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Abstract. The water content of vegetation is considered a key parameter for ecological analysis and agricultural and forestry 
applications. Remote sensing techniques provide substantial benefits over conventional field methods in determining 
vegetation water content at the leaf, canopy, and landscape scales. This study evaluated the potential of hyperspectral 
vegetation indices in predicting canopy water content in grasslands. Data was gathered from three different grasslands 
situated at approximately 500 m asl, 1200 m asl, and 1400 m asl elevations. Each study area provided 71 samples, and a total 
of 213 samples were analyzed. In this context, 59 ratio-based hyperspectral vegetation indices were tested. The correlation 
between hyperspectral vegetation indices and canopy water content was evaluated using linear, exponential, logarithmic, 
and power regression models. The results showed that the NW-3 (920,970) index significantly represents the canopy water 
content variable. It was determined that the exponential regression model created with this index could explain the variations 
in canopy water content up to 85%.

On the other hand, it has been detected that the high level of water content in the vegetation creates a significant 
saturation problem. Another finding of this study is that the predictive power reaches higher levels in low canopy water 
content characteristics. The results of this study show that in situ hyperspectral data has a very high potential in determining 
vegetation water content in grasslands.
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Introduction

Grasslands, which span over one-third of the Earth’s land 
surface, contribute diverse ecosystem services such as 
food production, carbon sequestration, climate change 
mitigation, biodiversity preservation, water resource 
conservation, forage availability, and the potential for 
tourism and recreation (Andrade et al., 2015; Bangira 
et al., 2023; Blair et al., 2014; Zhao, 2023). Throughout 
Europe, from low-lying areas to mountainous areas, 
nearly all regions have semi-natural dry grasslands 
and scrubland habitats on calcareous substrates, which 
include rangelands, meadows, pastures, and fodder crops, 
is closely linked to the practice of extensive grazing and 
land use (Varela & Robles-Cruz, 2016). Despite having 
lower species diversity at larger spatial scales, Temperate 
Europe encompasses specific habitats with remarkably 
rich species composition on smaller scales, such as the 
semi-natural grasslands that are particularly characterized 
by their high vascular plant diversity (Habel et al., 2013). 

The current diversity of the Mediterranean Basin, 
including the richness of its grasslands on a small scale, can 

be attributed not only to its favorable climatic conditions 
throughout history, including the Pleistocene glaciations, 
but also to the impact of human activities and the presence 
of a diverse landscape with isolated mountains and islands 
(Apostolova et al., 2014; Olmeda et al., 2019). Despite 
their ecological, cultural, and agricultural significance, 
grasslands are globally endangered due to various human-
induced factors and climate change (Grašič et al., 2023). 
Especially high-mountain plant communities face a threat 
to their survival due to various causes, all of which originate 
from human activities and can be categorized as part of 
the phenomenon referred to as global change (Gavilán et 
al., 2012). Even significant changes in temperature and 
precipitation are projected to occur, thereby leading to 
marked transformations in high mountain ecosystems 
across southern Europe due to the impact of climate change 
(Gutiérrez-Girón & Gavilán, 2013).

Examining the biophysical and biochemical parameters 
of the dominant vegetation of these grasslands provides 
crucial information about the ecosystem’s functionality. 
These parameters play a key role in various issues, such 
as calculating grazing productivity (Dong et al., 2020), 
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monitoring grazing health and vigor (Xu et al., 2019), 
preparing conservation plans for habitat and biodiversity 
(Monteiro et al., 2018), and determining land use strategies 
(Guo et al., 2000). Therefore, investigating the spatio-
temporal variations of these properties will yield crucial 
insights into understanding vegetation growth, evaluating 
vegetation physiological conditions, and supporting 
ecosystem conservation. (Lu et al., 2017). 

Vegetation water content (VWC) provides essential 
information for agricultural decisions, including the 
amount and timing of irrigation (Xu et al., 2020) or 
drought monitoring (Gao et al., 2014; Kowalski et al., 
2023), as water stress often restricts photosynthesis 
and plant primary productivity (Zhang, & Zhou, 2019). 
Moreover, it provides crucial knowledge into various 
fire behavior prediction models and fire danger indices 
(Yebra et al., 2018), as it affects ignition, combustion, 
fuel availability, fire severity and propagation, and 
smoke composition and production (Colombo et al., 
2008; Jackson et al., 2004; Liu et al., 2016; Yebra et al., 
2013). 

VWC analyses are traditionally carried out using 
data collected from the fieldwork (Le Vine & Karam, 
1996). Extensive field surveys and laboratory procedures 
are applied in these studies, which have a high local 
level of accuracy but are time consuming and costly 
(Sibanda et al., 2019). Besides, it is often necessary to 
use interpolation methods to fill the temporal and spatial 
gaps of the obtained local data (Mendiguren et al., 
2015). On the other hand, remote sensing methods are a 
powerful alternative for acquiring data at a wide variety 
of spatial and temporal scales (Bellini et al., 2023; Yuan 
et al., 2023). The surface reflectance can be measured 
directly in the field using spectroradiometers (Karakoç 
& Karabulut, 2019) or estimated through satellite 
imagery (Lei et al., 2023). 

Several methods have been developed based on 
remote sensing studies of vegetation water content 
(Lei et al., 2023), which include: 1) spectral vegetation 
index methods (Solgi et al., 2023; Wang et al., 2009), 2) 
radar vegetation index methods (Mandal et al., 2020), 
3) the PROSPECT and PROSAIL model (Jacquemoud
et al., 2009; Ravi et al., 2022), 4) Canopy Equivalent 
Water Thickness (Meiyan et al., 2022), 5) intelligent 
algorithms (Zahid et al., 2019), and 6) the grey-level co-
occurrence matrix method (GLCM) (Iqbal et al., 2021).

