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A FAMILY OF M-SURFACES WHOSE
AUTOMORPHISM GROUPS ACT
TRANSITIVELY ON THE MIRRORS

Adnan MELEKOGLU

Abstract

Let X be a compact Riemann surface of genus g > 1. A sym-
metry T of X is an anticonformal involution. The fixed point set
of T is a disjoint union of simple closed curves, each of which is
called a mirror of T. If T fixes g + 1 mirrors then it is called an
M-symmetry and X is called an M-surface. If X admits an auto-
morphism of order g + 1 which cyclically permutes the mirrors of
T then we shall call X an M-surface with the M-property. In this
paper we investigate those M-surfaces with the M-property and
their automorphism groups.

1 Introduction

Let X be a compact Riemann surface of genus ¢ > 1. X is called
symmetric if it admits an anticonformal involution 7: X — X which we
call a symmetry of X. The fixed point set of T consists of k simple
closed curves, each of which is called a mirror of T. Here k is a positive
integer and by the Harnack’s theorem 0 < k < g+ 1. If T has g+ 1
mirrors then it is called an M-symmetry and X is called an M-surface.
If X admits an automorphism of order g + 1 which cyclically permutes
the mirrors of T' then we will say that X is an M-surface with the M-
property. In section 2 we give the background material. Our aim in
this paper is to investigate those M-surfaces with the M-property and
their automorphism groups, which is discussed in section 3. We consider
hyperelliptic and non-hyperelliptic M-surfaces in different cases and give
our main results in Theorem 3.3 and Theorem 3.5 which we state below:
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Theorem 3.3. Let X =U/K be a hyperelliptic M-surface of genus
g > 1 with the M-property. Then K is always contained as a normal
subgroup of index 8g + 8 in an NEC group A, where A has signature
(0,4,[-],{(2®,g+1)}) and A/K is isomorphic to Co x C3 x Dg11 and
contained in Aut*(X).

Theorem 3.5. Let X be a non-hyperelliptic M-surface of genus
g > 1 (g odd) with the M-property and T : X — X be the M-symmeitry.
If X/ < T >= UJT then T is always contained as a normal sub-
group of indexr 2g + 2 in an NEC group A, where A has signature
(0, +,[=], {(2¥, (g + 1)/2)}) and A/T is isomorphic to Dg41 and con-
tained in Aut(X/ < T >).

2 Preliminaries

Non-Euclidean Crystallographic Groups. Let U/ denote the upper-
half complex plane and £ denote the group of conformal and anticon-
formal homeomorphisms of . A non-Euclidean crystallographic (NEC)
group is a discrete subgroup I" of £ and we shall assume that /T is
compact. Let £ be the subgroup of £ consisting of conformal homeo-
morphisms. An NEC group contained in £t is called a Fuchsian group,
otherwise it is called a proper NEC group. The signature of an NEC
group is defined to be

(g =k; [t ey e misli f Rpaes By )y v s cosMinag )3 (2:1)

The algebraic and geometric structure of an NEC group is completely
determined by its signature. If I' has signature (2.1) then /T is a com-
pact surface of genus g with k holes. The surface is orientable if + sign
is used and non-orientable if — sign is used. The integers m;,ms,...,m,
are called the proper periods and represent the branching over interior
points of U /T" in the natural projection from U to U/T". The brackets
(ni1,...,nis;) are called the period cycles and the integers n;i,...,njs,
are called link periods and they represent the branching around the ith
hole. The subgroup I'* of T consisting of orientation preserving transfor-
mations is called the canonical Fuchsian group of I'. Now let us describe
the presentation of a group with signature (2.1). If the + sign is used,
it has canonical generators
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(i) z1,...,z, (elliptic elements),
(1) €105+ ,Clsys---Ck0y- - ,Cks, (reflections),
(iil) ey,...,ex (usually hyperbolic elements but sometimes elliptic),

(iv) @1,b1,...,a4,by (hyperbolic elements),

and relations

(&) & =1, Bfi= L ¥,

(b) Cf,j—l = c?j = (c,‘,j_lcgj)n"ﬂ' = Lifori= lweipkand =108
we shall call ¢; j_1c¢;; linked reflection generators with link period
Ngg.

