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Abstract

During the Early and Middle Jurassic, the Iberian Basin (East of Spain) recorded the transition from a generally magma-poor passive 
margin, which operated during the latest Triassic and most of Early Jurassic, to a magma-rich passive margin, developed from Pliensba-

extensional fault zones. One of these zones of weakness, from which the volcanic deposits were expelled to the sea bottom, was the Caudiel 
-

formations. So far, the accurate age of these volcanisms, critical in the knowledge of the palaeogeographical and geodynamical evolution 
of the Iberian Basin, has remained uncertain. The ammonite content of the carbonate successions, with which these rocks are interbedded, 
allows precise biostratigraphical dating at the chronozone scale. For this purpose, 9 sections have been measured and 360 specimens of 
ammonites were collected and determined. The obtained data indicate that the Middle Jurassic volcanic deposits that are linked to the Cau-
diel Fault Zone and included into the El Pedregal Formation show a slight diachrony. They were deposited around the boundary between 
the Late Aalenian Concavum and the Early Bajocian Discites chronozones. However, in very restricted areas of the Caudiel Fault Zone, an 
older intra-Murchisonae volcanism was recorded.
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Resumen
Durante el Jurásico Inferior y Medio, la Cuenca Ibérica (Este de España) registró la transición de un margen pasivo pobre en magmatis-

mo, que operó durante el Triásico terminal y la mayor parte del Jurásico Inferior, a un margen pasivo rico en actividad magmática, que se 
desarrolló desde el Pliensbachiense hasta el comienzo del Jurásico Medio. El volcanismo submarino, fundamentalmente piroclástico y con 

volcánicas que tuvieron lugar a lo largo del Jurásico Medio en relación con esta línea de debilidad. La fase principal se manifestó mientras 

y geodinámica de la Cuenca Ibérica, ha permanecido incierta. El contenido en ammonites de las sucesiones de carbonatos, entre los que 

del Jurásico Medio que están asociados a la Zona de Falla de Caudiel e incluidos en la Formación El Pedregal muestran una sincronía casi 
perfecta. Se depositaron hacia el límite entre la Cronozona Concavum del Aaleniense Superior y la Cronozona Discites del Bajociense Infe-
rior. Con anterioridad, un volcanismo de edad intra-Murchisonae quedó registrado en áreas muy localizadas de la Zona de Falla de Caudiel.
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1. Introduction

The Iberian Plate occupied during the Jurassic a key po-
sition between the Euroasiatic and the African Plates (i.e. 

et al
and Turco, 2011) (Fig.1). The Iberian Basin was at this time 
an intracratonic basin attached to the east of the Iberian Mas-
sif, representing the western boundary of the proto-Ligurian 
Tethys Ocean (Schettino and Turco, 2011). During the Meso-

-
ics (Salas et al. et al., 2001). The Permian and 
most of the Triassic were dominated by a rifting stage, but the 
latest Triassic and the Early and Middle Jurassic have been 
considered as deposited under a post-rift stage (Salas and 

et al
2004) or better as a passive margin stage.

Nevertheless, indications that the Iberian Basin did not 
behaved as a typical passive margin, dominated by thermal 
subsidence, have been evidenced by the presence of a net-

et 
al et al

et al., 2006, 2008) 
-

Except for the scarce subvolcanic dolerites with ophitic and 

et al., 2004), the ab-
sence or limited presence of magmatism in the uppermost Tri-
assic and lowermost Jurassic deposits indicate a magma-poor 
phase during the late rifting and early passive margin stages 
(Franke, 2013). However, what is notable in this area is the 
record of the evolution from a magma-poor passive margin to 

over the period from the latest Early Jurassic to the earliest 
Middle Jurassic.

The presence of volcanic rocks interbedded in the Jurassic 
deposits of the Iberian Range (Fig. 3) is known since the 

Research works on the presence of these submarine volca-
noes within the context of regional studies were developed 

et al. 

Fernández-López et al et al. (2004). The 
presence of well marked lineaments in the distribution of 

3C), and lately corroborated by Ortí and Vaquer (1980). The 

Jurassic stratigraphic units and specially realizing the align-
ment of volcanic deposits. Other active faults, such as the Al-
cublas and Teruel faults, also include volcanic outcrops (Fig. 
2 and 3), but they will not be covered in this paper.

Thickness and facies distribution during Middle Jurassic 
were mainly controlled by this network of synsedimentary 
faults, as well as by another set of subordinate and shorter 

unequally subsiding blocks, conforming palaeogeographic 
highs and adjacent depocentres. For example, the Ateca Fault 
induced separation of the Aragonese and Castillian platforms 
and also contributed to the delimitation of depocentres within 
the El Maestrazgo High.

The regional geological mapping program performed by 
the Instituto Geologico y Minero de España (IGME) repre-
sented a considerable advance in locating outcrops of Jurassic 

et al et al., 
et al et al., 1983). 

Jurassic volcanism of the Iberian Range were contributed by 
Ancochea et al. (1988). Additional works mainly oriented to 
constrain the age of the volcanism were carried out by Lago 
et al et al et al. 

et al. (1996) and 
Lago et al. (2004). However, these works were only able to 
locate the volcanic deposits into the framework of the lithos-

et al. (1976) 
and Gómez and Goy (1979), resulting in a poor stratigraphi-
cal resolution because one of the formations, containing many 
of the volcanic rocks, spans for most of the Middle Jurassic. 
Very few papers try to specify the age of the volcanism at 
a more precise resolution on the basis of biostratigraphical 
criteria (Gómez et al. -
ández-López et al., 1985).