Although conducting in situ measurements can 
be time-consuming and costly, they provide the most 
dependable information for a specific date and present 
researchers with an opportunity to gain a comprehensive 
understanding of the studied environment (Frank et al., 
2022). In recent years, a significant effort has been made 
to determine the water content at the canopy level using in 
situ remotely sensed data (Feng et al., 2023; Frank et al., 
2022; García-Haro et al., 2020). These research studies 
are based on two approaches: a physically based approach 
and a statistical one (Liang, 2004). The physically based 
approach is a deductive research method that assumes 
that hyperspectral sensors perceive the light influenced 
by various canopy characteristics, including canopy 
architecture, structure, and composition (He & Mui, 

2010). The statistical approach, commonly referred to as 
the empirical approach, is an inductive research method 
that investigates the existence of consistent correlations 
between variables derived from field measurements and 
spectral data (Darvishzadeh, 2008; Fan et al., 2018; 
Kycko et al., 2019; Tong et al., 2023).

The statistical applications are based on monitoring 
the change of water absorption area in the near-infrared 
(NIR) (780–1400 nm) and shortwave infrared (SWIR) 
(1400–3000 nm) regions of the spectrum. Variations in 
VWC can be observed in the changes in the absorption 
points centered at 970, 1200, 1450, 1940 and 2500 nm 
(Liu et al., 2016). However, several factors control this 
variability, such as vegetation type, canopy structure and 
ecological conditions. Since the variations are centered 
on specific bands, researchers are increasingly interested 
in hyperspectral data tools due to their capacity to collect 
data in hundreds of bands. Hence, hyperspectral data 
are widely used in the investigation of the biophysical 
and biochemical properties of vegetation (Danson 
& Bowyer, 2004; Colombo et al., 2008; Karakoç & 
Karabulut, 2019). Here, airborne and satellite-born 
sensors provide data for landscape-level analysis, while 
portable/handheld spectroradiometers are preferable for 
leaf or canopy-level surveys.

The main objective of this study is to investigate 
the relationships between the spectral characteristics 
of grasslands and the CWC using a handheld 
spectroradiometer and data collected by field studies. 
Thus, the performance of hyperspectral vegetation 
indices in estimating CWC in grasslands will be 
evaluated with a statistical approach. In this context, 
the research questions are: (1) Which hyperspectral 
vegetation index correlates highest with CWC? (2) 
How do CWC characteristics of grasslands affect model 
predictions?

Materials and Methods

Study area

Mediterranean calcareous grasslands are characterized 
by a high diversity of plant species adapted to dry and 
hot climatic conditions. These grasslands are known 
for their unique composition, with a high proportion 
of grasses and herbaceous species. Additionally, they 
are important for supporting a variety of wildlife and 
contributing to soil conservation. However, calcareous 
grasslands in the Mediterranean region are considered 
one of the most endangered ecosystems due to human 
activities, including urbanization, agriculture, and 
overgrazing (Vié et al., 2009). Therefore, it is crucial 
to understand the ecological processes that support the 
functioning of these grasslands to conserve them. 

Vegetation biophysical and biochemical structures 
in grasslands are impacted by the emergence of 
diverse ecological conditions across varying elevations 
(Montalvo et al., 1993). The assignment of study areas 
was based on elevation, and three distinct elevation steps 
were selected to represent different grassland conditions. 
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Sampling areas at ~500 m asl, ~1200 m asl and ~1400 m 
asl altitudes are located within the provincial borders of 
Kahramanmaraş (Turkey) and on the easternmost edge 
of the Central Taurus Mountains. 

The existence of ecological conditions that change 
depending on the elevation steps also affects the floristic 
composition (Atalay et al., 2014). The first study area, 
located at 500 m asl, is adjacent to the Kahramanmaraş 
meteorological station, where the annual average 
temperature is 16.7 °C, and the total yearly precipitation 
is 731.3 mm. Intensive grazing activities occur in 
this area, connected to the city and livestock-based 
settlements. The vegetation cover in the region appears 
sparse and exhibits lower biomass characteristics (718 
g m-2) compared to other study areas (Karakoç, 2019). 
According to Varol (2003) and Turkish Plants Data 
Service (TÜBİVES), the dominant species in the field 
at approximately 1200 m asl are Hordeum bulbosum 
L., Agropyron sp., Convolvulus cantabrica L., Adonis 
microcarpa DC., Lactuca sp., and Fibigia eriocarpa 
(DC.) Boiss. Trifolium sp., Bromus arvensis L., Secale 
sp., Bellis perennis L., and Taraxacum crepidiforme DC. 
can also be listed. The second (1200 m asl) and third (1400 
m asl) study areas have similar ecological characteristics 
and are adjacent to the Andırın meteorological station, 
where the annual average temperature is 13°C, and the 
annual total precipitation is 1418 mm. These karstic 
fields, covered with dense species such as Pinus brutia, 
Pinus nigra, Abies clicica, Cedrus libani, and Quercus 
cerris, are characterized by grass formations with high 
biomass characteristics (1025 g m-2 for 1200 m asl; 1891 
g m-2 for 1400 m asl) nestled within dolines (Karakoç, 
2019). The dominant species in this formation are 
Trifolium sp., Bromus arvensis L., Secale sp., Bellis 
perennis L., and Taraxacum crepidiforme DC. at ~1200 

m asl, and Hordeum bulbosum L., Secale sp., Aegilops 
speltoides Tausch var. speltoides, and Trifolium sp. at 
~1400 m asl. Additionally, Agropyron sp., Cynosurus 
echinatus L., and Poa pratensis L. can be listed (Varol, 
2003). Despite the intensive engagement in recreational 
activities and transhumance practices within these fields, 
they are currently experiencing substantial grazing 
pressure (Doygun et al., 2021; Karabörk, 2019).