(c) e;lc.z-gez- =g, fori=1,...,k,
(d) z1z3...zr€1€7. ..ekalbla;lbfl ...agbgasjlbg—l =1.
If there is — sign in the signature we replace (iv) by

(iv)" a1,,...,aq (glide reflections), and (d) by
(d)' z122...2re1€2... 40303 ... a] = 1. See [5], (7] and [12] for details.

If I is an NEC group with signature (2.1) then the non-Euclidean
area of a fundamental region for I is given by

(I =21r(a —2+k+i(l—i-)+iil(l —L))
# 9 = m; 2 N

i=1 j=0

where o = 2 if the sign is + and a = 1 if the sign is — in the signature
of I. Since I' is an NEC group then pu(T') > 0, (see [12]).

A Fuchsian group of signature (0; +;[l, m, n]) (for short [[,m,n])) is
called a triangle group, where 1/l +1/m + 1/n < 1.

For convenience we make abbreviations such as

(5;+; [2¥,3@)); {(4®), ()@}

for

(5;+;(2,2,2,3,3];{(4,4,4),(), (), (), O}
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Symmetries and Automorphisms of Riemann Surfaces. It is
well-known that every Riemann surface X is conformally equivalent to
the quotient of the upper-half complex plane U by a torsion free Fuchsian
group K. In this paper we shall deal with compact Riemann surfaces and
so K will contain no parabolic transformations. Such Fuchsian groups
are called surface groups. An automorphism of X is a conformal or an-
ticonformal homeomorphism f: X — X. All automorphisms of X form
a group under composition of maps and we shall denote it by AutX
and the subgroup consisting of conformal automorphisms by Aut*X. A
finite group G acts as a group of automorphisms of a Riemann surface
X = U/K of genus g > 1 if and only if G is isomorphic to the factor
group I'/K, where I is an NEC group containing K as a normal sub-
group. So we can find an epimorphism from I' to G with kernel K. Such
an epimorphism is called a surface kernel epimorphism. It is also known
that Aut* X and AutX are isomorphic to N*(K)/K and N(K)/K re-
spectively, where N*(K) and N(K) denote the normalisers of K in L
and L, respectively.

We now state the following theorem which is given in Natanzon [10]
and [11], see also Bujalance and Costa [4].

Theorem 2.1. Let X be a non-hyperelliptic M-surface. Then:

(i) X admits ezactly one M-symmeitry,

(ii) AutX = Cy x Autt X, where Cy is generated by the M-symmetry
and Aut™ X, the group of conformal automorphisms of X, is iso-
morphic to a finite subgroup of the group of isometries of the
sphere.

If I is an NEC group without elliptic elements then /T is a Klein
surface. By a Klein surface we mean a surface with a dianalytic struc-
ture [2]. It is known that every Klein surface S can be represented as
U /T where T is an NEC group without elliptic elements. I' may contain
reflections, in such case S is a Klein surface with boundary. Any auto-
morphism of S can be expressed as A/I" where A is another NEC group
containing I" as a normal subgroup. The full group of automorphisms of
S, AutS, is isomorphic to N(I')/T", where N(I') denotes the normaliser
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of I'in £. Let I'" be the subgroup of I' consisting of orientation preserv-
ing elements. Then ST =U/T'* is a Riemann surface and known as the
complez double of S [2]. S is isomorphic (dianalytically equivalent) to
S+ /(T), where T is a symmetry of S*. On the other hand, it is known
that the automorphisms of S consist of conformal automorphisms of S*
commuting with 7' [2, Theorem 1.11.1]. (For more details about Klein
surfaces and their automorphisms see [2] and [5]).

In this paper the Hoare’s theorem will be our main tool which gives
us a procedure for calculating the signature of a subgroup A of a given
NEC group A, knowing the action of the canonical generators of A on
the A-cosets. For details see Hoare [6).

