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Abstract

Major and trace element chemistry has been determined in the main minerals (olivine, orthopyroxene, clinopyroxene, plagioclase, am-
phibole, phlogopite) from the Talavera and La Solanilla gabbroic intrusions (Spanish Central System). The results show a heterogeneous 
mineral composition illustrative of the chemical evolution of calc-alkaline basic magmas during crystallization. The formation of incompat-
ible element-rich interstitial minerals, such as amphibole, phlogopite and accessory phases (e.g., zircon, apatite), and the presence of zoning 
patterns in major minerals towards a more evolved composition, point to a progressive differentiation of the parental melt. The chemical 
variation depicted by trace elements usually incompatible with clinopyroxene (e.g., rare earth elements (REE), Th, Zr, Nb, Ti) implies 
co-precipitation with phases displaying a compatible behaviour with respect to these elements (e.g., apatite, zircon, amphibole). However, 
the very high LILE (large ion lithophile elements) and LREE (light REE) shown by clinopyroxene can not be explained exclusively by a 
closed-system in-situ crystallization process. Several features of the mineral chemistry (e.g. positive correlation of (La/Sm)N with La and 
Na in clinopyroxene and plagioclase, respectively) support the involvement of an external component (wall-rock assimilation or hybrid-
ization with an evolved melt). The petrography and mineral chemistry of the gabbros, in conjunction with bulk rock data from previous 
studies, favour a calc-alkaline affinity for the parental melts. Thus, metasomatism in the mantle sources related with this basic magmatism 
might be associated with recycling of crustal components during the Variscan orogeny.
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Resumen
Se ha caracterizado la composición química de elementos mayoritarios y trazas en los minerales principales de las intrusiones gabroideas 

de Talavera y La Solanilla (Sistema Central Español). Los resultados muestran una composición mineral heterogénea que es ilustrativa de 
una evolución química de los magmas básicos calco-alcalinos durante la cristalización. La formación de minerales intersticiales con eleva-
dos contenidos en elementos incompatibles, como por ejemplo el anfíbol, la flogopita y algunos minerales accesorios (circón, apatito...), y 
la presencia de zonados en los minerales principales, con tendencia a desarrollar una composición más evolucionada hacia el borde, indican 
la diferenciación progresiva del fundido parental. La variación química de elementos traza normalmente incompatibles en el clinopiroxeno 
(e.g., REE, Th, Zr, Nb, Ti) implica la co-precipitación de fases con un comportamiento compatible con dichos elementos (e.g., apatito, 
circón, anfíbol). Sin embargo, las elevadas concentraciones de LILE y LREE del clinopiroxeno no se pueden explicar exclusivamente por 
un proceso de cristalización en un sistema cerrado. Varias características de la química mineral (e.g., correlación positiva de la relación (La/
Sm)N con el contenido de La y Na en el clinopiroxeno y la plagioclasa, respectivamente) suponen la participación de un componente externo 
(asimilación de roca encajante o mezcla con un fundido más evolucionado). La petrografía y la química mineral de los gabros, junto con 
los datos de roca total de estudios previos, favorece una afinidad calco-alcalina para los fundidos parentales. Por lo tanto, el metasomatismo 
en las fuentes de manto asociadas con este magmatismo básico podría estar relacionado con el reciclaje de componentes corticales durante 
la orogenia Varisca.
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1. Introduction

During cooling of magmatic bodies, re-equilibration of in-
terstitial melts with early-formed mineral assemblages is a 
key process which might influence the final bulk rock com-
position (e.g. Barnes, 1986). The relevance of late-magmatic 
processes in the geochemical evolution of magmas has been 
highlighted by many studies focused on mafic intrusions from 
oceanic (e.g. Ross and Elthon, 1997; Tribuzio et al., 1999b, 
2000; Natland and Dick, 2001; Gao et al., 2007) and conti-
nental (e.g. Cawthorn et al., 1992; Bédard, 1994; Tribuzio et 
al., 1999a; Claeson and Meurer, 2004; Tiepolo and Tribuzio, 
2005) environments. These studies have shown that in-situ 
crystallization of evolved interstitial melts directly controls 
the final mineral composition, and may result in enrichment 
of incompatible trace elements in the whole-rock composi-
tion. In accordance with these observations, a variable pro-
portion of interstitial minerals, including clinopyroxene, 
H2O-bearing phases (amphibole, phlogopite) and other ac-
cessory minerals (e.g. apatite, zircon, ilmenite, baddeleyite) 
are commonly formed between early-precipitated crystals 
(e.g. Tribuzio et al., 1999a, b, 2000; Tiepolo and Tribuzio, 
2005; Borghini and Rampone, 2007). Late overgrowth of the 
liquidus phases may also occur (e.g. Barnes, 1986; Borghini 
and Rampone, 2007). Even though most of the above studies 
deal with cumulate rocks, the processes they discuss for the 
final stages of crystallization, may also operate during solidi-
fication of non-cumulate mafic rocks.

 Another important aspect is the possible interaction be-
tween early crystallized minerals and a variable proportion of 
evolved interstitial liquid. The outcome of this process will 
be very different in a “closed system” crystallization proc-
ess (e.g. Barnes, 1986; Bédard, 1994; Charlier et al., 2005; 
Bernstein, 2006) and if an external component, such as an 
evolved melt associated with wall rock assimilation or felsic 
magma hybridization, plays a major role (e.g. Tribuzio et al., 
1999a; Tiepolo and Tribuzio, 2005; Renna et al., 2006). Min-
eral-melt interaction during late stage crystallization has been 
identified in rocks of variable geochemical affinity, including 
tholeiitic (Gillis, 1996; Tribuzio et al., 1999b, 2000; Coogan 
et al., 2001) and continental calc-alkaline magmas, the lat-
ter sometimes associated with post-collisional geodynamic 
settings (Monjoie et al., 2005; Tiepolo and Tribuzio, 2005; 
Renna et al., 2006). The nature of magmas formed during 
orogenic events is commonly unclear due to the involvement 
of several geochemical reservoirs (crust and mantle) and the 
leading role played by differentiation processes (e.g., frac-
tional crystallisation and crustal contamination), which may 
obliterate the primary geochemical signature.

 The determination of major and trace element mineral 
composition by microanalytical techniques (Electron Micro-
probe and Laser Ablation ICP–MS) in rock suites subjected 
to complex crystallization stories has proved as a main tool 
in deciphering the type of operating magmatic processes 
(e.g., Tribuzio et al., 1999b; Coogan et al., 2001; Claeson 

and Meurer, 2004; Bernstein, 2006; Borghini and Rampone, 
2007). This approach allows the characterization of trace ele-
ment mineral zoning and other micro-scale chemical hetero-
geneities.

In the present study we have analysed the major and trace 
element composition of the main rock-forming minerals 
from two gabbroic intrusions cropping out in the Spanish 
Central System (SCS) (Variscan Iberian Belt). These Varis-
can gabbros have been previously studied with special at-
tention focused on the whole-rock chemistry (e.g. Orejana et 
al., 2009; Scarrow et al., 2009), the major element mineral 
data (Molina et al., 2009), and their zircon isotope (U-Pb, 
Hf) geochemistry (Villaseca et al., 2011). Different hypoth-
esis have been proposed for their origin, advocating either 
primary calc-alkaline magmas (Orejana et al., 2009) or alka-
line mantle-derived melts mixed with felsic magmas at the 
crust–mantle boundary (Scarrow et al., 2009). Our study rep-
resents the first attempt to determine the trace element min-
eral composition of SCS gabbroic rocks, especially regarding 
the chemical heterogeneity and zoning of interstitial phases. 
This kind of mineral data makes it possible to characerize 
late magmatic processes and help constrain the nature of the 
parental magmas.

2. Geological Setting

The Spanish Central System (SCS) batholith is mainly 
formed by more than 100 granitic intrusions (e.g. Bea et al., 
1999; Villaseca and Herreros, 2000) emplaced within Neo-
proterozoic to Palaeozoic metaigneous and metasedimentary 
series, which represent the innermost continental region of 
the Iberian Variscan Belt (Fig. 1). Although these intrusions 
are predominantly peraluminous monzogranites, several se-
ries have been distinguished, including S-type peraluminous 
granites, I-type metaluminous to peraluminous plutons and 
transitional peraluminous granitoids (e.g. Recio et al., 1992; 
Pinarelli and Rottura, 1995; Villaseca et al., 1998; Villaseca 
and Herreros, 2000). Several models have been proposed to 
explain the origin of this huge batholith: a) hybridization be-
tween crustal melts and mantle-derived magmas (Pinarelli 
and Rottura, 1995; Moreno–Ventas et al., 1995); b) variable 
degrees of crustal assimilation by mantle derived magmas 
(Ugidos and Recio, 1993; Castro et al., 1999); and c) par-
tial melting of essentially crustal sources, either from lower 
crustal derivation (Villaseca et al., 1998, 1999) or from mid-
crustal levels (Bea et al., 1999, 2003). Clear geochemical 
similarities between SCS granites and lower crustal xenoliths 
carried by the SCS Upper Permian alkaline dykes, suggest 
that the lower crust is the most likely crustal source for the 
formation of the SCS batholith (Villaseca et al., 1999, 2007). 
This is reinforced by coincidence in the U–Pb zircon age 
ranges recorded in the SCS granites and the lower crustal xe-
noliths (Fernández–Suárez et al., 2006; Orejana et al., 2011).