Field study

Two methods were used to collect the samples: the 
purposive sampling method and the line transect method. 
Because of the heterogeneous vegetation pattern at ~500 
m asl, all samples were collected by purposive sampling 
method to avoid data that do not characterize the study 
area. At both ~1200 m asl and ~1400 m asl, 21 samples 
were obtained with the purposive sampling method, and 
50 samples were obtained by the line transect method. 
Transect routes consist of two separate lines of 125 
meters each. Data were collected from the roads at 
intervals of 5 meters. Ultimately, 213 samples, 71 from 
each study area, were obtained. All measurements were 
made within 50x50 cm quadrats.

The first step of the data collection process is 
recording spectral signatures from predetermined 
sampling locations. ASD FieldSpec® HandHeld 
spectroradiometer (Analytical Spectral Devices, Inc., 
Boulder, CO, USA) was used for this operation. The device 
can measure between 325–1075 nm at 1 nm intervals. 
Thus, spectral data were obtained in 751 spectral bands 
in each reading. Because the 25° field of view probe 
was used while reading spectra, measurements were 
made approximately 75 cm above the canopy (Karakoç 
& Karabulut, 2021). Weather conditions and the angle 

Figure 1. The study area.
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of incidence of light are important for the precision 
of spectroradiometer measurements. Therefore, the 
measures were completed between 10:00 and 14:00, 
when the sun angle changes the least, on windless and 
less cloudy days. The process was calibrated, taking 
aprox. 10–15 measurements using a white calibration 
panel. By doing that, we avoided potential imbalances 
resulting from variations in lighting conditions.

After the measurements mentioned above were done, 
the vegetation in quadrats were cut from the ground 
level. Subsequently, the labeled samples were swiftly 
transported to the laboratory environment in ziplock 
bags, where precision balances were used to obtain their 
weight measurements. The first weighing operation 
is recorded as the fresh weight (Guo et al., 2005). 
Afterward, the samples were laid in a thin layer in the 
laboratory environment and left to dry by mixing every 
day for a week. After the drying process was completed, 
it was reweighed a second time, and recorded as dry 
weight. As a result of the above steps, formula 4 was 
used to calculate the CWC parameter.

Data Processing

VWC analyzes are performed by calculating three 
common parameters: Fuel moisture content (FMC), 
equivalent water thickness (EWT), and canopy water 
content (CWC) (Mendiguren et al., 2015).

	 (1)

FMC is calculated by subtracting the dry weight 
(WDry) from the fresh weight (WFresh) of the vegetation, 
dividing the result by the dry weight, and then converting 
the result to percentage (%) by multiplying by 100. 
FMC is considered a critical variable for fire models, 
as it produces vital information about the starting 
point and/or spread of the fire (Liu et al., 2016). If the 
moisture weight (the result of WFresh- WDry) is divided by 
fresh weight, the obtained result is called “live FMC”; 
if divided by dry weight, it is called “dead FMC” (Quan 
et al., 2015). As the dead matter on the ground (litter) 
is affected by meteorological conditions, meteorological 
danger indices can be used to estimate FMC directly. On 
the other hand, Live FMC is more variable than dead 
FMC, as it is a product of the interaction between plant 
physiology and soil moisture conditions (Danson & 
Bowyer, 2004).

EWT is calculated with the following formula:

	 (2)

It is obtained by subtracting the dry weight (WDry) 
from the fresh weight (WFresh) of the vegetation and 
dividing it by the leaf area (AreaLeaf). It can also be 
defined as a parameter that measures the water layer 
density per unit leaf area or the water mass per leaf area.

CWC (the preferred method for this study) is 
calculated using the following formulas:

	 (3)

or

	 (4)

CWC, which provides information on water 
content at the canopy level, can be described as a joint 
result of EWT and LAI. Based on this interaction, 
it can be obtained by multiplying EWT and LAI. 
Another calculation method is subtracting the dry 
vegetation weight from the fresh and dividing the 
result by the area measured (AreaGround) (Mendiguren 
et al., 2015).

The analysis is based on two basic categories: 
according to the elevation step of the study areas 
(field-based) and the amount of CWC of the samples 
(quantity-based). The field-based category consists of 
three classes: ~500 m asl, ~1200 m asl and ~1400 m asl. 
This classification is based on the study areas located 
at different elevations; therefore, the vegetation will 
develop under the influence of unique ecological 
dynamics and have a unique character. However, the 
quantity-based categorization is based on the judgment 
that samples with similar amounts will have a similar 
relationship with light, regardless of which field they 
are obtained from. Within this scope, preliminary 
analyses were made (Karakoç & Karabulut, 2017) 
and it was observed that the threshold of 1000 g m-2 

constitutes a significant break. So, regardless of which 
field it was collected from, the samples were divided 
into two classes representing low (0-1000 g m-2) and 
high (1000+ g m-2) CWC. The sensitivity of ratio-
based vegetation indices to saturation effect is well-
established (Jiang et al., 2006; Karakoç & Karabulut, 
2019), and thus, another objective of this classification 
is to determine the threshold at which saturation effect 
becomes apparent.

Spectral curves provide valuable information for 
visual interpretation of the photosynthetic activities 
of vegetation. Therefore, spectral measurements were 
converted to reflection curves from the radiance data. 
Formula 5 was used for this transformation (Peddle et 
al., 2001).

(5)

Here L(λ); the radiant wavelength of the target, S(λ); 
the radiance value obtained from the calibration panel, 
Cal(λ); shows the calibration factor value. By multiplying 
the result by 100, the reflectance values are converted to 
percentages.

The relationships between CWC and spectral data 
were investigated using ratio-based vegetation indices. 
These indices are obtained by applying basic arithmetic 
operations to selected wavelengths each other. In this 
study, 59 indices were tested. Appendix 1 shows the 
list of all indices; Table 1 shows the formulas that best 
explain the variations in CWC.
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Table 1. The fittest vegetation indices for the estimation of CWC.
Indices Formula Sources
Simple Ratio
SR (550,800)

Buschman & Nagel, 1993

Simple Ratio
SR (740,780)

Mistele & Schmidhalter, 2010

Normalized Water Index-3
NW-3 (920,970)

Prasad et al., 2007

Statistical Analysis

To evaluate characteristics of the data set, firstly, 
descriptive statistics were presented, then normality 
tests were applied. Skewness and kurtosis statistics 
and Kolmogorov-Smirnov and Shaphiro-Wilk tests 
were used to examine the normality of the datasets 
(Genceli, 2007). It is also known that Kolmogorov-
Smirnov and Shaphiro-Wilk tests are more useful 
when the number of observations is less than 300 
(Kim, 2013). If the results of the tests are significant, 
it indicates that the data set is significantly different 
from the normal distribution.