3 M-Surfaces with the M-property

Lemma 3.1. Let Q be a non-empty set and G be the group of all
permutations of Q. If o, 8 € G and aff = Pa, then a (respectively f3)
maps the fized-point set of B (respectively a) to itself.

Lemma 3.2. Let X be a Riemann surface and T: X — X be a symmetry
with G = AutX. If M = {my,ma,...,m;} is the set of mirrors of T
and H = {g € G | g(M) = M}, then H = Cg(T), the centraliser of T
n G.
Proof. Let V € Cg(T) then TV = VT and by Lemma 3.1, V maps the
fixed point set of T to itself and so V € H.

Now let V € H and m; € M then V(m;) € M and T(m;) = m,.

WV-ITV(m;) = V7 IT(V(m;))
= Vi V(m)) (V(m) e M)
—— m?:
i T(mi)

So TV~ITV fixes m; pointwise. As TV ~ITV is conformal, TV 1TV =
I. Therefore, V-ITV =T and V € Cg(T).
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So if X is an M-surface with the M-property and T: X — X an M-
symmetry, then by Lemma 3.2 we get an induced action of H on X /(T')
as follows, where H is the centraliser of 7" in AutX.

For every g € H,

9([z]r) = [9(=)]r (3.1)

gives us an action of H on X/(T) where [z]r denotes a point on the
surfaceX/(T"). Since

9([Tz]r) = [9(Tz)]r = [T'9(z)lr = [9(z)]T = 9([z]r),

(3.1) is well-defined.

We know that X /(T') is a Klein surface of genus 0 with g+1 boundary
components. Therefore, it can be uniformised by an NEC group, i.e.
there is an NEC group I' with signature

O+ [ 1 )y

such that X/(T') is isomorphic (dianalytically equivalent) to U /T.

As H acts on X/(T), there exists an NEC group A containing I" as
a normal subgroup of index |H| such that A/T" ~ H. Thus, there is an
epimorphism 6: A — H with kernel I'. Now we want to find possible
signatures for A. As X is an M-surface with the M-property, H has a
cyclic subgroup H of order g + 1 whose generators cyclically permute
the mirrors of 7. Then A = §~!(H) is an NEC group containing I' with
index g + 1.

First, let us find the signature of A. Since the generators of H
cyclically permute the boundary components of X/(T"), the quotient
surface (X/(T'))/(H) will have at least one smooth boundary component.
Therefore, the signature of A will contain at least one empty period cycle
and possibly some non-empty period cycles. So the signature of A will
be of the form

{h': i; [ml y M2, . .. 1mn]; {( )k’ (nll yooee sﬂlsl)'s ey (nrll e 1”1’31‘)})-
(3:2)
Since I' is a normal subgroup of A with index g + 1, by the Riemann-
Hurwitz formula u(T") = (g + 1)u(A), we get

«’;4_—1—6& 2+k+r+z 2221~~— (3.3)

mn
o1 i et e

168 REVISTA MATEMATICA COMPLUTENSE
(2000} vol. XIII, num. 1, 163-181



ADNAN MELEKOGLU A FAMILY OF M-SURFACES WHOSE AUTOMORPHISM ...

where 4 is 2 if the sign in the signature is plus and 1 if the sign is minus.
Since the left-hand side of (3.3) is less than 1, we have the following
restrictions on h,k,randn: 0 <h <1, 1<k<2 0<r<1 and
n < 3.

Under these restrictions, if we do calculations we shall find the fol-
lowing possible signatures for A:

A= (0,45 [(g+ D@L {( )}

Ao = 0+ L3 )@))
As = G123 O

As = O+ O (D)),

Now let us determine from which of these NEC groups there is an
epimorphism to Cyy1 such that the kernel has signature

(O L Y-

Let us begin with A;.
A; and Cyy; have the following presentations:

le =z 20 = 1)

Ay : (z1,72,c,€ [:::sf'H = z:g+1 =c? = ece”
Cos1: (a|a®*! =1)

Let us define the epimorphism 6;: A} — Cy4y as follows:

r o
B, T2 —a!
L* Y e el
— 1.

Using the Hoare’s theorem we can find that Ker6, has signature

;+;[ 1 {( )etDy.