Basic magmatism in the SCS batholith is represented by 
several series of fairly different geochemical affinity (calc-
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alkaline, alkaline and tholeiitic) (Fig. 1), which intruded 
from Carboniferous to Jurassic (e.g. Villaseca et al., 2004). 
The alkaline and tholeiitic mafic rocks are post-Variscan dyke 
swarms associated with a rifting regime prior to the Atlantic 
Ocean opening (e.g. Cebriá et al., 2003; Orejana et al., 2008). 
The calc-alkaline gabbroic intrusions, which are mainly con-
centrated in the western SCS (Franco and García de Figuerola, 
1986; Franco and Sánchez–García, 1987), are small (usually 
< 1 km in length) Variscan post-tectonic plutons with ages 
mainly in the range 305–300 Ma (Zeck et al., 2007; Villaseca 
et al., 2011). According to recent data, they are coeval with 
the main SCS granitoid intrusions (~308–298 Ma; Zeck et al., 
2007; Díaz–Alvarado et al., 2011; Orejana et al., 2012).

Recent studies have focused their attention on the nature 
and petrogenesis of the SCS mafic bodies (Molina et al., 
2009, 2012; Orejana et al., 2009; Scarrow et al., 2009; Vil-
laseca et al., 2011). These gabbros exhibit high incompatible 
trace element concentrations (LILE, LREE, Pb), in conjunc-
tion with negative Nb–Ta–Ti anomalies, and a heterogeneous 
Sr–Nd isotopic composition (e.g. Orejana et al., 2009; Scar-
row et al., 2009). As a result, the most primitive gabbros have 
been interpreted as derived from melting of a heterogeneous 
subcontinental lithospheric mantle, metasomatised via crus-
tal recycling (Orejana et al., 2009). However, other studies 
favour a mixing process in the deep crust involving alkaline 
mantle-derived magmas and crustal melts (e.g.  Scarrow et 

al., 2009). In any case, subduction is not considered to be 
directly linked with the genesis of the gabbros, and melting 
would have been caused by adiabatic decompression after the 
collision ended (Orejana et al., 2009; Scarrow et al., 2009). 

Additionally, hybridization of these basic magmas with 
crustal melts during transport and emplacement has been 
described by Moreno–Ventas et al. (1995), Scarrow et al. 
(2009) and Villaseca et al. (2011). Other studies on Iberian 
Variscan gabbros have also highlighted the existence of crus-
tal contamination at shallow levels on the basis of whole-rock 
chemistry (e.g. Dias and Leterrier, 1994; Galán et al., 1996; 
López–Moro and López–Plaza, 2004). More recently, it has 
been observed that differences in initial εHf values between 
zircon crystals from several gabbroic bodies are in accord-
ance with the heterogeneity of whole-rock Sr–Nd isotopic 
data, and that within sample εHf variability also indicates that 
crustal assimilation and felsic magma hybridization occurred 
in some of these intrusions (Villaseca et al., 2011). 

The two gabbroic bodies studied for the present study (Talav-
era and La Solanilla) are hosted by granitic and metamorphic 
rocks. Contact relations with the wall-rock can not be clearly 
observed in the field. Samples collected from different outcrops 
in the inner areas are fairly homogeneous in terms of bulk-rock 
(Orejana et al., 2009) and mineral composition. The main gab-
bro bodies do not show modal layering or textural variations. 
This homogeneity and their primitive character, make these 
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Fig. 1.- Geological map of the Spanish Central System showing the location of the studied Variscan gabbros (Talavera and La 
Solanilla), modified from Franco and García de Figuerola (1986), Franco and Sánchez García (1987), and Orejana et al. (2009).
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gabbros suitable for the study of the magmatic processes which 
operated during cooling of the parental basic magma. 

3. Analytical methods

Eight samples were selected for the present study: four 
from the Talavera gabbro and four from the La Solanilla 
gabbro (Fig. 1; Table 1). Thin sections were used for petro-
graphic observations and for a detailed determination of the 
mineral mode. The latter was done statistically considering 
the relative abundance of the main minerals within a virtual 
network of 1000–2000 points (depending on the sample sur-
face) (see results in Table 1). Major element compositions of 
olivine, orthopyroxene, clinopyroxene, plagioclase, amphi-
bole and phlogopite has been analysed directly on polished 
thin and thick (130 mm) sections at the Centro Nacional de 
Microscopía Electrónica (Complutense University of Ma-
drid) using a JEOL JXA–8900 M electron microprobe with 
four wavelength–dispersive spectrometers. A selection of 
representative analyses has been included in Table 2, but the 
whole dataset is available as a supplementary electronic ma-
terial (Supp. eTable 1). Analytical conditions were an accel-
erating voltage of 15 kV and an electron beam current of 20 
nA, with a beam diameter of 5 mm. Elements were counted 
for 10 s on the peak and 5 s on each background position. 
Natural and synthetic standards were employed. Corrections 
were made using an on-line ZAF method. Detection limits 
are 0.02 wt% for Al, Na and K; 0.03 wt% for Ti, Fe, Mn, Mg, 
Ni and Cr, and 0.04 wt% for Si. 

We have determined in situ concentrations of 28 trace ele-
ments (REE, Ba, Rb, Sr, Th, U, Nb, Ta, Pb, Zr, Hf, Y, Sc, V, 
Co and Cr) in olivine, plagioclase, orthopyroxene, clinopy-
roxene, amphibole and phlogopite on two polished thick 
sections (130 mm) by laser ablation ICP–MS at the Natural 
History Museum of London, using a New Wave UP193FX 

gas laser source operating at 193 nm coupled to an Agilent 
7500CS ICP–MS. A selection of representative analyses has 
been included in Table 3, but the whole dataset is available 
as supplementary electronic material (Supp. eTable 2). Laser 
pulse energy was ca 0.2 mJ per pulse, energy density ca 3.5 
J/cm2, and frequency was set at 10 Hz. Laser ablated sample 
particles were carried in a flow of He gas to a high tempera-
ture (10 000 K) Ar plasma. The diameter of the laser beam 
was about 50 mm. Twenty analyses were performed in each 
run, the first two and last two corresponding to the calibration 
standard NIST 612 (a synthetic silicate glass; Pearce et al., 
1997). The remaining 16 analyses were done on the selected 
samples. The counting time for one analysis was typically 
90 s (40 s measuring gas blank to establish the background 
and 50 s for the remainder of the analysis). Analyses were 
monitored to detect accessory phase inclusions. Data were 
subsequently processed offline using LAMTRACE software, 
a programme written by Simon Jackson (Geological Survey 
of Canada) for handling time-resolved LA–ICP–MS data. 
Each analysis was normalized to Ca or Si using concentra-
tions determined by electron microprobe. Detection limits for 
each element were in the range of 0.01–0.06 ppm, except for 
Sc and Cr (0.11 and 0.73 ppm, respectively) and a precision 
of 5% relative standard deviation was assumed.

4. Petrography

The studied samples represent medium- to coarse-grained 
olivine-bearing gabbronorites with intergranular texture, be-
ing olivine and plagioclase the early magmatic minerals (Fig. 
2a, b). Olivine appears as anhedral, often rounded grains, 
whereas plagioclase forms euhedral to subhedral prisms with 
apparent concentric zoning. 

The Talavera sample shows large anhedral poikilitic or-
thopyroxene crystals, leading to a hypidiomorphic subophitic 

Sample Gabbroic 
massif

UTM
 coordinates
(Zone 30T)

Early 
crystallization 

phases*

Inerstitial 
phases*

Accessory 
phases*

Modal
composition** Representative lithology and textures

107038 Talavera
 

ol, pl, opx
cpx, Na-pl, 
amph, phl, 

ilm

ilm, zrn, 
ap, ttn, 

bdy

ol (7%), pl (54%), 
opx (16%), cpx (12%), 
amph (6%), phl (3%) 
and other accessory 

phases (2%)

Medium- to coarse-grained olivine-
bearing gabbronorite.

Intergranular texture with anhedral 
olivine, prismatic plagioclase and 

poikilitic orthopyroxene.
Extensive transformation of interstitial 

clinopyroxene by amphibole.

107038L Talavera x: 343.136
y: 4.429.390107039 Talavera

107042 Talavera  

108585 La Solanilla

pl, ol
cpx, opx, Na-
pl, amph, phl, 

ilm

ilm, ap, 
ttn, zrn,

bdy

ol (15%), pl (58%), 
opx (6%), cpx (14%), 
amph (3%), phl (3%) 
and other accessory 

phases (1%)

Medium-grained olivine-bearing 
gabbronorite.