Spectral data were evaluated in two ways. The 
study employed two approaches for analyzing CWC: 
visual interpretation through spectral reflection 
curves and modeling via vegetation indices. The 
visual interpretation approach utilized spectral ranges 
commonly recognized as indicators of significant 
biophysical and biochemical properties. For example, 
focusing on the red region (~600–700 nm) in the 
reflection curve gives indirect information about 
which sample contains relatively more CWC can be 
obtained. On the other hand, preliminary information 
about the water content in the samples can be acquired 
by looking at the manner of the curves in the water 
absorption region at 970 nm. More details can be found 
in Lillesand et al. (2018) about wavelength behaviors 
under the control of vegetation characteristics.

Although the interpretation of spectral curves 
gives general information about vegetation and 
provides the opportunity to compare samples, it 
is insufficient for empirical inferences. Hence, 
regression analysis was performed using vegetation 
indices to model the variations occurring in the 
CWC. The first is the “model” dataset group, where 
the model will be built, and the second is the “test” 
dataset group were used to test the model function. 
The model group contains approximately 80% of the 
studied dataset, while the test group approximately 
20%. To build regression models, exponential, 
linear, logarithmic, and power function models 
were tested, and the function with the highest 
coefficient of determination (R2) was chosen as the 
fittest explanatory model (He et al., 2009; Jin et al., 
2014). In this way, the unknown CWC parameter 
was modeled based on known index values.

As a standard statistical metric, root mean square 
error (RMSE) was used to control model performance 
(Chai & Draxler, 2014). Statistical significance was 
determined using an alpha of 0.05, and the data were 

analyzed with SPSS 14.0 for Windows (SPSS Inc., 
Chicago, IL).

(6)

Yi= the measured parameter,
Yi’= predicted parameter,
N; the number of observations

Results

Descriptive Statistics and Normality Tests

In the field-based category, the mean CWC at ~1400 
m asl is about twice that of ~1200 m asl and about 
two and a half times that of ~500 m asl (Table 2). 
The standard deviation is also at the highest value 
at ~1400 m asl. Both the standard deviation and 
the range are at the lowest values at ~1200 m asl, 
indicating that this class has a more homogeneous 
structure than the others. However, ~500 m asl has 
low CWC characteristics and extreme values. In 
quantity-based classes, the standard deviations are 
lower than the mean value.

For this reason, it can be considered that the data 
sets are close to the normal distribution. However, the 
number of observations between classes is different. 
According to Kolmogorov-Smirnov and Shapiro-
Wilk tests, it was determined that no data class was 
homogeneous. In other words, the data used in the 
study are significantly different from the normal 
distribution (Table 2).

Spectral Curves

Natural or artificial objects can transmit, absorb, or 
reflect specific portions of electromagnetic radiation 
based on their physical and chemical properties. On 
the other hand, healthy plants with high water content 
stand out with their unique reflection properties when 
compared to other natural objects. As shown in Figure 
2h, the reflection properties of healthy plants with 
high water content are distinguishable from other 
natural objects due to their low reflection in the blue 
and red regions (around 400–500 nm and 600–700 
nm, respectively), high reflection in the green region 
(around 500–600 nm), and very high reflection in the 
near infrared region (around 740–1400 nm) (Karakoç, 
2019).
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Table 2. �Descriptive statistics and tests of normality. Abbreviations are: (sig.), signification; sig. < 0.05: 
significant at 95% confidence interval; sig. < 0.01: significant at 99% confidence interval.

Field-Based Quantity-Based
Descriptive statistics and parameters 

of normality (g m-2)
~500 m 

asl
~1200 m 

asl
~1400 m 

asl
0-1000 g m-2 1000+ g m-2

N 71 71 71 156 57
Mean 502 727 1356 481 1902
Median 276 619 998 424 1630
Std. Deviation 740 365 942 239 890
Range 3892 1699 4608 924 3900
Minimum 74 243 322 74 1031
Maximum 3966 1943 4930 998 4930
Quartiles 25 211 477 669 281 1213

50 276 619 998 424 1630
75 377 957 1883 632 2290

Kolmogorov-Smirnov (sig.) 0,00 0,00 0,00 0,00 0,00
Shapiro-Wilk (sig.) 0,00 0,00 0,00 0,00 0,00

The curve representing the ~500 m asl class shows 
that there is no significant peak between the blue and red 
region, although the highest mean reflectance of the visible 
region (~400–700 nm) occurs at the green wavelength 
(~500–600 nm) (Figure 2d). On the other hand, at ~1200 
m asl and ~1400 m asl, the mean absorption in the blue 
(~400–700 nm) and red (~600–700 nm) regions increased 
noticeably, so the green region became a prominent 
peak. The individual curves of the samples display the 
difference between the red bottom regions at ~1200 m asl 
and ~1400 m asl is less than those at ~500 m asl (Figures 
2a-2c). Moreover, as the elevation step of the study area 
increases, the absorption at the red bottom also increases. 
~1400 m asl is the area where the curves converge the 
most in the visible region (Figure 2c). In the NIR region 
(~780–2500 nm), the highest mean reflection occurs at 
~1400 m asl and the lowest at ~500 m asl (Figure 2c). At 
~1200 and ~1400 m asl the absorption behavior centered 
at 970 nm (water absorption region) is much more 
apparent than at ~500 m asl (Figures 2a-2d).