Note that in the case above our aim was to find an epimorphism
whose kernel is an NEC group with signature

(BT
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So 6, (c) must be the identity. Otherwise, there will be no reflection in
the kernel of #;. To get g + 1 chains, e also must map to the identity.
z1 can map to any element of order g + 1 and z3 to the inverse of that
element. Therefore, 6, is the unique epimorphism (up to automorphism
of Cy41) whose kernel has signature

O+114C Yt

in the sense that if 9’1:1\1 — Cy41 is another such epimorphism, then
there exists an automorphism f of Cyy; such that 9’] = f6,.
For example, if k and g + 1 are coprime, then

i | l—)O.'k
9'1: I - a~k

c — 1

e =1

is another epimorphism from A; to Cy41 whose kernel has signature

05+ [ 1 {( )V},

However, f:Cgi1 = Cygqi1, f(@) = oF is an automorphism of Cy4; and
91 = fe]_.

We now do the same calculations to see whether there is an epimor-
phism from A; to Cy4; whose kernel has signature

0+ [ 1 {( )Y,
As and Cyy1 have the following presentations:

] — —_—
As i {z,c1,c0,€1,€2 | e = ¢l =c5 =eicre] ey = eacoe;'cr = zejep = 1)

Cg+1 : (Ct' | Ctg+1 = 1)
Let us define 03: Ay = Cyy1 as follows:

2

r Pa

cp —1

O2:{ e 1
g+l
o Haz
es a2
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Similarly, we can find that Kerf, has signature

(0;+; [ 1 {( )etDy.

Note that in this case unless 9J2r—1 is odd, 2 and 552—”—5 are not coprime

and hence o? and o®T cannot generate Cgy1. Also g must be odd.
Otherwise 9;—1 will not be an integer. So if the above condition are not
satisfied, then 6 cannot be an epimorphism. Similarly, we can show
that 6, is the unique epimorphism (up to automorphism of Cy4; ) from
A3 to Cgy1 whose kernel has signature

(S 2 i O

We now search whether there is an epimorphism from A3 to Cy.;.
A3 and Cyy have the following presentations:

2 1

1
Ajz: (a,a:,c,e[..ﬂ:g;r_zc = ece”'c = zea® = 1)
Cot1: {a]a?tl =1)

Let us define 03: A3 — Cyy, as follows:

z ol
93: c 1

e —1

g at,

As before we can find that Ker63 has signature

0;+;[ 1 {( )etDy).

In this case g must be odd. Otherwise 9% will not be an integer.
Again, 63 is the unique epimorphism (up to automorphism of Cg4,)
from A3 to Cy41 whose kernel has signature

(0345 [ 1 {( )+,

Lastly, we now show that there is no epimorphism from A4 to Cyiq
whose kernel has signature

O+ [ 4 )ty
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A4 and Cy4y have the following presentations:

g1 gt1
Ag:{ce,co,cr,e,e1]c2 = A== =(coc1) T =(c162)'T =

= ecele= elcoei_l =co =ee; = 1)
Cy+1: (a| a9t =1)

As in the previous case g must be odd and so the only element of
order 2 in Cyy is o’ . As the kernel must contain reflections, one of the
reflection generators of A4 must map to the identity. So ¢; (z = 0,1,2)
and ¢ can map to either a3 or to the identity.

Assume that 04: Ay = Cgy41 is an epimorphism as required. Consider
the reflection generators ¢y and ¢;. Both of them cannot map to the
same element for otherwise, there will be elliptic elements in the kernel,
which is not allowed. Thus, one of them has to map to o’T and the
other to the identity. However, in either case it follows from the relation
(cacl)% =1 that 9;—1 = 2 and this is not true except for ¢ = 3. In the
case when g = 3, using the Hoare’s theorem we can show that there is
no epimorphism from A4 to Cy4 as required. Thus, for every g > 1 there
is no epimorphism from A4 to Cy441 whose kernel has signature

(0 4] LG letiy).