The objective of the present paper is to contribute to un-
derstanding the behaviour of a magma-rich passive margin, 

Iberian Basin, through the study of the two volcanic phases 
linked to the Caudiel Fault Zone during the Middle Jurassic. 
To achieve this goal, the age of these volcanisms will be de-
termined at as high stratigraphic resolution as possible. These 
volcanics are interbedded within a succession of ammonite-
bearing carbonate rocks, belonging to the Casinos and El 
Pedregal formations and deposited in an open marine shal-

and Fernández-López, 2006), which favours the use of am-
monite-based biostratigraphical methods.

2. Materials and methods

Methods applied to perform the present study are mainly 
-

ping at a detailed scale (in the order of 1:10,000 to 1:25,000) 
of the outcrops of volcanic deposits and surrounding sedi-
mentary rocks, and the study of 9 stratigraphical sections. 
These allowed the collection of 360 specimens of ammo-
nites, whose taxonomical and taphonomical determination 
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has been carried out by Prof. S. Fernández-López, Prof. S. 

Complutense de Madrid. Regarding the taphonomical pres-
ervation, the letter (r) is used to identify the specimens that 
have been accumulated (with no movement) or resedimented 
(transported, but into the same bed), (w) for the specimens 
that have been reelaborated (reworked from older beds) and 
(r/w) for the specimens in assemblages that contain fossils 
resedimented and reelaborated. The obtained biostratigraphi-
cal units have been referred to the standard chronozones of 
the Early Jurassic in Europe (Page, 2003) and of the Middle 

2003), except for: Including Ovalis as subchronozone of 
Laeviuscula Chronozone (Fernández-López, 1985), using 
Propinquans instead of Sauzei Chronozone (i.e. Fernández-

well as Niortense instead of Subfurcatum Chronozone (i.e. 

1997a, b). Lithostratigraphic units are referred to the previ-

Fernández-López, 2004a), and the 3rd order sedimentary 
ciclicity to the shallowing and deepening cycles of the Ibe-

and Gómez and Goy (2005) (Fig. 4).

3. Results

The volcanic deposits studied are located along the Caudiel 
Fault Zone and have been arranged into three main outcrops 

Caudiel, Pina-Barracas and Sarrión, respectively. The Caud-
iel outcrop, placed in its southeastern part, has been studied 
throughout the CA-1 and CA-31 stratigraphic sections. The 
Pina-Barracas outcrop, placed in the central part of the Fault 
Zone, can be divided into three minor outctops: the Pina-Bar-
racas.1 outcrop, where the PI-BA.1-5 and PI-BA.1-7 sections 
have been described, the Pina-Barracas.2 outcrop, where the 
PI-BA.2-4 section has been measured, and the Pina-Barra-
cas.3 outcrop, depicted by the PI-BA.3-1 section. Finally, in 
the northwest area, the Sarrión outcrop includes three other 
minor outcrops: the Sarrión.1 outcrop, where the SA.1-1 sec-
tion was studied, the Sarrión.2 outcrop, represented by the 
SA.2-1 section, and the Sarrión.3 outcrop, characterized by 
the SA.3-1 section (Fig.3C). The lithological and bioestrati-
graphical content of the studied sections are described in the 
following paragraphs.

3.1. Volcanic deposits

The Jurassic volcanism of the Iberian Basin is mainly rep-
-

ity (Ancochea et al et al., 2004) and manifested 

primary volcaniclastic, or pyroclastic, deposits, and 3) sec-
ondary volcaniclastic, or epiclastic, deposits.

of reduced lateral extension. They are composed of olivine, 
augite and variable proportions of plagioclase (Ancochea et 
al et al., 2004). Vesicles up to 3-4 cm in diam-

Fig.1.- Palaeogeographical map show-
ing the distribution of continental 
masses and oceans during the Mid-
dle Jurassic. Iberia occupied a key 
position between the African, North 
American and Euroasiatic plates. At 
this time, spreading becomes active 
in the Central Atlantic and the seg-
ment of the Ligurian Tethys located 
southeast of Iberia. The position of 
the studied area and of the Juras-
sic volcanic deposits are marked. 

et al
Hochard (2009), Osete et al. (2011) 
and Schettino and Turco (2011). 

-

Marché.



338 Cortés & Gómez / Journal of Iberian Geology 42 (3) 2016: 335-354

Fig- 2.- Palaeogeographical map of the Iberian Basin showing the reconstruction of the system of platforms developed during Middle Jurassic, as 
well as the grid of active faults, marked by the presence of volcanic deposits and the distribution of palaeogeographical elements. The age of 

Fig. 3.- A) Location map of the Iberian and the Betic ranges. B) Map showing the outcrops of the Jurassic deposits in the Iberian Range and the 
location of the sheets of the Geological Map of Spain at the scale of 1:50,000 that contain volcanic deposits of Jurassic age. C) Location of 
the outcrops of  and Alcublas Fault Zones and 
the NE trending Teruel Fault Zone.
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eter, formed from gas bubbles exolved as a result of a low 

hydrothermal and pore water circulation (Fig. 5A).
A special feature of the lava deposits in the Caudiel outcrop 

is the presence of fragments of older calcareous sediments 

et al., 
2000) (Fig. 5C). In the CA-31 section, the upper part of the 

that come from the underlaying sedimentary walls of the 
volcanic vents, which have been destroyed or deformed and 
partially assimilated. Fluidization of the adjacent sediments 
to the igneous bodies is commonly associated with peperitic 

et al., 2007). In the stud-
ied section, there are evidences of soft deformation, show-
ing the unconsolidated or poorly consolidated stage of the 