The 1000+ g m-2 data class in the quantity-based 
categorization revealed a more homogeneous reflection 
characteristic in the visible region (Figure 2f). In 
the 0-1000 g m-2 class visible region reflectance are 
significantly higher and even exceed 20% in the red region 
(Figure 2e). Reflectance curves of both quantity-based 
data classes show that as the amount of CWC increases, 
the red absorption region becomes more pronounced 
and the variation between samples decreases. The 
variability of the curves in the NIR region is also quite 
evident. Although the lowest NIR reflection is around 
20% in the 0-1000 g m-2 class, this rate is around 40% 
in the 1000+ g m-2 class and the maximum reflections 
have reached up to 90%. The 0-1000 g m-2 class curve 
shows higher reflectance values throughout the visible 
region, including the red-edge region (~680–750 nm). 
However, after about 700 nm, the situation reverses and 
the 1000+ g m-2 class shows higher reflection trend.

While the visual interpretation of the spectral curves 
provides useful information in terms of comparing data 

classes and the samples, it is necessary to quantitative 
analyzis on vegetation indices to reach empirical 
findings.

Vegetation Indices

Ratio-based vegetation indices were used to analyze the 
relationships between CWC and spectral data. At first, 
regression models were produced by using vegetation 
indices, and then CWC estimations were made based on 
the model functions. About 80% of the data set was used 
for building and 20% for testing the model. Fifty-nine 
vegetation indices were analyzed in this process. All 
tested indices and the coefficient of determination are 
given in Appendix 1.

According to the regression models, the NW-3 
(920.970) index produced the strongest function for 
all samples in all categories (Table 3). The exponential 
function created with this index has an explanatory power 
of 74% for the variations in CWC (Figure 3a). However, 
as the amount of CWC increases, the scattering points 
become distant from the regression curve. This case 
can be considered as a clear indication of the saturation 
problem. The estimation model also shows that errors 
increase especially in samples over 1000 g m-2 (Figure 
3b). 

Analysis for the field-based category showed that 
NW-3 (920,970) was the most suitable vegetation index 
for CWC estimation at ~500 m asl. The power of the 
exponential model created with this index to explain 
the variations in the CWC is over 84% (Figure 4a). 
However, it was observed that the predictive power 
decreased considerably in samples above 1000 g m-2. 
Up to this threshold, the clusters of scattering points 
around the curve can be considered as evidence that 
high CWC significantly affects the predictive power of 
the models. It was determined that the NW-3 (920,970) 
index was the fittest index in the models built for ~1200 
m asl. The exponential model created with this index 
had an explanatory power of around 75% (Figure 4c). 
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Figure 2. Spectral curves of field-based (a-d), quantity-based (e-g) classes and the typical reflection 
properties of healthy plants with high water content (h).
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Figure 3. The fittest model function (a) and test of the model (b) for all samples in all categories.

Figure 4. The fittest model function (a, c, e) and test of the model (b, d, f) for field-based classes.
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Table 3. The most suitable models and corresponding RMSE values were determined for all categories and samples.
Category/Class  Indices Model R2 Formula RMSE (g m-2)

All samples
NW-3 

(920,970)
Exponential 0,7438 y = 106,06e50,004x 414

Field-based

~500 m asl
NW-3 

(920,970)
Exponential 0,8418 y = 84,834e48,334x 244

~1200 m asl
NW-3 

(920,970)
Exponential 0,7508 y = 221,07e31,354x 151

~1400 m asl SR (740,780) Power 0,6611 y = 85,629x14,334 983

Quantity-based
0-1000 g m-2 SR (550,800) Power 0,6671 y = 46,507x1,6005 152
1000+ g m-2 SR (740,780) Exponential 0,4712 y = 0,7039e6,4319x 202

For ~1400 m asl, unlike the other two fields, the power 
function has the highest explanation (Figure 4e). In this 
field, the model created with the SR (740.780) index 
reached an explanatory power of around 66%. 

It has been determined that the most useful index 
for the CWC estimation of the 0-1000 gr/m2 class is SR 
(550,800). The power function created with this index 
explains more than 66% of the variations in this data 

class, representing low CWC (Figure 5a). For the 1000+ 
g m-2 class, representing high CWC, SR (740,780) 
was the fittest index. The exponential function created 
with this index has an explanatory power of 47% for 
the variations occurring in CWC (Figure 5c). When 
the distribution of prediction points is examined, it is 
seen that the model has low accuracy but high precision 
(Figure 5d). 

Figure 5. The fittest model function (a, c) and test of the model (b, d) for quantity-based classes.

Discussion

Diverse ecological conditions across different elevation 
gradient significantly influence the biophysical and 
biochemical structures of vegetation (Bora et al., 
2020; Dechimo Jr & Buot Jr, 2023; Pescador et al., 
2015; Zou et al., 2023). In this context, there is an 
effort to test existing indices (Yang and Guo, 2014; Wu 
et al., 2008) or to produce new vegetation indices in 

studies conducted at the hyperspectral level (Chang-
Hua et al., 2010; He et al., 2006; Jiang et al., 2022). 
The main reason for this is that vegetation indices are 
affected by many external factors and there is no linear 
relationship between the biophysical and biochemical 
properties of vegetation and vegetation indices (Xie et 
al., 2009). For example, in grasslands with low green 
vegetation density, NDVI is unstable due to soil color, 
canopy structure and atmospheric conditions. At the 
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same time, the Red Edge Position Index (REP) is less 
affected by these conditions (Cho et al., 2007). In 
addition, the problem of the decrease in the power of 
vegetation indices in areas with high green biomass, 
called the saturation phenomenon, leads researchers to 
search for various indices (Ren & Zhou, 2019; Zhao 
et al., 2014). The study areas were carefully chosen 
based on elevation gradient to observe these variations, 
resulting in three distinct elevation steps. These steps 
were selected to represent different grassland conditions 
and were located at approximately 500, 1200, and 1400 
m asl in the easternmost region of the Central Taurus 
Mountains. This study aimed to examine the spectral 
VIs’ potential for estimating CWC by using in situ 
hyperspectral data (Zhang & Zhou, 2019).