Intergranular texture with anhedral 
olivine and prismatic plagioclase.

Amphibole-orthopyroxene coronas 
around olivine.

108585L La Solanilla x: 297.511
y: 4.478.590108588 La Solanilla

108591 La Solanilla  
*ol: olivine, opx: orthopyroxene, cpx: clinopyroxene, pl: plagioclase, Na-pl: Na-rich interstitial plagioclase, amph: amphibole, phl: phlogopite, ilm: ilmenite, 
zrn: zircon, ap: apatite, ttn: titanite, bdy: baddeleyite.
**Modal composition has been estimated by point counting performed on thick sections nº 107038L and 108585L (see the analytical methods for more details).

Table 1.- Summary of petrographic features of analysed SCS olivine-bearing gabbros
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Sample

Analysis 160 161 173 1 5 187 188 7b 8a 56 182 20 67 82 8b 34 10e 76

SiO2 56.73 61.39 52.25 50.78 55.61 60.96 65.40 42.52 44.16 40.39 44.54 43.47 43.16 40.80 37.17 37.44 35.70 36.35
TiO2 0.07 0.04 0.07 0.07 0.13 0.03 0.00 3.25 2.71 4.48 1.50 0.66 2.04 3.88 4.37 3.14 4.44 2.58
Al2O3 27.71 24.30 30.77 30.78 27.57 24.75 21.12 11.75 10.49 12.19 11.59 13.85 12.23 11.92 15.37 16.08 14.38 18.02
FeO 0.01 0.04 0.03 0.06 0.25 0.00 0.03 11.12 9.22 10.33 9.37 8.94 9.95 11.54 11.60 8.71 17.98 7.73
NiO - - - - - - - - - - - - - - - - - -
MnO 0.02 0.01 0.03 0.00 0.06 0.00 0.03 0.02 0.07 0.13 0.11 0.16 0.15 0.09 0.00 0.00 0.18 0.00
MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.05 13.64 15.30 13.59 14.98 15.38 14.79 12.84 16.73 19.39 12.81 20.03
CaO 9.46 5.94 12.83 13.96 9.33 6.18 2.38 11.18 11.25 11.33 10.91 11.30 11.00 11.40 0.02 0.01 0.13 0.06
Na2O 6.39 8.47 4.05 4.07 6.67 8.41 10.77 2.45 2.48 2.37 2.70 2.65 2.62 2.54 0.64 0.94 0.21 1.22
K2O 0.05 0.03 0.04 0.02 0.08 0.08 0.17 1.01 0.57 1.21 0.46 0.29 0.34 0.99 8.67 8.31 9.04 8.19
Total 100.5 100.3 100.1 99.8 99.7 100.5 100.0 97.0 96.3 96.1 96.2 96.7 96.3 96.1 94.6 94.0 94.9 94.2
Mg# - - - - - - - 0.69 0.75 0.7 0.74 0.75 0.73 0.66 0.72 0.8 0.56 0.82

Si 10.14 10.88 9.46 9.28 10.06 10.80 11.54 6.57 6.78 6.06 6.67 6.54 6.36 6.15 5.48 5.48 5.45 5.29
Ti 0.009 0.005 0.010 0.010 0.018 0.004 0.000 0.378 0.313 0.506 0.169 0.074 0.226 0.440 0.485 0.345 0.511 0.282
AlIV 5.834 5.072 6.557 6.625 5.871 5.163 4.388 1.429 1.219 1.940 1.333 1.464 1.638 1.854 2.518 2.524 2.546 2.712
AlVI - - - - - - - 0.708 0.679 0.216 0.709 0.988 0.486 0.262 0.155 0.247 0.044 0.377
Fe 0.001 0.006 0.005 0.009 0.038 0.000 0.004 1.437 1.184 1.296 1.172 1.124 1.227 1.454 1.431 1.065 2.297 0.940
Ni - - - - - - - - - - - - - - - - - -
Mn 0.003 0.002 0.005 0.000 0.009 0.000 0.005 0.003 0.010 0.016 0.013 0.021 0.019 0.011 0.000 0.000 0.023 0.000
Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.012 3.141 3.503 3.040 3.344 3.447 3.250 2.883 3.679 4.226 2.918 4.344
Ca 1.811 1.127 2.487 2.734 1.808 1.172 0.449 1.851 1.850 1.822 1.750 1.819 1.737 1.840 0.003 0.001 0.021 0.009
Na 2.214 2.912 1.422 1.440 2.337 2.890 3.685 0.735 0.740 0.689 0.784 0.772 0.749 0.742 0.183 0.266 0.063 0.345
K 0.012 0.007 0.009 0.005 0.018 0.017 0.039 0.199 0.112 0.232 0.088 0.055 0.063 0.191 1.632 1.550 1.761 1.521
Cations 20.03 20.02 19.95 20.10 20.16 20.05 20.12 16.45 16.39 15.82 16.03 16.30 15.76 15.82 15.57 15.70 15.64 15.82

108585L 107038L 108585L107038L 108585L 107038L
Plagioclase Amphibole Phlogopite

Talavera

Sample 107038L

Analysis 16c 08d 10c 04a 07c 05d 07d 015a 165 170 246 249 10 12 64 135 137

SiO2 36.67 37.26 37.06 52.70 53.16 52.70 53.38 51.44 52.78 52.33 51.91 52.62 50.87 52.04 50.91 50.84 51.56
TiO2 0.07 0.01 0.02 0.28 0.39 0.20 0.06 0.88 0.61 0.61 0.49 0.24 0.73 0.31 0.45 1.09 0.91
Al2O3 0.00 0.01 0.25 1.18 2.06 1.29 1.07 2.41 2.72 2.51 2.55 1.49 3.23 1.39 3.14 5.47 4.50
FeO 30.89 31.62 28.09 18.65 14.39 19.80 18.78 8.05 7.59 7.01 8.27 6.20 8.35 8.19 8.88 6.56 6.82
NiO 0.04 0.03 0.08 0.02 0.10 0.00 0.02 0.01 0.01 0.00 0.00 0.01 0.07 0.02 0.00 0.00 0.11
MnO 0.01 0.38 0.36 0.53 0.03 0.48 0.42 0.00 0.19 0.21 0.18 0.30 0.10 0.26 0.21 0.15 0.20
MgO 33.52 31.78 33.26 24.97 26.90 23.65 25.43 16.51 17.40 15.35 16.71 15.14 16.46 17.18 18.90 14.80 15.22
CaO 0.00 0.02 0.33 0.85 2.53 0.46 0.25 19.54 17.63 20.41 18.15 22.66 18.63 19.12 15.73 19.06 18.85
Na2O 0.04 0.00 0.09 0.04 0.06 0.00 0.00 0.40 0.29 0.44 0.48 0.43 0.71 0.35 0.40 1.12 0.87
K2O 0.02 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.02 0.01 0.02 0.02 0.03 0.01 0.00 0.03 0.01
Total 101.26 101.11 99.54 99.24 99.63 98.58 99.41 99.24 99.22 98.88 98.76 99.09 99.18 98.87 98.61 99.11 99.05
Mg# 0.66 0.64 0.68 0.70 0.77 0.68 0.71 0.79 0.80 0.80 0.78 0.81 0.78 0.79 0.79 0.80 0.80

Si 0.982 1.002 0.998 1.940 1.915 1.968 1.959 1.902 1.942 1.945 1.922 1.952 1.876 1.931 1.899 1.871 1.903
Ti 0.001 0.000 0.000 0.008 0.011 0.006 0.002 0.025 0.017 0.017 0.014 0.007 0.020 0.009 0.013 0.030 0.025
AlIV 0.000 0.000 0.008 0.051 0.085 0.032 0.041 0.098 0.058 0.055 0.078 0.048 0.124 0.061 0.101 0.129 0.097
AlVI - - - 0.000 0.003 0.025 0.005 0.007 0.060 0.055 0.033 0.017 0.016 0.000 0.032 0.108 0.098
Fe 0.692 0.711 0.633 0.574 0.433 0.619 0.577 0.249 0.234 0.217 0.256 0.192 0.258 0.254 0.277 0.203 0.211
Ni 0.001 0.001 0.002 0.001 0.003 0.000 0.001 0.001 0.001 0.000 0.000 0.001 0.002 0.001 0.000 0.000 0.003
Mn 0.000 0.009 0.008 0.017 0.001 0.015 0.013 0.000 0.006 0.006 0.006 0.009 0.003 0.008 0.007 0.005 0.006
Mg 1.339 1.274 1.336 1.370 1.445 1.317 1.391 0.910 0.954 0.851 0.922 0.837 0.905 0.950 1.051 0.812 0.837
Ca 0.000 0.001 0.009 0.033 0.098 0.018 0.010 0.774 0.695 0.813 0.720 0.901 0.736 0.760 0.629 0.752 0.745
Na 0.002 0.000 0.005 0.003 0.004 0.000 0.000 0.028 0.021 0.032 0.035 0.031 0.051 0.025 0.029 0.080 0.062
K 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.001 0.001
Cations 3.018 2.998 2.999 3.998 3.998 4.000 3.999 3.994 3.989 3.992 3.987 3.996 3.992 3.999 4.038 3.991 3.988