Paleontological sampling in the carbonate parts of peperitic 
blocks was unproductive, but the presence of soft deforma-

tion in them suggests that the source sediment cannot be 

2) Primary volcaniclastic deposits are composed of frag-
ments formed as a direct result of the explosive pyroclastic 
mechanisms. Disjunction in bowls is a common structure 
probably due to weathering (Fig. 6A). Juvenile fragments, 
possibly derived from the magma involved in explosion and 
cooled before primary accumulation (Fig. 6B), and acciden-
tal fragments, expelled by eruptive volcanic processes and 
coming from the pre-volcanic sedimentary pile (Fig. 6C), 
are common. According with the Gillespie and Styles (1999) 

-

clasts (bombs of centimetric to decimetric size) are included 
in the pyroclastic masses, near small and discontinuous lava 

3) Primary pyroclastic deposits that have been modeled by 
agents of the sedimentary environment (i.e., currents, waves, 
tides) at any time after their primary accumulation are con-
sidered as secondary volcaniclastic, or epiclastic, deposits 

Fig. 4.- Stratigraphic chart showing the lithostratigraphic units of the Middle Jurassic in the Iberian Basin and the deepening and shallowing upward 
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reworked primary pyroclastic accumulations with simple X-
bedding to epiclastic arenites (Fig. 6E) and epiclastic lutites 
(Fig. 6F), are present in the studied sections.

3.2. Caudiel outcrop (CA-31 and CA-1 sections)

The lower part of the CA-31 section (Fig. 7A) is composed 
-

and hardgrounds with signs of bioturbation (Thalassinoides), 
early cementation and ferruginous crusts. Remains of echi-
noids, bivalves, brachiopods, belemnites and ammonites 
are common. Among the ammonites, the presence of Eud-
metoceras sp. (r), Rhodaniceras sp. (r), Ludwigella sp. (r), 
Graphoceras sp. (r) and Ambersites? sp. (w) characterizes the 
Concavum Chronozone of the Late Aalenian.

Overlaying the Aalenian limestones, 12 meters of mas-

north-south direction, can be observed. Calcareous peperitized 
blocks, coming from pre-volcanic unconsolidated strata, are in-

pass laterally and upwards to volcaniclastic (pyroclastic lapil-

and of sedimentary carbonates. Maximum thickness of the 
volcanic deposits in this outcrop is 44 meters.

packstone limestones thinning upward, containing echinoids, 

with bioturbation (mainly Thalassinoides) and ferruginous 
crusts. The upper part (levels 18 to 20) contains Elatmites sp. 
(r) and Macrocephalites sp. (r/w) that characterize the Callo-
vian Stage. In the lower part (levels 16 and 17) no ammonites 
were found, but, based on regional data, these beds can be 

Fernandez-López (2004a), and probably of Bathonian age.

packstone limestones with ferruginous oolites, belonging to 

 
limestones with abundant sponges, typical of the Yátova For-
mation, Oxfordian in age.

In the CA-1 section (Fig. 7B), located about 2 km north of 
section CA-31, the volcanic deposits, here epiclastic, are still 
present, but they are very thin. Carbonates situated below the 
epiclastic deposits (8 to 13 in Fig. 7B) are reddish bioclastic 

-

sediments in peperite. Pen for scale is 14 cm long.
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oolites. Each bed shows bioturbation (Thalassinoides), well 
developed hardgrounds and ferruginous crusts. In levels 8 
and 9, Graphoceras sp. (r/w), Ludwigella sp. (r/w) (Fig. 14A) 
and Abbasites sp. (w), characterizing the Concavum Chrono-
zone of the Late Aalenian, were found.

Overlaying the 60 cm thick volcanic deposits, there is a 

with crinoids, bivalves, brachiopods and ammonites. Among 
the ammonites, Haplopleuroceras mundum
Eudmetoceras sp. (w) and Fontannesia sp. (w) indicate an 
Early Bajocian age, but also a latest Aalenian age is possi-

Fig. 6.- Photographs of pyroclastic and epiclastic deposits. A) Primary pyroclastic deposits showing incipient bowls disjunction in the 
-

humed clast of sedimentary origin composed of carbonates with ferruginous oolithes. This clast probably comes from the pre-volcan-
ic basal part of the El Pedregal Formation, Concavum Chronozone (level 15 of the CA-31 section). D) Large basaltic bombs included 

internal tractive plano-parallel lamination in Pina-Barracas.1 outcrop (level 2 of the PI-BA.1-7 section). F) Epiclastic lutites in the 
Pina-Barracas.3 outcrop (level 22 of the PI-BA.3-1 section). Hammer and pen, for scale, have a length of 27 and 14 cm respectively.
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ble. The uppermost 10 cm show signals of reworking, with 
several erosive surfaces and ferruginous crusts, and contain 
Leptosphinctes sp. (w) and Spiroceras sp. (w) of the Late 
Bajocian. The top of the bed shows a hardground with fer-
ruginous crusts.