As we shall see later the remaining three epimorphisms correspond to
M-surfaces with the M-property. The epimorphism #; corresponds to
hyperelliptic M-surfaces of genus g > 2 while #; and 63 correspond to
non-hyperelliptic M-surfaces of odd genus with the M-property. Recall
that surfaces corresponding to 6, must have genus ¢ = 1 (mod 4). We
shall consider hyperelliptic and non-hyperelliptic surfaces in different
cases.

(i) Hyperelliptic case

In this section our aim is to study the automorphism groups of hy-
perelliptic M-surfaces with the M-property. As we shall show, we need
to find possible extensions of 8;: A} — Cy4 from NEC groups, which
contain Ay, to finite groups, which contain Cyy;.

It follows from [3] that the group A;, which has signature

0;+;[(g + DPL{( ),
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is always contained as a normal subgroup of index four in an NEC group
A, with signature

0;+[1:{2®, g +1)}).

We can extend 6;: Ay = Cyi1 to an epimorphism pi: Ay — Cp x Dgyy
as follows.
A and Cy x Dy have presentations

Ay (e, c1,02,¢3 | Cg =iy = C% =03~ (CUCI)2 == ('-'21'32)2 = ('.'32i'33)2 =

Cy % Dg+l 2 (:ﬂ,y,z ! ;1:2 = y2 — 9+l (xy]2 = xz;r;z'l = (yz)2 = l),
Let us define p,: Ay — Cp x Dyy as follows:

o Y

cl —
B cy = 1

c3 —ryz.

Now let us calculate the signature of Keryu; using the Hoare’s theorem.

Cox Dys1 = {1}U{s}U{y}U{z}U{ow} U{zz} U {yz} U {ays)
U{z2} U {z2®} U {y2?} U {zy2?} U {3} U {z2®} U {y2*}
U{zy2®} U U {2971} U {z297 1} U {y29 1}
U{zy297 '} U {29} U {229} U {y29} U {zy29}

We have 4g + 4 cosets and let us label them as follows: {1} =1, {z} =
2, {y} =3, {2} =4, {zy} =5, {2z} =6, {yz} =7, {zyz} = 8,
{2} =9, {z2?} = 10, {y2?} = 11, {zy2?} = 12, {Z°} = 13, {z2°} = 14,
{yz®} = 15, {zy2®} =16, ..., {2971} = 49— 3, {z297'} = 49 — 2,
{yz971} = 49 — 1, {zy2z97'} = 4g, {29} = 49 + 1, {229} = 4g + 2,
{y29} =49 + 3, {zyz9} =49 + 4.

The action of the generators of A; on the cosets is given below.

co —y—(1,3)(2,5)(4,49 + 3)(6,49 + 4)(7,49 + 1)(8,4g + 2)
(9,49 — 1)(10,49)(11,4g9 — 3)(12,49 — 2) - - -
pr:g e =z (1,2)(3,5)(4,6)(7,8)(9,10) - - - (4g + 3,4g + 4)
co = 10 (1)(2)(3)--- (49 + 3)(49 + 4)
ez - yz— (1,7)(2,8)(3,4)(5,6)(9,49 + 3)(10,49 + 4)(11,4g + 1) - - -
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The reflection ¢y fixes all the cosets while the others fix no cosets.
So Keru, will have 4g + 4 reflection generators. As usual, we call them
€21, €22, €23, -+ -, €2,49+4. The orbits of the dihedral group (cp,c1) ~ Do
are {1,5}, {2,3}, {4,49 +4}, ..., {49 + 3,6}. Since these orbits do not
contain cosets fixed by ¢y and ¢; they induce no links. They induce only
proper periods one. The orbits of the dihedral group (¢;,c2) ~ D are
{1,2}, {3,5}, {4,6}, {7,8}, ..., {49+ 1,49 +2}, {49+3,49+4}. In this
case, each orbit contains two cosets fixed by c;. Then {1,2} induces the
link €21 ~ ¢22, {3,5} induces the link ¢p3 ~ cgs, . ..and so on. Therefore,
we get the following links: ¢9) ~ ¢29, €23 ~ €25, €24 ~ €26, €27 ~ Co8, - ..
The orbits of the dihedral group (cs,c3) ~ D, are {1,7}, {2,8}, {3,4},
{5,6}, {9,4g + 3}, {10,4g + 4}, {11,4g + 1} .... Similarly, from these
orbits we get the following links: ca; ~ c7, 22 ~ co8, C23 ~ Ca24, C25 ~
C26, €29 ™~ €2 49+3, €2,10 ~ C24g+4; €C2,11 ~ C24g+1 -- - - The orbits of the
dihedral group (c3,cq) >~ Dg41 are {1,49+ 1,49 —3,49—7,49—11,...},
and {2,4g + 2,49 — 2,49 — 6,49 — 10,...}. Since these orbits do not
contain cosets fixed by ¢g and c3 they induce no links. They induce only
proper periods one.

