds <
0 JOxR?

t
/ / A(s,z,u®,4B) dHNds +/ lug — @g| dz.
0o Jr y)
Since g is a Lipschitz function, one has,

Corollary 11. With the same hypothesis, for t a.e. in ]0,7T7 :

[ W= K P (3) dPr (k) da <
x

t
([ /A(s,:c,us,ﬂs) dHN"1ds +/ |up — o] d.‘l’!) eclolt
o Jr Q

where A(t,z, A, B) = Sup |f(t,z,c) — f(t,x,d)|
min(A,B)<c,d<max(A,B)

Corollary 12. There ezists a unique EMVS to problem (P), moreover

this EMVS is the Young measure associated to an essentially bounded

measurable function u (i.e. a weak entropic solution).

Proof. If uy = iy and ©? = 45, then
/ A = k| dPyyz)(A) dBy gy (k) dz = 0
OxR2

a.e. in ]0,T[. Thus, the two measures dF; ) and dﬁ(u) are equal to
the Dirac measure centred in a point noted u(¢,z) (see [6] and [12]).
Moreover, u is a measurable function, essentially bounded by M, the
boundary of the support of the measure dFz). Then, the EMVS is
unique and it is the Young measure associated to u.
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Corollary 13. Assume that u and U are two weak entropic solutions
to problem (P) with two initial conditions ug and Gy and two boundary
conditions uB and 4B. Then fort a.e. in]0,T] :

[|w(t) — @)l ) <

t
(/ /A(S,:r,ua,ﬁs) d?{N"lds+|iug—ﬁ0||le)) (9t
0 JIU

If f is a Lipschitz function with respect to its third variable, then for t
a.e. in]0,T[ : one has : ’

lu(t) — a(®)||L1 (@) <

(e(f) lu® = @Zllzs ) + lluo — dollzsy) €.
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