3.3. Pina-Barracas.1 outcrop (PI-BA.1-5 and PI-BA.1-7 
sections)

The lowermost part of Section PI-BA.1-5 (Fig. 8A) is com-

with ferruginous oolites (beds 9 to 11), containing Apedogyr-
ia sp. (r) and Brasilia sp. (r) that characterize the Bradforden-
sis Chronozone of the Aalenian. The 3 m located above are 

centimetric thickness, some of which show hardgrounds at 
their top (12 to 19 in Fig. 8A). Graphoceras sp. (r), Ludwig-
ella sp. (r/w) and Euaptetoceras sp. (r), characterizing the 
Concavum Chronozone of the Late Aalenian, were collected 

limestones (Fig. 13F and G) with chert nodules (20 to 23 in 
Fig. 8A) provided scarce ammonite specimens of Haplopleu-
roceras subspinatum Haplopleuroceras 
mundum
(Late Aalenian) to early Discites (Early Bajocian) chrono-
zones.

Overlaying these limestones, there is a 4.5 m thick vol-

7 to 12. For the assessment of the taphonomical preservation of the ammonites, the criteria enounced by Fernández-López (1984a, b) have been 
followed. Notice the correlation of the volcanic deposits between the two sections.
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volcanics described in the PI-BA.1-5 section. In the lime-
stones located below the epiclastic rocks, Haplopleuroceras 
subspinatum Haplopleuroceras mundum 

-
cavum Chronozone of the Late Aalenian or the lowermost 
part of the Discites Chronozone of the Early Bajocian, have 
been found. The limestones overlaying the volcanic depos-
its contain Sonninia sp. (r/w), Pelekodites sp. (w), Brad-
fordia sp. (w), Hebetoxyites sp. (w), Euhoploceras sp. (w), 
Parsemileites sp. (w), Albarracinites sp. (w), Witchellia sp. 
(w), Lissoceras sp. (w) and Toxamblyites? sp. (w). This am-
monite assemblage, concentrated in a 20 cm thick interval, 
is composed of resedimented and mainly reworked fossils, 
but with a time amplitude of more than a chronozone. The 
rock body that includes this assemblage could form in the 
Laeviuscula Chronozone (Early Bajocian), although it could 
also be younger.

3.4. Pina-Barracas.2 outcrop (PI-BA.2-4 section)

-
lilis Chronozone) and Aalenian (Murchisonae Chronozone), 
belonging to the Casinos Formation (Fig.13A, B, C, D and 

 
limestones with ferruginous oolites (level 44) represent the 
base of the El Pedregal Formation. The upper part of this bed 

Fig 8.- A) Stratigraphic column of the PI-
BA.1-5 section in the Pina-Barracas.1 
outcrop. B) Stratigraphic column of the 
PI-BA.1-7 section. Notice the correlation 
of the volcanic deposits between the two 
sections.

-
ate rocks can be observed. Reworked epiclastic deposits 
also were accumulated at the top of the stratigraphic section. 
The volcaniclastic deposits are covered by 4.3 m of bioclas-

constituted by fragments of crinoids and bivalves commonly 
concentrated in rills (Fig. 13H and I). In the upper part, the 
beds are thinner and include hardgrounds at their tops. De-
spite that no solid evidence was obtained, levels 25 and 26 
could belong to the Propinquans Chronozone of the Early 
Bajocian. In the upper part of level 27, Chondroceras sp. (r), 
Stephanoceras sp. (w), Epalxites sp. (w), Toxamblyites sp. 
(w), Oppelia sp. (w) and Stemmatoceras sp. (w) constitute 
an assemblage that probably belongs to the Humphriesianum 
Chronozone of the upper part of the Early Bajocian.

The uppermost part of the PI-BA.1-5 section is composed 

nodules, and interbedded thin marls in the lower part. Below 
a hardground, marking the top of the succession, the presence 
of Chondroceras sp. (r), Stemmatoceras sp. (r), Oppelia sp. 
(r/w), Itinsaites sp. (r/w), Poecilomorphus sp. (r/w) (Fig. 14 
D), Stephanoceras sp. (w), Strigoceras sp. (r) and Norman-
nites? sp. (w) continues characterizing the Humphriesianum 
Chronozone of the upper part of the Early Bajocian.

In the PI-BA.1-7 section (Fig. 8B), the 1 m thick arenite 
and lutite epiclastic deposits represent the pinching out of the 
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contains Ludwigella sp. (r) (Fig. 14B). Above the ferruginous 
-

stone limestones with hardgrounds at their top, in which 
Graphoceras sp. (r) and Ludwigella sp. (r) of the Late 
Aalenian Concavum Chronozone have been collected. The 

-
mentary arenite and lutite epiclastic deposits (47 in Fig. 9). 
The limestones located above the epiclastic deposits contain 
Graphoceras sp. (r), Haplopleuroceras sp. (r), Reynesella sp. 
(r) and Braunsina

with no doubts the lowermost part of the Discites Chrono-
zone of the Early Bajocian.

3.5. Pina-Barracas.3 outcrop (PI-BA.3-1 section)

The bioclastic wackestone-packstone limestones of the lev-
-

ing to the Casinos Formation. In its middle part, a continu-
ous horizon has provided Leioceras comptum (REINECKE) 
(w), Leioceras uncinatum Leioceras linea-
tum Tmetoceras sp. (w), Pleydellia leura 

Bredyia subinsignis (OPPEL) (w). 
This is an assemblage with mixed chronorecords of the Aalen-
sis (Late Toarcian) and Opalinum (Early Aalenian) chrono-
zones, where all specimens are reelaborated. The rock body 
could have been deposited during the Opalinum Chronozone, 
but it could also be younger. Almost 2 metres of volcaniclas-
tic (epiclastic) deposits lie above level 14 (the lowermost vol-
canics, corresponding to the level 15). On top of that, a new 
interval of bioclastic wackestone-packstone limestones (beds 
16 to 19) can be observed. Hardgrounds, with bioturbation 
(mainly Thalassinoides) and ferruginous crusts, are present at 
the top of the beds. In level 18, the presence of Graphoceras 
sp. (r), Ludwigella sp. (r), Haplopleuroceras sp. (r) and Tri-
lobiticeras? sp. (r) characterizes the Concavum Chronozone. 
Above this sedimentary interval lies the about 4 m thick up-
permost volcanic accumulation (levels 20 to 22), entirely 
composed of epiclastic arenites (level 21) and lutites (Fig. 

limestones with chert nodules, which, based on regional data, 
have a probable Bajocian age.