In this research, the findings showed that all samples, 
without categorizing, as well as the ~500 m asl and 
~1200 m asl classes had a very high explanatory power. 
These successful models are provided with NW-3 
(920,970) (Normalized Water Index-3) and exponential 
function. However, the explanatory power has decreased 
in the ~1400 m asl class, and the model function used 
has also differentiated. The mean moisture content 
of this field is two to two and a half times higher than 
other areas. Therefore, the saturation effect weakened 
the power of the prediction models (He, 2008; Zhao et 
al., 2014). Vescovo et al. (2012) documented that when 
phytomass values reached 100 g m-2, spectral vegetation 
indices such as NDVI, MSR, and EVI exhibited 
saturation. EVI 2, RDVI, and WDRVI consistently 
displayed comparable performance characteristics, as 
reported in the same study. As Xu et al. (2020) reported, 
the correlation between green LAI and green NDVI 
highlights the saturation challenges encountered when 
estimating LAI using NDVI. This implies that while 
NDVI demonstrates the potential to estimate lower LAI 
values, it lacks sufficient capability to assess higher LAI 
values accurately. In this regard, there is still an intense 
effort in the literature to solve the saturation problem 
in estimating the biophysical properties of grasslands 
(Mutanga et al., 2023; Peng et al., 2020; Xu et al., 2020).

One outstanding result of this study is that the CWC 
variations occurring at ~500 m asl could be modeled 
quite satisfactorily (~85%). The characteristic features 
of this area are high heterogeneity and clustering of 
most of the data at low values below the average. When 
evaluated in this context, it is remarkable that the low 
CWC characteristics in the field has a positive effect for 
estimation models (Vescovo et al., 2012; Yebra et al., 
2018; Zhang & Zhou, 2019). The CWC at ~1200 m asl 
is relatively more evenly distributed. The analyzes for 
this field also show that CWC with high homogeneity 
character can be successfully modeled using the 
exponential model created with NW-3 (920,970). The 
least successful prediction coefficient of this class is 
~1400 m asl with ~66%. This field, characterized by a 
high range and high average, has been explained by the 
power function. The main reason for the low predictive 
power of the models is the saturation effect. 

Another consequence of the study is that quantity-
based classes have lower explanatory power than 

field-based classes. The unique character of each 
study field has caused it to expose a consistent 
spectral character within itself (He et al., 2020). In 
other words, even if the amount of CWC is similar, the 
spectral behavior of samples collected from different 
fields does not have a consistent form. In this study, 
~1400 m asl, characterized by high CWC, could 
be modeled much more successfully than the class 
where direct high CWC samples (1000+ g m-2) were 
brought together. As a result, considering each study 
field individually makes the plant-light relationship 
more predictable. In addition, recent studies indicate 
that the correlations between spectral water indices 
and plant water traits are extensively influenced by 
factors such as water stress, plant species, growing 
conditions, and phenological stages (Zhang & Zhou, 
2019).

The findings from this research indicate that the 
NW-3 (920,970) and SR (740,780) indices show 
promise, and the use of in situ hyperspectral data is 
effective in identifying factors related to canopy water 
content (CWC) in grasslands. Additional studies should 
be conducted to explore the factors that drive substantial 
changes in these areas.

Conclusions

Quantifying green vegetation across space and time is 
a valuable tool for studying the health and function of 
grasslands, enabling us to enhance our understanding 
of how land use and climate change impact these 
ecosystems. In recent years, landscape-level analyses 
have begun with data obtained from multispectral satellite 
images, airborne sensors, and hyperspectral satellites. 
The fact that multispectral satellites can continuously 
collect data in large areas and are easily accessible to 
researchers makes studies on this subject even more 
important. However, the results of widespread studies 
are not yet at the desired level of success. The main 
reason is the inability to obtain spatial and temporal data 
with sufficient resolution in large areas for biophysical 
and biochemical parameters. This problem is tried to be 
overcome with airborne sensors placed on aircraft or 
various aircraft. However, this method is both costly and 
not easily accessible to researchers.

On the other hand, the hyperspectral data collected 
at the local scale constitute an important basis for the 
analyses made at the landscape scale. Therefore, there 
is still an intense effort to investigate local relationships 
between ground measurements and hyperspectral data. 
The local-scale findings to be obtained through these 
efforts will form the basis for future research on a 
regional and global scale.
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Appendix 1. R2 values for all tested indices (Karakoç, 2019).

INDICES
~500 m asl ~1200 m asl ~1400 m asl 0-1000 g m-2 1000+ g m-2

Exp. Lin. Log. Pow. Exp. Lin. Log. Pow. Exp. Lin. Log. Pow. Exp. Lin. Log. Pow. Exp. Lin. Log. Pow.

SR (675,800) 0.630 0.552 0.356 0.520 0.502 0.455 0.459 0.538 0.103 0.062 0.083 0.134 0.489 0.506 0.518 0.568 0.000 0.003 0.007 0.000

SR (470,800) 0.706 0.609 0.416 0.598 0.627 0.586 0.531 0.626 0.119 0.051 0.055 0.129 0.592 0.594 0.586 0.643 0.001 0.000 0.001 0.000

SR (670,801) 0.637 0.567 0.356 0.527 0.505 0.457 0.462 0.541 0.112 0.071 0.091 0.143 0.492 0.509 0.520 0.570 0.000 0.004 0.009 0.001

SR (550,801) 0.732 0.663 0.499 0.647 0.733 0.679 0.628 0.706 0.390 0.245 0.249 0.399 0.648 0.635 0.613 0.667 0.043 0.073 0.057 0.033

SR (560,810) 0.729 0.666 0.496 0.642 0.731 0.676 0.625 0.705 0.383 0.242 0.246 0.392 0.647 0.634 0.611 0.666 0.040 0.071 0.055 0.031