108585L108585L 107038L 108585L 107038L

Table 2. Major element composition (wt.%) of representative minerals from SCS gabbros
olivine orthopyroxene clinopyroxene

La Solanilla Talavera La Solanilla Talavera La Solanilla
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Sample
Analysis 160 161 173 1 5 187 188 7b 8a 56 182 20 67 82 8b 34 10e 76
Ba 82.6 93.6 88.3 65.7 136 280 209 239 17.4 33.7 171 54.4 91.6 295 3140 1250 976 3340
Rb 0.130 0.240 0.058 0.780 2.68 1.42 0.16 5.13 1.53 2.87 4.42 0.97 1.7 2.89 374 326 346 288
Sr 538 447 606 706 729 822 369 92.6 97.6 51.3 89.9 48.0 50.6 95.8 9.07 19.8 13.9 31.4
Pb 12.1 11.3 6.59 2.46 6.29 7.63 3.72 2.33 4.3 1.58 2.82 1.25 1.02 1.91 4.91 5.48 2.41 4.36
Th 0.015 0.017 0.010 0.030 0.014 0.050 0.016 2.06 3.98 2.22 2.03 8.59 0.92 0.92 0.02 0.01 0.01 0.02
U 0.012 0.011 0.007 0.010 0.005 0.050 0.010 0.58 0.24 0.29 0.36 1.25 0.086 0.055 0.01 0.01 0.00 0.01
Zr 0.038 0.076 0.040 1.14 0.170 0.220 0.038 819 521 1240 230 250 430 603 25.3 12.4 3.84 2.11
Nb 0.041 0.054 0.014 0.033 0.021 0.140 0.012 37.7 21.5 45.4 24.6 13.4 36.9 27.4 36.7 34.6 13.1 15.0
Y 0.390 0.080 0.560 0.470 0.320 0.540 0.090 206 209 183 123 223 300 400 0.05 0.02 0.28 0.05
Sc 2.74 3.00 2.77 4.11 4.06 3.73 3.11 123 152 93.0 95.8 14.3 59.0 212 15.8 11.3 13.1 8.49
Co 0.051 0.085 0.080 0.310 0.640 0.140 0.074 43.9 48.7 46.5 57.1 46.9 43.8 48.4 92.2 93.0 93.2 67.2
V 0.330 0.280 2.44 2.47 3.87 0.200 0.090 438 922 334 609 95.8 440 514 435 435 710 715
Cr 1.83 1.71 1.03 1.49 1.45 1.27 1.55 688 1600 486 565 2.9 4.66 17.6 1370 354 43.0 128
Ta 0.016 0.019 0.001 0.012 0.012 0.040 0.018 2.67 1.43 3.91 1.36 0.8 3.3 1.81 2.45 2.70 1.20 1.27
Hf 0.033 0.093 0.027 0.059 0.094 0.076 0.062 24.8 22.5 42.0 7.86 9.61 23.8 22.0 1.18 0.563 0.177 0.050
La 16.9 9.07 2.96 1.71 1.56 6.95 7.71 44.3 28.8 47.8 26.5 75.7 37.9 47.3 0.015 0.013 0.256 0.029
Ce 20.6 11.1 5.29 3.13 2.80 8.43 7.86 120 80.2 140 93.3 216 122 138 0.011 0.010 0.401 0.033
Pr 1.52 0.710 0.570 0.310 0.290 0.650 0.510 23.0 13.3 26.1 15.8 30.6 24.4 27.7 0.007 0.006 0.040 0.009
Nd 4.45 2.76 1.99 1.01 1.29 2.06 1.41 126 75.8 128 82.2 144 129 157 0.079 0.082 0.231 0.136
Sm 0.510 0.097 0.340 0.110 0.110 0.220 0.140 34.7 26.9 34.1 24.1 35.3 40.3 50.6 0.053 0.079 0.061 0.070
Eu 1.67 1.34 0.970 0.670 1.27 3.10 2.03 4.23 3.71 3.62 3.82 5.46 4.04 10.1 0.034 0.062 0.079 0.193
Gd 0.180 0.190 0.250 0.076 0.110 0.130 0.090 37.7 32.5 35.0 25.9 38.1 44.2 63.2 0.048 0.113 0.050 0.075
Tb 0.013 0.020 0.030 0.019 0.010 0.013 0.016 5.74 5.70 5.41 3.91 5.99 7.69 11.0 0.011 0.008 0.009 0.010
Dy 0.100 0.053 0.100 0.130 0.090 0.080 0.040 39.1 39.3 35.5 25.3 40.4 54.6 76.6 0.070 0.031 0.043 0.051
Ho 0.015 0.018 0.020 0.020 0.010 0.020 0.010 7.99 8.06 7.09 4.96 8.37 11.5 16.0 0.005 0.006 0.012 0.006
Er 0.040 0.048 0.100 0.090 0.030 0.061 0.061 21.9 23.6 18.7 13.3 23.9 34.4 45.8 0.047 0.049 0.028 0.028
Tm 0.007 0.013 0.008 0.010 0.016 0.018 0.006 2.96 3.23 2.60 1.77 3.40 5.18 6.71 0.011 0.008 0.005 0.008
Yb 0.058 0.078 0.105 0.079 0.060 0.080 0.076 19.5 21.0 16.5 11.1 22.0 33.0 42.6 0.038 0.056 0.052 0.058
Lu 0.013 0.015 0.011 0.010 0.016 0.020 0.008 2.77 2.95 2.19 1.49 3.01 4.66 6.07 0.011 0.006 0.009 0.006

Plagioclase Amphibole Phlogopite
107038L 108585L107038L 108585L 107038L 108585L

Sample 107038L
Analysis 16c 08d 10c 04a 07c 05d 07d 015a 166 171 247 250 11 13 65 136 138
Ba 0.316 0.068 0.054 0.134 0.079 0.065 1.25 14.8 0.110 9.69 5.31 6.63 6.93 16.7 1.19 5.14 1.54
Rb 0.068 0.102 0.058 0.061 0.056 0.055 0.371 1.54 0.040 1.49 1.00 6.81 0.150 0.300 0.037 0.610 0.390
Sr 0.197 0.130 0.421 0.454 0.329 0.229 0.118 27.4 14.7 20.9 18.4 19.4 20.3 62.5 15.1 29.8 25.2
Pb 0.080 0.046 0.051 0.069 0.056 0.037 0.052 0.658 0.400 0.680 0.870 1.860 0.410 0.770 0.046 0.340 0.410
Th 0.019 0.055 0.025 0.022 0.304 0.397 0.730 0.842 0.310 1.06 1.01 0.810 0.610 0.730 0.102 0.160 0.440
U 0.014 0.019 0.010 0.015 0.037 0.059 0.166 0.102 0.090 0.170 0.140 0.130 0.050 0.050 0.013 0.020 0.040
Zr 0.716 0.705 0.531 10.1 8.65 30.0 11.2 81.3 24.6 59.4 72.9 99.8 38.4 64.5 21.6 48.7 56.9
Nb 0.044 0.022 0.015 0.036 0.022 0.156 0.100 0.447 0.050 0.530 0.810 0.170 0.060 0.320 0.030 0.200 0.050
Y 0.094 0.264 0.269 13.2 8.03 11.1 3.56 63.0 24.0 37.7 38.6 42.6 34.5 37.5 23.8 35.9 42.0
Sc 6.63 3.08 4.77 29.1 75.6 57.5 6.06 181 103 115 94.1 93.6 122 127 120 145 141
Co 221 207 184 71.8 79.1 76.9 70.8 30.7 43.4 44.1 37.4 41.8 46.1 50.8 34.7 41.2 41.5
V 2.68 3.00 3.79 65.6 265 91.6 52.7 540 607 657 496 276 568 545 333 637 656
Cr 3.48 189 134 68.5 766 5.95 4.07 751 5710 6090 4500 1050 2100 533 2130 2860 3180
Ta 0.003 0.013 0.018 0.019 0.007 0.017 0.015 0.042 0.010 0.030 0.060 0.010 0.010 0.010 0.005 0.020 0.010
Hf 0.089 0.107 0.092 0.409 0.322 1.27 0.824 3.44 1.11 1.54 2.00 3.70 1.34 2.20 0.823 2.12 2.17
La 0.016 0.049 0.035 0.150 0.193 0.468 0.132 6.92 1.91 7.14 6.85 6.94 2.90 3.94 1.06 1.70 2.38
Ce 0.018 0.128 0.046 0.354 0.498 0.918 0.254 16.7 7.40 26.6 24.1 26.2 8.99 12.3 3.24 6.32 8.35
Pr 0.012 0.029 0.011 0.094 0.068 0.179 0.040 3.53 1.36 4.15 4.19 4.64 1.61 2.07 0.714 1.38 1.56
Nd 0.176 0.153 0.242 0.849 0.568 1.08 0.405 22.5 8.45 21.4 21.5 22.9 8.55 12.7 4.74 8.32 9.64
Sm 0.063 0.073 0.013 0.437 0.321 0.692 0.145 8.10 2.98 5.58 5.94 6.66 3.15 4.22 2.03 3.46 3.93
Eu 0.021 0.020 0.026 0.052 0.052 0.073 0.027 1.46 0.740 1.120 1.100 0.920 0.720 0.830 0.600 1.01 1.21
Gd 0.164 0.077 0.062 0.812 0.516 0.912 0.259 10.6 3.84 6.01 6.66 7.48 4.89 5.44 3.37 5.12 5.75
Tb 0.012 0.015 0.011 0.222 0.127 0.202 0.051 1.71 0.670 1.00 1.17 1.24 0.900 0.960 0.571 0.960 1.05
Dy 0.030 0.048 0.048 1.69 1.10 1.91 0.489 12.4 4.77 6.89 7.70 8.09 6.51 7.30 4.42 6.76 7.56
Ho 0.010 0.014 0.014 0.410 0.295 0.419 0.144 2.53 0.920 1.48 1.56 1.61 1.33 1.49 0.930 1.44 1.64
Er 0.061 0.039 0.055 1.69 1.19 1.54 0.462 6.55 2.73 4.07 4.46 4.53 4.08 4.12 2.76 4.24 4.89
Tm 0.014 0.022 0.014 0.373 0.231 0.293 0.076 0.955 0.370 0.600 0.570 0.650 0.600 0.590 0.414 0.570 0.690
Yb 0.109 0.055 0.095 3.10 1.75 2.83 0.726 5.67 2.32 4.24 3.79 4.54 3.98 4.44 2.78 4.21 4.55
Lu 0.044 0.019 0.013 0.575 0.260 0.548 0.127 0.838 0.330 0.580 0.560 0.630 0.580 0.550 0.409 0.590 0.650