3.6. Sarrión.1 and Sarrión.2 outcrops (SA.1-1 and SA.2-1 
sections)

In the SA.1-1 section (Fig. 11A), above the carbonates 

 limestones of the El Pedregal Forma-
tion (beds 4 to 9 in Fig. 11A) contain Brasilia sp. (r), Ape-
dogyria sp. (r/w), Abbasites sp. (r) and Abassitoides sp. (r), 
characterizing the Bradfordensis Chronozone of the Aaleni-
an. Above, the bioclastic 
with chert nodules (interval 10-12) include Graphoceras sp. 
(w) and Ludwigella sp. (w) in the lower part, and Ludwig-
ella sp. (r) and Haplopleuroceras subspinatum
(r) (Fig. 14C) in the upper part. This interval represents the 
Concavum Chronozone of the Late Aalenian. In the bioclas-
tic 
the interval 14-15, Haplopleuroceras subspinatum -
MAN. (r), Haplopleuroceras cf. mundum
Haplopleuroceras crassum GERARD (r), Westermannites sp. 
(r) and Euhoploceras sp. (r) were obtained, indicating the 
presence of the Discites Chronozone of the Early Bajocian. 
Overlaying the limestones with chert nodules, there are 12.5 

-

Fig. 9.- Stratigraphic column of the PI-BA.2-4 section in the Pina-Bar-
racas.2 outcrop.

Fig. 10.- Stratigraphic column of the PI-BA.3-1 section in the Pina-
Barracas.3 outcrop.
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Fig. 11-. A) Stratigraphic column of the SA.1-1 section in the 
Sarrion.1 outcrop. B) Stratigraphic column of the SA.2-1 
section in the Sarrion.2 outcrop. Notice the correlation of 
the volcanic deposits between the two sections.

Fig. 12.- Stratigraphic column of the SA.3-1 section in the Sarrion.3 
outcrop.

lowed by 15 m of volcaniclastic (pyroclastic, lapillistones to 

of sedimentary carbonates. The section ends with bioclastic 

in Fig. 11A), forming shallowing upward sequences crowned 
by hardgrounds. Level 19 has provided Sonninia sp. (w) that, 
even not resolute, could identify the Propinquans Chrono-
zone of the Early Bajocian.

The Section SA.2-1 shows the pinching out of the volcanic 
deposits in the Sarrion.2 outcrop, where the epiclastic depos-
its are only 1.5 m thick (Fig. 11B). The base of the section, 
immediately under the volcanics, is represented by bioclastic 

-
lar to the facies located below the volcanic deposits in sec-
tion SA.1-1. The volcaniclastics are bounded by bioclastic 

-
derneath the hardground of the second sequence (interval 3), 
specimens of Braunsina sp. (r) have been found, pinpoint-
ing the Discites Chronozone of the Early Bajocian. The tax-
orecords of the upper part of interval 3 (Fig. 11B) show an 
assemblage of reworked ammonites clearly younger than the 
Discites Chronozone, probably corresponding to the Laevi-
uscula Chronozone.

3.7. Sarrión.3 outcrop (SA.3-1 section)

In the Sarrión.3 outcrop (Fig. 12), no deposits correspond-
ing to the Concavum Chronozone have been found. The 
limestones of the Bradfordensis Chronozone (interval 7 to 
10), with Brasilia sp. (r) and Apedogyria sp. (r), overlay the 

Above the volcaniclastic (epiclastic) deposits, the limestones 
of the interval 13 to 15 contain Sonninia sp.(r), indicating the 
possibility that they were deposited during the Early Bajo-
cian.
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volcanisms, characterizing the magma-rich passive margins, 
-

mas, commonly related to mantle plumes and Large Igneous 
Provinces.

4.1. Marine environment of the volcanic emissions

Volcanic deposits interbedded within sediments contain-
ing marine fossils, like the deposits cropping out along the 
Caudiel Fault Zone, have widely been interpreted as accu-

4. Discussion

Middle Jurassic deposits were sedimented under a post-rift 
et al

Moya and Sopeña, 2004). However, it is worth to distinguish 
between the magma-poor uppermost Triassic and most of the 
Lower Jurassic deposits, and the magma-rich sequences de-
posited between the Pliensbachian and the Bajocian. As men-

et al. (2015), these 

Fig. 13.- Photomicrographs of the carbonates located below and above the volcanic deposits. A) to E) Samples from level 42 of the PI-BA.2-4 
section belonging to the Casinos Formation. Poorly sorted bioclastic wackestones with disarticulated plates of echinoderms and fragments 
of thick-shelled bivalves, gastropods, brachiopods, foraminifera and punctuated brachiopods (E). The samples show a mud-supported fabric 
where skeletal grains are embedded into a micritic to microsparitic matrix. Originally calcitic bioclasts are well preserved, but the aragonitic 

neomorphic alteration. Characteristic single-crystal extinction in large echinoderm fragments is common. Scale bars in A), B) and C) are 500 
μm. Scale bars in D) and E), 200 μm. Photomicrographs F) and G) from level 23 of the PI-BA.1-5 section, belonging to the El Pedregal Forma-
tion located immediately below the volcanic deposits. Fine-grained, well-sorted bioclastic and peloidal packstone, showing a grain-supported 
fabric with scarce patches of micritic matrix. Allochems are packed, and intergranular cementation, with small but approximately equal size 
spar crystals, can be observed. Bioclastic grains are mainly of echinoids (plates of crinoids) and less abundant fragmented thin-shelled bivalves. 
Scale bar in F) corresponds to 500 μm. Scale bar in G), to 200 μm. Samples H) and I) were obtained from level 31 of the PI-BA.1-5 section, 