If we combine all these links we get the following chains: ¢9; ~ ¢99 ~
Cog ~ C27 ~ C21, C23 ~ C25 ~ C26 ~ C24 ~ C23, C29 ~ €210 ~ C24g+4 ~
€2,49+3 ~ €29, - .. In total we get g + 1 chains. Therefore, there are g + 1
empty period cycles in the signature of Keru,. By the partition

A=1{1,4,58,9,12,...,4g + 1,4g + 4}

and
B ={2,3,6,7,10,11,...,49 — 1,49 + 2,49 + 3}

we see that U/Keru, is orientable. Note that
A={nneN, 1<n<g+1, n=0(mod4) or n = 1(mod4)}
and
B={nneN, 1<n<g+1, n=2(mod4) or n = 3(mod4)},

where N is the set of natural numbers.

By the Riemann-Hurwitz formula we find that the genus is 0 and
finally the signature of Kerpy, is

O+ [1C Y.
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Note that the restriction of u; to Ay is 6y. This is because there
is a unique epimorphism from A; to Cyyy whose kernel has signature
(0;4;[]; {( )@*V}), that is, if there is another such epimorphism then
they differ by an automorphism of Cyy1. So U/Kerp, is a Klein surface
of genus 0 with g+ 1 boundary components and its automorphism group
is isomorphic to Cy x Dy 1. Its complex double X is a Riemann surface of
genus g with the M-property and Cy x Ca X Dgyy C AutX, where AutX
denotes the full automorphism group of X including the anticonformal
ones. We can easily see this by defining an epimorphism 6*: A, —
Ca x Cy x Dgyy by means of puj: Ay = Cy x Dgy1, where Ker* is
a Fuchsian group with signature (g; —) and U/Ker6* is conformally
equivalent to X. :

Cy x Ca x Dgy has a presentation

(k,2,y,2| K =22 =9 = 29" = (kz)? = (ky)® = kzkz™! = (zy)? =
=zzzz ! = (y2)? =1)

Let us define 6*: A} = C3 x Cy x Dyy as follows:

cg +—rky
" S
a= :
o — k
c3 — kyz.

Then, we see that 6* is an extension of an epimorphism 6: AT — Cy x
Dgyy1, where At is the canonical Fuchsian group of A, so it has signa-
ture 2, g + 1].

AT and C; x Dy have the following presentations:

AT+ (ur,ug,uz,uq |uf = uf =uf = uﬂ'“ = uruguzuy = 1),
C‘Z X Dg+1 : (:r,y,z l 3:2 = y2 £ zg+]' = ($y)2 - .'L'Z:'L'Z_l = (yz)2 = 1)

Note that if we take u; = cpcy, uz = c1c2, uz = esc3, ug = c3cp, then we
see that each u; (i = 1,2, 3, 4) satisfies the conditions in the presentation
of Ai", where ¢;s (2 = 0,1,2,3) are the generators of A;. Now we can
define 0: AT — Cy x Dgy1 by means of 6*: Ay — Cy x Cz X Dgyq as
follows:

U] YT

Ug —H T
0: uzg Yz

ug >zl
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Since @ preserves the orders of the generators of AT we can easily see
that Kerf is a Fuchsian group with signature (g; —). Also we can see
that 6 is the restriction of 6* to A and so  and 6* have the same
kernel.