La SolanillaTalavera La Solanilla Talavera La Solanilla Talavera
108585L108585L 107038L 108585L 107038L

Table 3. Trace element composition (ppm) of representative minerals from the SCS gabbros
olivine orthopyroxene clinopyroxene
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vine from this gabbro is characterised by abundant Cr-spinel 
inclusions and development of complex coronas formed by an 
inner shell of orthopyroxene (sometimes consisting of radial 
columnar grains) and a second shell of Ti-poor pargasitic am-
phibole (Fig. 2e). Orthopyroxene only appears in these thin 
coronas. The abundance of amphibole and phlogopite (~6%) 
is lower than in the Talavera sample, as well as their size (< 
1 mm). While pale green amphibole is restricted to coronas 
around olivine, brown amphibole appears within interstitial 
pockets throughout the sample, associated with phlogopite 

to ophitic texture. Interstitial minerals are clinopyroxene, am-
phibole, phlogopite and ilmenite, together with Na-rich pla-
gioclase overgrowths (Fig. 2a, b). Amphibole and phlogopite 
are relatively abundant (~9%) and exhibit a relatively large 
size (Fig. 2c, d) (similar to that of clinopyroxene; i.e. ~ 1–3 
mm). A pale green amphibole is also present in much lower 
proportions, generally forming thin margins around large 
brown amphiboles (Fig. 2d). 

Early magmatic minerals from La Solanilla sample (olivine 
and plagioclase) constitute more than 70% of the rock. Oli-

Fig. 2.- Plane polarized light (a–e) and back scattered electron (f) images showing the main textures of Talavera and La Solanilla gabbroic 
intrusions. a–b: General texture of Talavera and La Solanilla gabbros, respectively. c: Interstitial phlogopite with zircon and apatite 
inclusions (Talavera sample). d: Clinopyroxene being replaced by amphibole in Talavera sample. Note that two types of amphibole 
are present: a large brown amphibole and a smaller pale green amphibole (center and right respectively). e: Composite orthopyrox-
ene–pale-green amphibole corona in olivine–plagioclase contact (La Solanilla sample). f: Back scattered electron image showing the 
disequilibrium texture between clinopyroxene and amphibole (Talavera sample). A detail of the reaction zone is expanded (circle), 
where small amphibole inclusions growing within the clinopyroxene crystal are apparent. White bar in images a–e represent 250 mm.

JIGE 40-2.indb   259 20/07/2015   22:03:04



260 D. Orejana et al. /  Journal of Iberian Geology 41 (2) 2015: 253-272

magnesiohastingsite, magnesiohornblende and kaersutite 
(following Leake et al., 1997 criteria). Phlogopite also shows 
a significant within-sample variation in Mg# (0.56–0.86), 
TiO2 (0.32–4.7 wt.%), Al2O3 (14.4–18 wt.%), Na2O (0.2–1.3 
wt.%) and K2O (7.4–9.1 wt.%) (Fig. 3j, k, l). It also exhibits 
negative correlation between Ti and Mg# and Al (Fig. 3j, k), 
so that a few phlogopite crystals display very low TiO2 values 
(down to 0.32 wt.%) with Mg# higher than 0.78 (Fig. 3j).

Some of the main minerals present chemical zoning. In 
clinopyroxene crystals, the TiO2, Al2O3 and Na2O concentra-
tion decreases from core to rim (Fig. 4). The chemical het-
erogeneity of plagioclase is also manifested in marked core 
to rim zoning patterns within a single crystal (e.g., anorthite 
from An61 to An10). The most An-depleted plagioclase cor-
responds to rims and anhedral interstitial crystals adjacent to 
subhedral plagioclase prisms (Fig. 4). Analysed amphibole 
crystals do not display important zoning patterns, but they re-
veal that two broad compositional poles can be distinguished 
regarding their major element contents (with a few intermedi-
ate analyses): 1) large brown amphibole with high TiO2 and 
K2O, and 2) brown to green amphibole with lower concentra-
tions of these elements (Fig. 5). Mg# can be relatively high in 
the low-Ti–K amphiboles (Fig. 3i). 

5.2. Trace elements

The complete set of trace element data is available in 
Supp. eTable 2. Olivine trace element contents are character-
ised by moderate to low values for the transition metals: Ni 
(212–1570 ppm), Cr (up to 190 ppm), Co (184–242 ppm), V 
(0.6–3.8 ppm) and Sc (3–7.7 ppm) (Table 2 and 3). Olivine 
from the Talavera sample displays higher Sc and Ni values, 
and lower Cr and V, with respect to those from La Solanilla 
gabbro (Tables 1 and 2). 

The large locally poikilitic orthopyroxene crystals of Ta-
lavera sample (107038L) yield a variable compositional 
range with high Cr (68–4410 ppm) contents, which correlate 
positively with Mg# (Fig. 6a). Coronitic orthopyroxene in the 
La Solanilla sample (108585L) is characterised by very low 
Cr (4–14 ppm), but higher concentrations of many incom-
patible elements: Ba (up to 1.5 ppm), Rb (up to 0.4 ppm), 
Th (0.4–0.73 ppm), Zr (11–30 ppm), Nb (up to 0.16 ppm) 
and LREE (e.g. Ce up to 0.92 ppm), when compared with 
Talavera orthopyroxene (Fig. 6a, b, c). Primitive mantle-nor-
malised plots of trace element abundances of orthopyroxene 
display a consistent fractionation in the REE towards lower 
LREE and characteristic positive Th–U peaks and Sr–Eu 
negative anomalies (Fig. 6d). 

The main differences in plagioclase trace element contents 
between the two samples are the higher Rb and Sr, and lower 
LREE in La Solanilla with respect to Talavera gabbro (Ta-
ble 3; Fig. 6e, f, g). In both cases there is a general trend of 
decreasing Sr and increasing Ba and LREE associated with 
higher Na2O contents (Fig. 6f, g). This variation is mostly 

and ilmenite (Fig. 2b). Subsolidus alteration is manifested by 
the formation of a secondary paragenesis mainly consisting 
of chlorite, sericite and a secondary green- to colourless am-
phibole (Mg-hornblende to actinolite and cummingtonite) at 
the expense of the primary minerals. 

A main characteristic of both samples (although it is more 
notorious in the Talavera gabbro) is the common presence 
of reaction textures around clinopyroxene, which is variably 
replaced by amphibole. This is also manifested by the growth 
of small oriented amphibole inclusions (2×10 mm) within 
clinopyroxene rims (Fig. 2f).

The main accessory minerals of these gabbros appear 
within the interstitial matrix (Fig. 2c), and are represented 
by ilmenite (which is always included in amphibole and 
phlogopite), apatite, zircon, baddeleyite and titanite. Zir-
con crystals are more abundant in the Talavera gabbro when 
compared with La Solanilla (see Villaseca et al., 2011 for 
further details). This mineral can be found either as isolated 
large grains or as second-generation lamellar crystals at the 
ilmenite rims.