-
lastic packstone. Micrite has been recrystallized to microspar and only small patches of original micrite are still visible. Bioclasts are almost 

that formed in optical continuity with them (syntaxial rims). Silt-sized detrital quartz (subhedral or anhedral) grains (black arrow), exhibiting 
undulose extinction, represents less than 1%. Scale bar in H) 500 μm. Scale bar in I) 200 μm. Cross-polarized light in all the microphotographs.
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et al et al., 2012). Addi-
tional evidence is the presence, within the epiclastic accu-
mulations, of marine fossils derived either from the coloniza-
tion by benthic communities or as a result of death, fall and 
burial of nektonic organisms. That is the case in a zone of 
the Sarrión.2 outcrop (located about 1.5 km NE of the SA.2-
1 section), where a thick primary pyroclastic accumulation 
is overlain by several meters of reworked epiclastic material 

bedded epiclastic mass, an exceptional specimen of ammo-

volcano-sedimentary deposits, has been collected (Fig. 15C). 
The process of fossilization required the previous existence 

Volcanic accumulations that made up mounds strongly af-
fected the facies distribution around them in some localities. 
The normal facies at the scale of the External Castillian Plat-
form (Fig. 3) is the wackestone to packstone limestones main-

shelled pelagic bivalve (Bositra). However, in the vicinities of 
the Caudiel mound, this facies is substituted by packstone to 
grainstone, high-energy facies of crinoids (encrinites).

Most probably, the more than 45 m tall original mound in 
Caudiel represented some kind of barrier to the currents car-
rying nutrients, which were trapped mainly by the crinoids 
that colonized and thrived in the volcanic mound. Once the 
crinoids died, their remains were reworked by the currents, 
organizing them in the bioclastic sediments that can be ob-

Fig. 14.- Ammonites of the Aalenian and Bajocian. A) Ludwigella sp. [microconch] (resedimented) of the Aalenian Concavum Chrono-
zone, from level 8 of the CA-1 section. B) Ludwigella sp. [microconch] (resedimented) of the Aalenian Concavum Chronozone, from 
the level 44 of the PI-BA.2-4 section. C) Haplopleuroceras subspinatum
Chronozone, from the level 12 of the SA.1-1 section. D) Poecilomorphus sp. (resedimented) of the Humphriesianum Chronozone of 
the Bajocian, from level 37 of the PI-BA.1-5 section. Taxonomical and taphonomical determinations of A), B) and D) were carried 
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tween the Casinos and the El Pedregal formations. Below the 
epiclastics, the beds of the Casinos Formation surely have 
at least an Opalinum Chronozone age. In the PI-BA.2-4 and 
other nearby sections, chronorecords of the Murchisonae 

Concavum Chronozone. Based on that, it can be assumed 
that the Murchisonae Chronozone could have been eroded 
or not deposited before the volcanic accumulation in the PI-
BA.3-1 section (Fig. 16). Above the volcanics, the presence 
of a regional hiatus, including the Bradfordensis and prob-
ably the upper part of the Murchisonae chronozones, is con-
gruent with the unconformity intra-Murchisonae that marks 
the lower boundary of the 2nd order MJ cycle, determined in 
Fernández-López, (1997a, b), Fernández-López and Gómez 

Gómez et al. (2004). The stratigraphic emplacement of the 
lower volcanic level of the Middle Jurassic along the Caudiel 
Fault Zone could be placed, with a reasonable guarantee, into 
the Murchisonae Chronozone.

Respect to the upper volcanic level, considering the car-
bonates located below the volcanic deposits, in six of the 
described successions (Caudiel CA-1 and CA-31 sections 
and Pina-Barracas PI-BA.1-5, PI-BA.1-7, PI-BA.2-4 and PI-
BA.3-1 sections), the time distribution of the ammonite taxa 
are not younger than the Concavum Chronozone of the Late 
Aalenian (Fig. 16). In section SA.3-1 of the Sarrión.3 out-
crop, only chronorecords of the Bradfordensis Chronozone 
of the Late Aalenian have been found below the volcanic 

Chronozone. By contrast, in section SA.1-1 of the Sarrión 
outcrop, the carbonates located immediately below the vol-
canic deposits contain chronorecords diagnostic of the Dis-
cites Chronozone of the Early Bajocian.

Regarding the carbonates located above the volcanics, the 
best dated sections, having the thinnest volcanic deposits, re-
veal that the Discites Chronozone is present in some of the 
sections (PI-BA.2-4 and SA.2-1) and probably in others, like 
in the CA-1 section. The assemblage of Haplopleuroceras, 
Eudmetoceras and Fontannesia, with resedimented elements 
of Haplopleuroceras above the volcaniclastic materials in the 

assemblage can be considered indicative of both the latest 
Concavum Chronozone of the Late Aalenian and/or the earli-
est Discites Chronozone of the Early Bajocian.