We can show that (8*)~'((k)) has signature

@150 WY

and hence k is an M-symmetry.

As we mentioned earlier, all M-surfaces arising in this way are hyper-
elliptic and now we will show this. We know that 6: A} — C; x Dg4, is
a surface kernel epimorphism and the generator of Cs, z, is a central ele-
ment in the conformal automorphism group of the surface X = U/ /Ker#.
By using the Hoare’s theorem we can show that 6~!((z)) is a Fuchsian
group with signature [2(29+2)]. This means z is the hyperelliptic invo-
lution and hence the corresponding Riemann surface X = U/Ker0 is
hyperelliptic.

Since we shall show that the epimorphisms 6, and 63 yield non-
hyperelliptic surfaces than we have:

Theorem 3.3. Let X = U/K be a hyperelliptic M-surface of genus
9 > 1 with the M-property. Then K is always contained as a normal
subgroup of index 8g + 8 in an NEC group A, where A has signature
(0,+,[=], {(2®),g+1)}) and A/K is isomorphic to Cy x Cp x Dg41 and
contained in Aut®(X).

Geometrically, we can construct a hyperelliptic M-surface with the
M-property as follows. Choose a right rectangular geodesic (2g + 2)-gon
in the hyperbolic plane and label its sides by the integers from 1 to
2g + 2 following the positive orientation. Assume that the even sides
and the odd sides have all the same length. Take a second copy of the
(2g + 2)-gon and identify either the even or the odd sides of the first
polygon with the corresponding ones of the second. Then we obtain a
sphere with g + 1 holes, which is a Klein surface of genus 0 with g + 1
boundary components. Take the complex double of this Klein surface.
Then we get a Riemann surface of genus g with the M-property. See
Figure 1.
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Figure 1

L

Remark 3.4. In the geometric construction above, if we begin with
a regular (2g + 2)-gon then we get a Riemann surface Y of genus g
admitting a conformal automorphism of order 2g + 2 which fixes the
centres of four (2g + 2)-gons. It follows from Accola [1] and Maclachlan
[8] that Y is the Accola-Maclachlan surface of genus g. It is a Platonic
surface and is uniformised by a normal subgroup of a Fuchsian group
of signature [2,4,2g + 2]. By a Platonic surface we mean a surface that
is uniformised by a normal subgroup of a Fuchsian group of signature
[2,m,n], where 1/m + 1/n < 1/2. Thus, Y is a Platonic M-surface of
genus g with the M-property. In [9] we showed that for every g > 1 the
Accola-Maclachlan surface is the only Platonic M-surface of genus g.

In Theorem 3.3, Cy X Dy is the full conformal automorphism group
of a hyperelliptic M-surface of genus g with the M-property except in the
case where the surface is Platonic. Remark that NEC groups with signa-
ture (0,4, [—], {(2(®,g + 1)}) are only properly contained in triangular
NEC groups. Thus the exception is for Y, the Accola-Maclachlan sur-
face of genus g. Y admits 8g + 8 conformal automorphisms and Aut*Y
has a presentation

(A,B| A* = B(®9%2 — (AB)? = (A"'B)? = 1).

(For details about these surfaces see Accola [1] and Maclachlan [8]).
(ii) Non-hyperelliptic case

As in the hyperelliptic case our aim in this section is to study the au-
tomorphism groups of non-hyperelliptic M-surfaces with the M-property.
As we shall show, we need to find possible extensions of f: Ay — Cyqy
and 603: A3 = Cgyy1 from NEC groups, which contain A; and As, to finite
groups, which contain Cyy;.
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Using the list in [3], we see that Ay, which has signature

g+1
(05 +; [F5—=L{( )®}),
is always contained as a normal subgroup of index two in an NEC group

Ay with signature
g+1

0+ [1:{2®, =)D

Similarly, by the list of (3], A3, which has signature

(1= (2340,
is always contained as a normal subgroup of index two in an NEC group
Aj with signature
0+ 128 {2, L22))).
In general, A; and Aj are not contained in any other NEC groups.
However, there are special cases where the NEC groups A; and Aj are
contained in some other NEC groups.