5. Mineral composition

5.1. Major elements

Major element composition of the main minerals is hetero-
geneous in both gabbroic intrusions (Table 2, Supp. eTable1 
and Fig. 3). The mafic phases are good examples of this het-
erogeneity: the forsterite content of olivine ranges from Fo78 
to Fo63 (see Orejana et al., 2009), and the Mg# values of or-
thopyroxene and clinopyroxene are 0.82–0.62 and 0.84–0.69, 
respectively (Fig. 3a,b; Table 2). Orthopyroxene composition 
displays a marked contrast when comparing the two gabb-
roic intrusions, with Talavera samples yielding higher Mg# 
(0.82–0.7) and CaO (0.85–2.5 wt.%) than coronitic orthopy-
roxene in the La Solanilla samples (Fig. 3a). Clinopyroxene 
exhibits the following major element values: CaO (15–22.7 
wt.%), Al2O3 (1.3–7.4 wt.%), Na2O (0.3–1.78 wt.%) and TiO2 
(0.1–1.5 wt.%), with positive correlation between Al, Ti and 
Na (Fig. 3b, c, d). Slight chemical differences can also be ob-
served between clinopyroxene from the Talavera and the La 
Solanilla gabbros, with the former showing the highest CaO, 
and lowest Na2O and Al2O3 contents (Fig. 3b ,c ,d). Clinopy-
roxene analyses showing the highest Al2O3, TiO2 and Na2O 
values in the La Solanilla gabbro (Fig. 3c, d) represent areas 
partially transformed to amphibole. 

Plagioclase is characterised by a strong chemical varia-
tion, with anorthite values from An82 to An10, SiO2 = 42–66 
wt.% and Al2O3 = 21.1–34 wt.% (Fig. 3e, f). Amphibole 
has a heterogeneous composition in Mg# (0.62–0.78), TiO2 
(0–4.7 wt.%), Al2O3 (10.4–16 wt.%), Na2O (1.8–3.05 wt.%) 
and K2O (0.2–1.15 wt.%) (Fig. 3g, h, i), and displays positive 
correlations for Ti–K and Na–Al, and negative correlation 
for Ti–Mg# (Fig. 3g, h, i). It can be classified as pargasite, 
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mimicked by core to rim trace element zoning within a single 
euhedral crystal, but a significant drop in Ba and LREE is 
characteristic of extremely Na-rich plagioclase overgrowths 
(Fig. 4). Plagioclase also shows fractionated LREE chon-
drite-normalised patterns (La up to 80x chondrite abundanc-
es; Fig. 6g).

Clinopyroxene from Talavera shows higher Cr, Th and U 
contents (e.g., Cr up to 6170 ppm, Th up to 2.86 ppm and U 

up to 0.3 ppm; Fig. 7a, b) with respect to La Solanilla (Table 
3). LREE and HFSE (high field strength elements) do not 
differ significantly between both intrusions (Fig. 7c, d), but 
HREE (heavy REE) are higher in cpx of the La Solanilla gab-
bro (Fig. 7e). Most incompatible trace elements in La Sola-
nilla clinopyroxene (Ba, Th, Pb, Zr, Hf, Y, REE) are negative-
ly correlated when using Cr content as a differentiation index 
(see examples in Fig. 7a, b, c, d). This general trend is similar 
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Fig. 3.- Major element composition (wt.%) of (a) orthopyroxene, (b–d) clinopyroxene, (e–f) plagioclase, (g–i) amphibole and (j–l) phlogopite from 
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ing partially transformed clinopyroxene areas, the extreme 
heterogeneity of incompatible elements in Talavera sample, 
such as Th, U, Pb, Zr, Nb or LREE, corresponds with analy-
ses displaying the highest Cr concentrations (> 5000 ppm) 
(Fig. 7a, b, c, d). 

Cr content in amphibole from Talavera (249–796 ppm) is 
again significantly higher than in La Solanilla gabbro (< 96 
ppm) (Table 3). The trace element composition of amphib-
ole from both intrusions shows a broad tendency of the low 
Ti–K group to show lower Ba, Rb, Sr and V concentrations 
when compared with the Ti–K rich amphiboles. An example 
of this behaviour can be observed in the zoning profile of 
Figure 5, where two distinct types of amphiboles (brown and 
green) have been analysed, with green amphibole being rela-
tively depleted in Ti, K, Sr, Ba and LREE. HFSE and REE 
also decrease their concentration in amphiboles with lower 
Ti (Fig. 8a, b, c, d). The amphibole associated with coronitic 
orthopyroxene does not show a distinct composition with re-
spect to other interstitial amphiboles from La Solanilla. The 
chondrite-normalised trace element values of amphiboles are 
characterised by very high REE abundances and negative 
anomalies at Eu, and the primitive mantle-normalised pat-
terns display negative anomalies at Pb, Sr and Ti (Fig. 8e, f).

to that depicted by core to rim profiles, and it is interesting 
to remark that analyses with the highest incompatible trace 
elements values correspond with partially altered clinopyrox-
ene (areas replaced by amphibole). On the contrary, clinopy-
roxene from Talavera is characterised by: 1) a fairly variable 
trace element concentration in analyses displaying very high 
Cr contents, 2) a slight tendency of Ba, Th, U, Pb, Zr, Nb, V 
and LREE contents to decrease towards lower Cr, and 3) the 
presence of a reduced group of spots with low Cr values but 
relative high incompatible trace element concentrations (Ba, 
U, Th, Pb, Zr, Hf, Y, REE), as described in the La Solanilla 
gabbros (Fig. 7a, b, c, d). These latter analyses represent par-
tially transformed zones in contact with interstitial amphib-
oles. 

Clinopyroxene chondrite-normalised REE patterns are al-
most flat, but exhibit a wide compositional range and a vari-
able degree of LREE fractionation (Fig. 7e). They always 
show Eu negative anomaly. The Primitive Mantle-normal-
ised patterns display characteristic Nb–Ta, Sr and Ti negative 
anomalies (Fig. 7f). Zoning patterns in both samples are in 
agreement with development of rims in reaction fronts (and 
also inner areas) displaying lower Cr and higher values for 
incompatible elements (Fig. 4). It must be noted that, exclud-
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Similarly to other mafic minerals, there is a contrasted 
trace element composition in phlogopite from both samples, 
manifested in the high and variable Cr contents of Talavera 
(354–1370 ppm), when compared to La Solanilla (3.4–152 
ppm) (Table 3). Moreover, phlogopite from this latter gab-
bro reaches higher Ba (up to 6430 ppm), Y (up to 0.28 ppm) 
and LREE (e.g. Ce up to 0.4 ppm) values, and lower Pb and 
HFSE contents (e.g., Fig. 9a, b). It is noteworthy the hetero-
geneity in the phlogopite Zr–Hf contents from Talavera (Fig. 
9b). Primitive Mantle-normalised patterns of phlogopite are 
characterised by strong abundances of Rb–Ba, Nb–Ta, Pb 
and Ti, and negative Th–U, LREE and Y anomalies (Fig. 9c).

6. Discussion

6.1. Constraints on processes during magma crystallization

With the exception of olivine, all mafic phases present in 
the La Solanilla sample are characteristically depleted in Cr 
with respect to the same minerals in the Talavera gabbro, ir-
respective of their Mg# (Table 3; Fig. 6a; Fig. 7a, b, c, d). 
This fact might be explained by the much higher abundance 
of Cr-spinel inclusions in olivine from La Solanilla (Fig. 2e), 
whose crystallization depleted drastically the Cr content in 
the residual melt. 

Unlike other main minerals, orthopyroxene displays con-
trasting textural and chemical characteristics in the Talavera 
and La Solanilla samples. Orthopyroxene from Talavera gab-
bro yields a negative correlation between incompatible ele-
ments and Mg# (e.g., Fig. 6c), coherent with a progressive 
enrichment of the residual liquid in those elements. On the 
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(e.g., Fig. 6b, c). The presence of composite orthopyroxene–
amphibole coronas at olivine–plagioclase contacts (Fig. 2e) 
has been previously described and attributed to a magmatic 
origin, rather than metamorphic (e.g. Joesten, 1986; Haas et 

other hand, orthopyroxene from La Solanilla, which only ap-
pears forming coronas around olivine, have lower Cr con-
tents and Mg# values (always bellow 0.74; Fig. 6a) and much 
higher concentrations for certain incompatible trace elements 
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al., 2002). The relatively high concentration of incompat-
ible trace elements (such as LILE and REE) in the coroni-
tic orthopyroxene from La Solanilla (Fig. 6b, c, d) does not 
favour formation by subsolidus processes, but rather require 
the involvement of an evolved interstitial silicate liquid in 
its origin, thus reinforcing the possibility of a late magmatic 
genesis.