As can be seen, in most of the stratigraphic sections (CA-
1, CA-31, PI-BA.1-5, PI-BA.1-7, PI-BA.2-4 and PI-BA.3-1), 
the sediments located immediately below the volcanic depos-
its are Late Aalenian Concavum Chronozone in age, whilst 
the sediments located above the thinest peripheral volcanics 
contain ammonites of the Early Bajocian Discites Chrono-
zone. Consequently, the age of the volcanism can be placed 

Caudiel outcrop, the possibility that the volcanism could have 
an intra-Concavum Chronozone age cannot be excluded. In 
the Sarrión.1 and Sarrión.2 outcrops, the volcanism is a bit 

served in the surroundings of the volcanic mound (Fig. 15 
D, E, F).

4.3. The Caudiel Fault Zone

The grid of faults presented in Figure 3 comprises palae-
ogeographic faults deducted from facies and thickness dis-
tribution, and specially for the clear alignment of volcanic 
deposits. None of these faults has been rejuvenated in later 
times during the Alpine Orogeny, so they seem to be only 
actives throughout the basin stage, previous to the tectonic 
inversion carried out along the Tertiary.

extensional elements in the context of the general extensional 
or transtensional environment of the Mesozoic. New zones 
of extension formed during Early and Middle Jurassic in the 
southern margin of the Eurasian Plate, the northern Gond-
wana and the Eastern margin of Iberia.

The propagation of the Central Atlantic Ocean, producing 
the eastward movement of Africa relative to Iberia–Europe, 
and the early stages of the opening of the Ligurian Tethys, 
near eastern Iberia (Schettino and Turco, 2011), contributed 
to the fracturing of the areas located close to the oceans (Fig. 
1). These latter constituted favorable sites for the implanta-
tion of mantel plumes that gave rise to the magmatic activity 
recorded in the Caudiel Faul Zone and adjacent areas.

4.4. Timing of the volcanic deposits

Accumulation of volcanic deposits generated volcanic 
-

sented lasting positive reliefs. They were later covered by on-
lapping, and logically diachronous, sediments younger than 
the volcanism. Depending on the elevation of mounds and of 

-
tary record can be lacking on their summits (Fig. 16). Thus, 
the Caudiel mound was not covered until the Bathonian in 
the CA-31 section, even until the Callovian in other sections 
of the same outcrop. However, in the thinner Sarrión SA.1-
1 and Pina-Barracas PI-BA.1-5 sections, the corresponding 
mounds were covered in the Bajocian or, in some other sec-
tions of this area, in the Bathonian.

For this reason, lateral tracking towards thinning and 
wedging zones of volcanic mounds are required for biostrati-
graphical sampling to determine the age of their emplace-
ments. Lateral observations are also important for assessing 

-
posits, and specially to detect sedimentary hiatuses.

-
evance and geographical extent, interbedded in the Middle 
Jurassic carbonate sediments along the Caudiel Fault Zone, 

distinct volcanic steps.
The epiclastic deposits of the lower level are only located 

in the PI-BA.3-1 section and surroundings, interbedded be-
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In summary, it could be admitted that the stratigraphic em-
placement of the local lower volcanic phase of the Middle 
Jurassic along the Caudiel Fault Zone occurred during the 
Aalenian, roughly coincident with the lower boundary of 
the MJ-1 sedimentary cycle. The upper volcanic phase was 
slightly diachronous. It took place in most areas around the 

younger, of a Discites Chronozone age, indicating that, with-
in the resolution provided by the biostratigraphical data, there 

The age of volcanism in the SA.3-1 section is uncertain, but, 

transition age could be assumed.

main organisms colonizing the Caudiel volcanic mound and are the chief components of the surrounding carbonate deposits. E) Crinoidal 

concentrated in rills. Notice the hardgrounds with bioturbation and early cementation indicative of interruptions in the deposition of car-
bonates over relatively long periods. Pen for scale is 14 cm long.
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Sarrión.2 outcrops), shortly after, in the earliest Bajocian 
(earliest Discites Chronozone), during the deepening stage of 
the MJ-1 facies cycle (Figs.4 and 16).

4.5. Age of the volcanism

Volcaniclastic submarine deposits are susceptible to be 
reworked by marine agents following cessation of the vol-
canic activity or even during their deposition (Sorrentino et 
al., 2011). Therefore, it might be thought that reworked vol-
canics could have been repositioned on younger stratigraphic 
sites than the primary emplacements, specially where syn-
sedimentary tectonic acted. A possible scenario of this is one 
whereby subsiding blocks, characterized by active sedimen-
tation, would be intermittently receiving volcanic products 
that come from the dismantling of volcanic mounds, located 
on static or lifted neighbouring blocks in which erosion pre-
dominates. That way, there could be a discrepancy between 

stratigraphic positioning of their reworked deposits.

epiclastic submarine residues may be the only evidence of 
submarine volcanic activity (Sorrentino et al., 2014). In con-

et al, 2003).
Early cementation contributes to the preservation of the vol-

et al., 1985, and Fig. 16), as well as in 
the Pina-Barracas.1, Sarrión.1 and Sarrión.2 outcrops (Figs. 
8, 11 and 16). Flanks and summit of the volcanic mounds are 
later gradually covered by onlapping younger carbonate sedi-
mentary successions. The presence of these volcanic mounds 
is consequently a proof of the primary volcanic accumulation 
and, hence, there is no doubt that their stratigraphic position 
coincides with the age of the volcanic process. Instead, the 
residual product, which arises as a result of the full or partial 

or younger than the source deposits.
In the PI-BA.2-4 and SA.3-1 sections, the volcanic inter-

calations of the uppermost magmatic phase are entirely epi-

totally destroyed, of segments laterally detached from large 
volcanic piles, or even the border of primary volcanic mounds 
preserved in the subsoil. Nevertheless, since the stratigraphic 

matches with the stratigraphic position of the primarily accu-
mulated volcanic mounds in other localities along the Caud-
iel Fault Zone, it can be accepted that the stratigraphic age of 