Now, we are looking for finite groups containing Cy1 with index two
such that we can extend 62: Ay — Cyyq and 03: A3 = Cyyy to epimor-
phisms from A and A3 to these finite groups. Let G be such a group.
Suppose that p;: A; = G (1 = 2,3) is an epimorphism which extends
0:i: Ai = Cgqq (i = 2,3). Then G will be the automorphism group of a
Klein surface, say S, of genus 0 with g+ 1 boundary components. As we
shall see later, the complex double of S is a non-hyperelliptic M-surface,
say X, with the M-property. By Theorem 2.1, AutX ~ Cy x Aut*™ X,
where C; is generated by the M-symmetry and Aut™ X is isomorphic to
a subgroup of the rotation group of the sphere. On the other hand, we
know that the automorphism group of S consists of conformal automor-
phisms of X commuting with the M-symmetry, see [2, Theorem 1.11.1].
Therefore, Aut* X ~ G and G must be a subgroup of the rotation group
of the sphere. It is well-known that any finite rotation group of the
sphere is cyclic, dihedral, or isomorphic to A4, Sy or As. Therefore,
G can only be isomorphic to Cgyo or Dyyq. Since the kernel of the
epimorphism that we are looking for is a surface group, then we cannot
define an epimorphism from A, (or Aj) to Cag+2 as required. So the
only possibility is that G >~ Dg.,.
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Having found the groups containing A; (i = 2,3) and Cy4;, we can
now define the epimorphisms. Let us begin with As.

A,, which has signature (0;+; [ ]; {(2, 9-;—1)}}, and Dg4 have the
following presentations:

Az : (CO,C1,C2,C3,C4 |C[2} = C% =

+1
& =3 =c = (ce1)? = (c1c2)? = (c263)? = (csca)® = (caco) > = 1)
Dgy1: (z,y| 2? =yt = (zy)® = 1),

Let us define pg: Ap = Dy as follows

cg =T
C1 — 1
. c =T
L T PESY
c3 — Yy 2
Cq l—>$y_2.

Note that unless 9%'—1 is odd, 2 and 9;—1 are not coprime and hence pug is
not an epimorphism and that s is an extension of 6;. Similarly, using
the Hoare’s theorem we can find that Kerus has signature

O+ [1{( ).
Our aim now is to extend 63: A3 = Cy4 to an epimorphism u3: Az —
Dy such that Kerus has signature
O+ [ {( )My
As, which has signature (0; +; [2]; {(2(?, 9;—1)}), and Dgy4, have the
following presentations:
Az: (u,co e, c3lul=cd == =0c = (coc1)? = (a1cx)? =

+1
(CQC_'})lT = ucoucs = 1)

Dgy1: (my|2? =9+ = (zy)® =1).
Let us define p3: Az = Dgy as follows

u —z
co Y
U3 : cg —1
cy =Y
c3 Yz,
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As before, using the Hoare’s theorem we can find that Kerus has sig-
nature

O+ 11{¢ )Y

Note that 6; (: = 2,3) is the restriction of u; by construction.

We now show that those M-surfaces corresponding to po and ug are
non-hyperelliptic. As we know, the hyperelliptic involution is central
in the automorphism group. Since ¢ is odd, g + 1 is even and there
is only one central element in Dy,q, which is stzr_l and has order 2.
However, using the Hoare’s theorem we can find that p;1(< ylo+1)/2 >)
has signature different from (0, +, [—], {(2®9*?))})(i = 2,3). Therefore,
these surfaces are non-hyperelliptic.

For non-hyperelliptic M-surfaces we can summarise our results in the
following theorem.

Theorem 3.5. Let X be a non-hyperelliptic M-surface of genus
g > 1 (g odd) with the M-property and T : X — X be the M-symmetry.
If X/ < T >= UJT then T is always contained as a normal sub-
group of index 29 + 2 in an NEC group A, where A has signature
(0,4, (=], {(2®, (¢ + 1)/2)}) and A/T is isomorphic to Dy and con-
tained in Aut(X/ < T >).

i
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