The heterogeneous chemical composition shown by the ear-
ly-crystallisation phases of the SCS gabbros has been related 
to some degree of crystal fractionation (Orejana et al., 2009). 
The continuous normal zoning displayed by plagioclase in 
the two analysed samples for the present study, characterised 
by Ab-rich contents towards the rim of idiomorphic prisms 
(Fig. 4), agrees with the above conclusion. Widespread pla-
gioclase crystallization is also consistent with the negative Sr 
and Eu anomalies in the normalised patterns of orthopyrox-
ene, clinopyroxene and amphibole (Fig. 6d; Fig. 7e; Fig. 8e).

On the other hand, chemical zoning in clinopyroxene, ei-
ther in major or trace elements, is likely influenced by ele-
ment diffusion during its replacement by amphibole (Fig. 2d, 
f), which can be observed in both samples (Talavera and La 
Solanilla). The decrease in Ti, Al and Na (Fig. 4) would be 
in accordance with their preferential diffusion towards crys-
tallising amphibole, which have higher partition coefficients 
for these elements. Similar textural and chemical features in 
clinopyroxene–amphibole reaction areas have been identi-
fied in oceanic gabbros by Coogan et al. (2001). Clinopyrox-
ene analyses with the highest Al, Ti and Na concentrations 
(and lower Ca) in La Solanilla gabbro (Fig. 3c, d) usually 
display a low total cation sum (~97–98 wt%), likely indicat-
ing that they represent secondary highly transformed mineral 
domains. The fact that clinopyroxene rims are enriched in 
trace elements more compatible with amphibole (Fig. 4) is 
likely the result of analysing with a near 50 mm diameter laser 
beam, which has likely ablated part of the < 10 mm amphi-
bole micro-inclusions present in clinopyroxene rims associ-
ated with reaction zones (Fig. 2f). Due to the uncertainty in 
the composition of analyses from partially transformed areas 
(which have been marked in Fig. 3c, d and Fig. 7a, b, c, d), 
they have not been considered in further discussions.

The above features reveal a complex history of interstitial 
melt in-situ crystallization. Several textural and chemical ob-
servations testify for this process both in the Talavera and La 
Solanilla gabbroic intrusions. The evidences are: 1) the pres-
ence of interstitial minerals rich in highly incompatible trace 
elements (mainly amphibole, phlogopite, ilmenite, apatite, 
zircon, baddeleyite and titanite), 2) overgrowth of early crys-
tallization phases towards a more differentiated composition 
(mainly plagioclase), and 3) disequilibrium between some 
interstitial crystals and previous minerals (e.g. clinopyrox-
ene–amphibole reaction). Such features have been commonly 
interpreted as resulting by late-stage crystallization of inter-
stitial melts (e.g. Barnes, 1986; Bédard, 1994; Ross and El-
thon, 1997; Tribuzio et al., 1999b). Complete re-equilibration 
of the early-formed minerals with the residual melt fraction 

was not attained, as demonstrated by the late crystallization 
of interstitial plagioclase with anorthite contents occasionally 
below 10, together with the preservation of chemical zoning 
in this mineral (Fig. 4). The similarity in Mg# values between 
the early- and late-crystallized mafic minerals (Mg#Ol = 0.78–
0.63, Mg#Opx = 0.82–0.68, Mg#Cpx = 0.84–0.74, Mg#Amph = 
0.75–0.64, Mg#Phl = 0.82–0.56), results somewhat contradic-
tory. However, this feature could be explained in two ways: 
1) due to a significant decrease of Fe in the residual melt (see 
below the discussion regarding the influence of ilmenite), or 
2) advocating a significant increase in the oxygen fugacity, 
which can induce higher Mg# values in hydrous minerals 
(Scaillet and Evans, 1999). The increment of oxygen fugacity 
likely occurred in conjunction with the increase of the H2O 
concentration in the late-stage residual melt.

The formation of Ti-rich amphibole in gabbroic rocks has 
been ascribed in the literature to a metamorphic or magmatic 
origin. The first possibility has been mainly proposed for 
solid-state reactions during infiltration of seawater-derived 
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tioned, some analyses from both samples are affected by the 
replacement of clinopyroxene by amphibole (e.g. see Fig. 3c, 
d and Fig. 7a, b, c, d), and they are not considered for further 
discussions. However, a subtle increment in trace element 
contents towards lower Cr can be observed in clinopyroxene 
from the La Solanilla gabbro (Fig. 7a, b, c, d), which points to 
a progressive enrichment of the residual melt in incompatible 
elements. This is also suggested by the LREE-enriched nature 
of interstitial An-poor plagioclase (Fig. 10a). On the contrary, 
clinopyroxene from the Talavera sample has two contrasting 
features: 1) extremely variable trace element contents for 
clinopyroxene with high Cr values, and 2) decreasing Ba, 
Th, U, Zr, Nb, V and LREE towards lower Cr concentrations 
(e.g., Fig. 7a, b, c, d). While the first characteristic will be dis-
cussed in more detail in the following section, the depletion 
of some trace elements in the most evolved clinopyroxene 
might be interpreted as due to co-precipitation of phases with 
high partition coefficients for certain elements, such as apa-
tite (LREE), zircon (Zr, Hf, Th, U), baddeleyite (Zr, Hf, U), 
amphibole (Nb) and phlogopite (Ba, Nb, V). The influence 
of co-crystallising minerals in Talavera can also be identified 
in the amphibole chemistry. The large brown Ti–K-rich kaer-
sutite likely represents the initial amphibole composition, 
whereas the lower Ti, K, Rb, Ba, Sr and V contents of the 
more interstitial green pargasite (Fig. 5) would be caused by 
coeval crystallization of phlogopite and Ab-rich plagioclase 
(overgrowths). Nevertheless, the fact that low Ti–K amphi-
bole from Talavera shows an heterogeneous composition for 
Zr–Hf, Nb–Ta, Th and LREE (e.g. Zr–Nb, Fig. 8a, b), im-
plies that amphibole formation in equilibrium with zircon, 
baddeleyite, apatite and ilmenite was a local phenomenon. 
Thus, while phlogopite and interstitial plagioclase seem to 
have controlled the distribution of LILE and Sr, respectively, 
in the residual melt, the local precipitation of the above ac-
cessory phases have governed HFSE and LREE distribution. 
More specifically, the relevant role of ilmenite can be also 
identified in the behavior of Mg# and Ti in amphibole and 
phlogopite. Both minerals are in equilibrium with ilmenite 
and display moderate to low TiO2 associated to high Mg#, 
which is an effect that could be expected from the crystalliza-
tion of a Ti–Fe-rich mineral.

To evaluate more precisely the role played by accessory 
phases in the trace element distribution we have made a mass 
balance calculation considering the observed modal propor-
tions of olivine, plagioclase, orthopyroxene, clinopyroxene, 
amphibole and phlogopite. Several conclusions for both sam-
ples can be drawn from the results (see calculation details in 
caption to Fig. 11): 1) the distribution of most trace elements 
is controlled by minerals crystallised from the residual in-
terstitial liquid (amphibole, phlogopite and other accessory 
phases), excepting the HREE, that are significantly incorpo-
rated in pyroxene (~30–50%), and Ba and LREE in plagio-
clase (~10–30%); 2) HREE are largely controlled by amphi-
bole, 3) LILE are mainly incorporated into phlogopite (Rb, 
Ba) and plagioclase (Ba), 4) Nb–Ta demonstrate a clear pref-

fluids through mafic plutonic rocks in oceanic environments 
(e.g. Coogan et al., 2001 and references therein). Sub-solidus 
hydrothermal alteration is highly unlikely in the SCS gab-
broic bodies considering the temperature estimates (825 to 
970 ºC, hornblende–plagioclase geothermometer; Molina et 
al., 2009). The very high REE, Y, Zr and Ti concentrations 
of amphibole from Talavera and La Solanilla intrusions (Fig. 
8a, e, f), and the fact that amphibole is texturally in equilib-
rium with other magmatic interstitial phases (e.g. phlogopite, 
apatite), strongly support its magmatic genesis in the studied 
samples. The occurrence of Ti-rich amphibole as an inter-
stitial phase in gabbroic rocks, associated with a priori an-
hydrous incompatible trace element-depleted systems, have 
been widely explained by late crystallization from more frac-
tionated magmas, after liquidus minerals formation (mostly 
in tholeiitic basic magmas; e.g. Gillis, 1996; Tribuzio et al., 
1999b, 2000; Coogan et al., 2001).