SR (700,750) 0.641 0.549 0.394 0.548 0.628 0.578 0.545 0.621 0.284 0.188 0.199 0.303 0.525 0.514 0.503 0.552 0.012 0.027 0.029 0.014

SR (550,750) 0.721 0.634 0.480 0.637 0.722 0.664 0.613 0.694 0.354 0.213 0.218 0.362 0.650 0.635 0.611 0.666 0.012 0.031 0.024 0.009

SR (710,750) 0.639 0.538 0.428 0.571 0.681 0.633 0.599 0.669 0.428 0.302 0.304 0.434 0.521 0.498 0.492 0.539 0.085 0.111 0.108 0.085

SR (705,750) 0.641 0.543 0.411 0.561 0.661 0.611 0.576 0.649 0.357 0.243 0.249 0.369 0.528 0.510 0.501 0.549 0.036 0.057 0.057 0.037

SR (675,700) 0.378 0.207 0.246 0.412 0.373 0.297 0.296 0.367 0.000 0.000 0.001 0.000 0.540 0.426 0.477 0.524 0.021 0.005 0.008 0.028

SR (415,685) 0.192 0.183 0.153 0.168 0.011 0.013 0.011 0.009 0.148 0.174 0.163 0.146 0.010 0.012 0.013 0.011 0.044 0.071 0.065 0.037

SR (415,695) 0.000 0.016 0.013 0.000 0.234 0.163 0.168 0.237 0.270 0.329 0.286 0.245 0.345 0.326 0.282 0.296 0.119 0.145 0.135 0.108

G (554,677) 0.378 0.234 0.200 0.351 0.258 0.211 0.213 0.263 0.005 0.002 0.003 0.006 0.368 0.357 0.361 0.400 0.013 0.003 0.001 0.007

SR (550,800) 0.732 0.663 0.499 0.647 0.733 0.679 0.627 0.706 0.390 0.245 0.249 0.399 0.648 0.634 0.613 0.667 0.043 0.073 0.057 0.033

SR (670,700) 0.455 0.304 0.268 0.432 0.354 0.290 0.303 0.374 0.001 0.000 0.000 0.001 0.492 0.476 0.483 0.529 0.028 0.008 0.005 0.000

SR (720,740) 0.609 0.492 0.436 0.574 0.702 0.652 0.632 0.694 0.535 0.394 0.389 0.533 0.506 0.473 0.471 0.516 0.179 0.199 0.197 0.179

SR (650, 675,700) 0.620 0.566 0.439 0.545 0.000 0.004 0.004 0.000 0.270 0.533 0.535 0.300 0.145 0.118 0.115 0.151 0.023 0.038 0.058 0.039

SR (550,672,708) 0.019 0.006 0.004 0.024 0.291 0.254 0.286 0.293 0.105 0.058 0.066 0.108 0.174 0.182 0.200 0.194 0.024 0.022 0.039 0.042

SR (550,708,860) 0.778 0.766 0.516 0.672 0.181 0.128 0.143 0.196 0.320 0.193 0.228 0.368 0.456 0.441 0.446 0.514 0.038 0.067 0.077 0.048

SR (765,787) 0.012 0.059 0.059 0.012 0.000 0.004 0.004 0.000 0.120 0.097 0.097 0.120 0.141 0.137 0.138 0.142 0.083 0.066 0.066 0.083

SR (415,710) 0.385 0.164 0.183 0.401 0.454 0.344 0.404 0.513 0.219 0.316 0.290 0.205 0.615 0.536 0.534 0.576 0.218 0.220 0.215 0.214

SR (680,900) 0.627 0.545 0.352 0.515 0.500 0.449 0.456 0.536 0.094 0.055 0.075 0.125 0.489 0.514 0.525 0.576 0.001 0.002 0.006 0.000

SR (740,780) 0.666 0.636 0.611 0.653 0.709 0.703 0.702 0.713 0.659 0.552 0.551 0.661 0.500 0.463 0.465 0.506 0.471 0.471 0.466 0.471

VIopt1 (730,760) 0.629 0.551 0.504 0.601 0.704 0.676 0.666 0.704 0.639 0.528 0.522 0.639 0.459 0.422 0.425 0.469 0.414 0.425 0.417 0.413

DI1 (550,800) 0.275 0.194 0.161 0.240 0.507 0.561 0.522 0.522 0.006 0.006 0.010 0.008 0.330 0.327 0.335 0.351 0.002 0.004 0.000 0.000

PSSRa (680,800) 0.622 0.537 0.348 0.513 0.504 0.456 0.460 0.539 0.101 0.060 0.080 0.133 0.490 0.506 0.515 0.566 0.001 0.002 0.005 0.000

PSSRb (635,800) 0.675 0.628 0.416 0.567 0.587 0.538 0.522 0.603 0.228 0.160 0.175 0.255 0.543 0.549 0.542 0.594 0.011 0.028 0.032 0.014

CIG (550,800) 0.693 0.603 0.372 0.557 0.633 0.574 0.528 0.624 0.144 0.069 0.077 0.160 0.590 0.592 0.573 0.641 0.001 0.000 0.001 0.000

NDVI (680,800) 0.398 0.221 0.160 0.333 0.507 0.412 0.373 0.469 0.154 0.093 0.096 0.158 0.563 0.468 0.421 0.542 0.001 0.009 0.009 0.001

NDVI (635,800) 0.457 0.280 0.203 0.382 0.573 0.474 0.434 0.536 0.268 0.180 0.180 0.270 0.592 0.504 0.459 0.574 0.017 0.034 0.035 0.017

NDVI (470,800) 0.477 0.273 0.229 0.434 0.560 0.448 0.415 0.527 0.134 0.058 0.058 0.135 0.637 0.533 0.505 0.625 0.000 0.002 0.002 0.000