Fig. 16.- Chronostratigraphical distribution of the volcanic deposits in the studied sections along the Caudiel Fault Zone. In the Caudiel and 

Aalenian Concavum Chronozone in age, whilst the sediments located above the thin volcanic or epiclastic deposits characterize the Early 

outcrop, an age intra-Concavum Chronozone for the volcanism cannot be discarded. In the Sarrión.1 and Sarrión.2 outcrops, the volcanism 

Bajocian transition age could be assumed. Another lower smaller volcanism was recorded during the Murchisonae Chronozone only in the 
Pina-Barracas.3 outcrop. It should be noted that the thickness drawn for the volcanic levels is not representative of the real thickness, but 

-
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al., 2010), in the Transbaikalia regions of Russia (Stupak et 
al., 2016), as well as in Northern and Central America (i.e. 
Kowalis et al   
Buchs et al., 2013). This active volcanism supports the idea 
that plate tectonics in both, the Atlantic and the Tethysian 

during the Jurassic.

5. Conclusions

Extensional or transtensional faulting, linked to the propa-
gation of the Central Atlantic and the Ligurian Tethys open-

-
ditioned facies and thickness distribution. These faults also 
favoured the implantation of mantel plumes and associated 
volcanism, giving rise to the evolution from a magma-poor 
passive margin, during the latest Triassic to the Pliensbachi-
an, to a magma-rich passive margin, which happened from 
the Pliensbachian to the Bajocian.

Two stages of submarine volcanic activity, following the 

southeastern part of the Iberian Plate at the onset of the Mid-
dle Jurassic. The lower volcanic level represents a vestigial 

geographical extent. Its age can be placed in the Aalenian 
Murchisonae Chronozone, coinciding with the lower bound-
ary of the MJ-1 cycle.

By contrast, there is no doubt that the upper volcanic level 
represents a phase of primeval volcanism. Detailed biostrati-
graphical sampling and study of the carbonates located below 
and above the volcanic deposits allowed to precise the age of 
the emplacement of these submarine volcanoes around the 
boundary between the Late Aalenian Concavum Chronozone 
and the Early Bajocian Discites Chronozone. Nevertheless, 
given the resolution provided by the biostratigraphical data, 
some slight diachronism is recognized.

Since volcanic mounds are indicatives of primary volcan-
ism, and the stratigraphical position of the isolated epiclastic 
layers coincides with theirs, it can be thought that the strati-
graphical age of all volcanic deposits is in accordance with 
the age of the emission of these igneous rocks.

The timing of this igneous phase in the Iberian Basin 
matches fairly well with the peak magmatic recorded in the 
Betic Basin of Southern Spain, supporting the idea that an 
important volcanic activity occurred during this time interval.
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It has been considered that all the volcanic mounds were 
accumulated in single eruptions carried out in a short peri-
od of time, as not signals of depositional breaks have been 
found. If interruptions in the volcanic activity occurred, they 

activity. The general lack of intercalated calcareous beds at-
tests to this and also allows inferring an early cementation. As 
can be seen in Fig. 16, their size and the sedimentary hiatuses 

Concerning the lowermost volcanic level: 1) It is composed 

to only one area, the Pina-Barracas.3 outcrop, and 3) Large 
stratigraphic hiatuses over the Late Toarcian and Early Aale-
nian have been evidenced in this region. As a consequence, 
determination of the age of the lower epiclastic deposit is dif-

stratigraphic emplacements of this age have been recorded in 
outcrops of the northern part of the Teruel Fault Zone, where 
extensive primary pyroclastic deposits have been observed.

4.6. Comparison with the volcanism in other neighbor basins

Middle Jurassic volcanic deposits are not unique in the Ibe-
rian Range. Basaltic volcanic rocks are also common in the 
Median Subbetic domain of the Betic Ranges of South Spain 
(i.e. García-Yebra et al
et al et al

et al., 2004).
Even there are few works dealing with the precise biostrati-

graphical dating of the volcanic activity in the Betic realm, 
a study carried out by García-Yebra et al. (1972) dated the 

province as Aalenian Murchisonae and Concavum chrono-
zones. Other works coincide in stating that the magmatic ac-
tivity in the Subbetic domain of the Betic Cordillera peaked 

et al
et al., 2004). As 

can be seen, this age interval is rather coincident with the 
timing of the Middle Jurassic volcanic deposits located along 
the Caudiel Fault Zone and included into the El Pedregal For-
mation of the Iberian Basin. In addition, the Aalenian Mur-
chisonae Chronozone age of the lower igneous event in the 
Algarinejo-Lojilla region (Betic Ranges) also matches with 
the age of the lower volcanic level in the Pina-Barracas.3 out-
crop of the Iberian Range. These facts indicate that a wide 
magmatic activity in the eastern and southern parts of the Ibe-
rian Plate occurred at this time.

Jurassic magmatic events have also been reported in other 
parts of Europe like in Sicily (Basilone et al., 2010, 2014), in 
the 164±3Ma volcanism of the Dinaride (Mikes et al., 2009), 
in the Crimea Mountains (Pecherskiy et al et 
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