NDVI (430,680) 0.188 0.131 0.217 0.258 0.105 0.095 0.084 0.099 0.104 0.108 0.112 0.103 0.019 0.016 0.020 0.023 0.006 0.021 0.021 0.011

NDVI (550,801) 0.578 0.401 0.315 0.508 0.674 0.582 0.537 0.635 0.402 0.250 0.249 0.403 0.666 0.588 0.553 0.657 0.027 0.046 0.043 0.025

NDVI (670,801) 0.407 0.229 0.166 0.340 0.510 0.413 0.375 0.472 0.165 0.103 0.105 0.168 0.568 0.472 0.426 0.547 0.002 0.013 0.013 0.003

NDVI (680,710,750) 0.611 0.584 0.437 0.545 0.714 0.683 0.637 0.700 0.547 0.402 0.389 0.540 0.343 0.358 0.363 0.359 0.191 0.202 0.194 0.190

NDVI (705,750) 0.518 0.356 0.236 0.411 0.636 0.553 0.494 0.591 0.373 0.250 0.249 0.373 0.552 0.492 0.451 0.545 0.038 0.056 0.056 0.038

NDVI (445,705,750) 0.580 0.493 0.367 0.501 0.646 0.604 0.570 0.634 0.404 0.293 0.294 0.411 0.442 0.402 0.404 0.448 0.058 0.082 0.082 0.059

NDVI (531,570) 0.370 0.341 * * 0.385 0.340 * * 0.134 0.143 * * 0.182 0.167 * * 0.014 0.034 * *

NDVI (531,550) 0.227 0.069 0.068 0.227 0.283 0.225 0.215 0.273 0.001 0.017 0.019 0.002 0.459 0.405 0.386 0.458 0.084 0.096 0.090 0.076

NDVI (440,573) 0.267 0.101 0.104 0.280 0.194 0.141 0.124 0.174 0.211 0.245 0.233 0.200 0.440 0.396 0.397 0.455 0.047 0.056 0.046 0.038

NDVI (533,565) 0.280 0.311 0.434 0.365 0.240 0.230 0.207 0.219 0.169 0.138 0.169 0.138 0.057 0.054 0.062 0.063 0.015 0.034 0.041 0.021

NDVI (483,503) 0.206 0.118 0.101 0.192 0.028 0.011 0.002 0.007 0.229 0.214 0.170 0.185 0.282 0.254 0.214 0.245 0.000 0.001 0.000 0.001

NDVI (708,760) 0.530 0.374 0.248 0.419 0.653 0.573 0.516 0.611 0.423 0.269 0.290 0.419 0.542 0.484 0.446 0.537 0.087 0.109 0.106 0.086

NDVI2 (600,800) 0.487 0.310 0.230 0.412 0.628 0.526 0.479 0.584 0.322 0.211 0.211 0.323 0.618 0.531 0.487 0.600 0.018 0.037 0.036 0.018

NDVI (550,780) 0.578 0.400 0.313 0.507 0.674 0.582 0.534 0.632 0.405 0.252 0.251 0.405 0.664 0.587 0.551 0.655 0.026 0.045 0.041 0.023

NDVI (700,800) 0.493 0.327 0.223 0.369 0.618 0.530 0.480 0.578 0.348 0.232 0.231 0.349 0.566 0.497 0.453 0.553 0.036 0.056 0.055 0.036

NDVI (680,900) 0.398 0.222 0.163 0.333 0.508 0.411 0.378 0.476 0.148 0.089 0.091 0.152 0.571 0.474 0.426 0.546 0.001 0.010 0.010 0.002

NDVI (670,800) 0.407 0.229 0.166 0.340 0.509 0.413 0.375 0.471 0.165 0.103 0.105 0.168 0.568 0.472 0.426 0.547 0.002 0.013 0.014 0.014

GNDVI (550,750) 0.575 0.394 0.307 0.504 0.663 0.570 0.520 0.618 0.365 0.219 0.219 0.366 0.665 0.588 0.551 0.654 0.006 0.019 0.017 0.005

NDI1 (680,710,780) 0.525 0.458 0.418 0.495 0.707 0.640 0.621 0.698 0.561 0.408 0.399 0.552 0.380 0.383 0.380 0.382 0.244 0.241 0.237 0.242

NDI2 (680,710,850) 0.518 0.483 0.445 0.488 0.718 0.656 0.641 0.712 0.558 0.406 0.398 0.550 0.406 0.421 0.416 0.406 0.262 0.254 0.251 0.260

NDI3 (715,726,734,747) 0.655 0.593 * * 0.717 0.696 * * 0.639 0.516 * * 0.465 0.439 * * 0.370 0.384 * *

DD (670,700,720,750) 0.468 0.379 0.184 0.303 0.654 0.710 0.600 0.664 0.264 0.199 0.196 0.263 0.366 0.372 0.357 0.401 0.021 0.016 0.027 0.034

NW-1 (900,970) 0.835 0.698 * * 0.741 0.730 * * 0.598 0.437 * * 0.467 0.405 * * 0.021 0.034 * *

NW-2 (850,970) 0.786 0.626 * * 0.704 0.705 * * 0.593 0.435 * * 0.232 0.198 * * 0.083 0.101 * *

NW-3 (920, 970) 0.842 0.715 * * 0.751 0.737 * * 0.620 0.454 * * 0.558 0.492 * * 0.197 0.233 * *

NW-4 (880,970) 0.829 0.681 * * 0.721 0.722 * * 0.624 0.457 * * 0.394 0.347 * * 0.114 0.134 * *

MSR (670,800) 0.600 0.477 0.397 0.550 0.531 0.486 0.466 0.541 0.128 0.082 0.089 0.140 0.541 0.527 0.525 0.564 0.000 0.006 0.008 0.001

MCARI (550,670,700) 0.204 0.255 0.332 0.263 0.013 0.004 0.003 0.013 0.199 0.117 0.099 0.017 0.032 0.048 0.067 0.047 0.013 0.030 0.019 0.005
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