The heterogeneity of clinopyroxene composition in both 
gabbros might have fairly different origins. As already men-
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LILE and LREE enrichment in minerals (mainly clinopy-
roxene) from gabbroic rocks have been related with a proc-
ess of contamination by an external evolved liquid (e.g. 
Tribuzio et al., 1999a; Tiepolo and Tribuzio, 2005; Renna 
et al., 2006). Figure 10b illustrate that the enrichment of 
the most incompatible REE in clinopyroxene (e.g., La) is 
associated to a higher degree of fractionation of LREE. 
High (La/Sm)N values also correlate positively with Na2O 
in plagioclase (Fig. 10a). This behaviour might be explained 
advocating the involvement of a LREE-rich external fluid/
melt. A recent study by Villaseca et al. (2011) focused on the 
geochronology and Hf isotope composition of zircons from 
the SCS gabbros, highlighted the heterogeneous eHf values 
(+2.9 to –1.1) displayed by magmatic zircons from the Talav-
era gabbro and the presence of xenocrystic zircons with  eHf 

erence for amphibole, phlogopite and one accessory mineral 
(likely ilmenite), and 5) many incompatible trace elements 
seem to be predominantly controlled by accessory phases 
present in modal proportion below 1 %: LREE (apatite) and 
Th–U and Zr–Hf (zircon and baddeleyite) (Fig. 11).

6.2. Involvement of an external component

Although textural and chemical criteria support the precipi-
tation of interstitial minerals from a residual liquid by in-situ 
crystallization, this process might have progressed either in a 
closed or in an open system situation.

To discuss these possibilities we have applied the Equi-
librium Distribution Method (EDM) of Bédard (1994). 
This author proposed a mass balance calculation to model 
the distribution of trace elements between a mineral assem-
blage and an interstitial trapped melt during crystallization 
in a closed system, applicable to cumulate rocks or any other 
solid–liquid system. The equation of Bédard (1994) allows 
the calculation of any mineral composition if the following 
variables are known: 1) whole-rock composition, 2) mineral 
modal proportions, 3) mineral/melt partition coefficients, and 
4) trapped melt fraction. We have used this method to test the 
hypothesis of closed system crystallization by estimating the 
composition of clinopyroxene, which is the last major phase 
in equilibrium with the interstitial melt. While whole-rock 
composition of Talavera and La Solanilla gabbros were de-
termined by Orejana et al. (2009), in this work we have made 
a detailed estimation of the modal composition in the studied 
samples (see results in caption to Fig. 11). The mineral/melt 
partition coefficients used in this study have been extracted 
from experimental studies on basic magmas at thermody-
namic conditions similar to those of the SCS gabbros (see 
references in caption to Fig. 12).

We have considered a 20% residual melt fraction, which 
represents a proportion coherent with the modal amount of 
minerals crystallised directly from the interstitial liquid. The 
modelled clinopyroxene composition is compared in Fig. 
12 with the most primitive clinopyroxene from each sample 
(highest Cr contents). The pattern predicted by the equation 
of Bédard (1994) matches the composition of clinopyrox-
ene from each sample, excepting LILE and LREE whose 
concentrations plot below or towards the lowest values of 
the represented clinopyroxene range (Fig. 12). These differ-
ences in LILE and LREE contents are difficult to reconcile 
with a closed magmatic system. The extremely high concen-
trations of elements such as Th and U in clinopyroxene (up 
to 2.86 ppm and 0.3 ppm in the Talavera gabbro; Fig. 7a, b) 
would imply dozens to hundreds ppm of Th in the liquid, 
even considering a wide range of mineral/basic melt parti-
tion coefficients (e.g. 0.06 to 0.01; Lemarchand et al., 1987; 
Hauri et al., 1994, respectively). Moreover, other minerals 
display remarkably high trace element concentrations (main-
ly REE), such as Na-rich plagioclase (Fig. 6g) and amphib-
ole (Fig. 8e, f). 
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Fig. 11.- Bar diagram showing the relative proportion of selected 
trace elements in the main minerals from the Talavera and La 
Solanilla gabbros obtained by a mass balance calculation. Trace 
element composition of minerals used in the calculation consid-
ers averaged values (partially transformed clinopyroxene have 
not been considered). Modal composition used are those of Ta-
ble 1: ol (7%), pl (54%), opx (16%), cpx (12%), amph (6%), phl 
(3%) and rest (2%) for Talavera sample and ol (15%), pl (58%), 
opx (6%), cpx (14%), amph (3%), phl (3%) and rest (1%) for 
La Solanilla sample
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et al., 2002; Claeson and Meurer, 2004). Thus, the presence 
of Ti-rich minerals can not be considered as an unambiguous 
evidence of crystallization from an alkaline melt.

Amphibole and phlogopite in the Talavera and La Solanilla 
gabbros are not abundant early precipitated phases, but late-
stage interstitial minerals present in low proportions (<9%), 
locally in disequilibrium with the surrounding phases (e.g. 
clinopyroxene; Fig. 2d, f). These textural and chemical fea-
tures, taken together with the whole-rock chemistry, support 
a subalkaline affinity for the SCS Variscan basic melts. We 
propose that the extensive crystallization of initially H2O-
subsaturated magmas, in conjunction with the addition of 

values typical of crustal rocks (–3 to –9) in the La Solanilla 
gabbro. These zircon data clearly support that both gabbroic 
bodies were contaminated to some degree either by partial 
melts derived from local assimilation of metamorphic wall-
rocks or due to hybridization with coeval Variscan granite 
magmas as most studies suggest (e.g., Bea et al., 1999; Vil-
laseca et al., 2011). 

6.3. Nature of the parental magmas

Magmatism in collisional orogens is dominated by com-
plex processes which commonly involve melting of contrast-
ed sources (crust and mantle), fractionation, mixing of the 
generated magmas and local assimilation of country rocks. 
Furthermore, hybridization may occur at different crustal 
levels. Thus, the geochemical affinity of magmas parental to 
mantle-derived rocks is not always a straightforward issue.

The late-Variscan mafic rocks from central Spain develop 
well-characterised medium- to high-K calc-alkaline trends 
(Villaseca et al., 2004; Orejana et al., 2009; Scarrow et al., 
2009), with the most primitive gabbros showing orthopyrox-
ene (typically subalkaline) as a near liquidus phase. How-
ever, the presence of Ti-rich minerals in these rocks, such 
as kaersutite and Ti-phlogopite, have suggested an alkaline 
affinity (Molina et al., 2009), and the possibility that the 
calc-alkaline composition resulted from chemical interaction 
(hybridization) at depth between alkaline basic magmas and 
felsic melts, prior to the crystallization process (Scarrow et 
al., 2009). Kaersutite and pargasite are amphiboles typical of 
alkaline basic rocks and metasomatised mantle xenoliths and 
their formation occurs early during the crystallization proc-
ess (e.g. Martin, 2007). Nevertheless, the presence of these 
minerals in subalkaline series is not an uncommon phenom-
enon. Féménias et al. (2006) described core to rim zoning 
patterns in amphiboles from basaltic to rhyolitic calc-alkaline 
dykes, including pargasite, kaersutite, edenite and magnesio-
hastingsite cores. A similar chemical evolution was found by 
Kawakatsu and Yamaguchi (1987) from brown magnesio-
hornblende and magnesiohastingsite towards green magne-
siohorblende and actinolite in calc-alkaline plutonic rocks. 
In fact, pargasite displays a heterogeneous major element 
composition, with pargasite s.s. occurring almost exclusively 
in alkaline rocks and the tschermakitic pargasite being typi-
cal of calc-alkaline series (Ridolfi and Renzulli, 2012). The 
composition of pargasite from the Talavera and La Solanilla 
gabbros is similar to the tschermakitic pargasite described 
by Ridolfi and Renzulli (2012) and fits the chemical criteria 
proposed by these authors (mainly K in A-site below 0.22 
apfu) for amphiboles formed from calc-alkaline magmas. 
Even kaersutite can precipitate as an interstitial mineral from 
tholeiitic magmas (e.g. Tribuzio et al., 2000; Coogan et al., 
2001). These latter authors suggest that amphibole formation 
can be ascribed to the percolation of relatively evolved melts. 
Ti-rich biotite-phlogopite has also been described in subalka-
line basic plutonic rocks (e.g., Tribuzio et al., 1999a; Costa 
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Fig. 12.- Primitive Mantle-normalised trace element abundances 
of clinopyroxenes calculated with the EDM method (Equilib-
rium Distribution Method; from Bédard, 1994) for (a) Talav-
era and (b) La Solanilla gabbros, assuming a trap melt frac-
tion (TMF) of 20%. Whole rock composition extracted from 
Orejana et al. (2009). Modal composition as that of caption to 
Fig. 11, with the exception of clinopyroxene which has been 
balanced with the TMF in order to get a total of 100%. Parti-
tion coefficients used: olivine/melt from Bédard (1994); pla-
gioclase/melt from Bindeman and Davis (2000) and Bédard 
(1994); ortopyroxene/melt from Green et al. (2000) and 
Kennedy et al. (1993) and clinopyroxene/melt from Hart and 
Dunn (1993), Hauri et al. (1994) and Adam and Green (2006). 
Trace element abundances of Cr-rich clinopyroxenes from 
each sample (grey field) are also reported for comparison. 
Normalising values after McDonough and Sun (1995).
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The only basic alkaline magmatic rocks outcropping in the 
SCS are lamprophyric and diabasic dykes (Orejana et al., 
2008) of Permian age (ca. 264 Ma; e.g., Scarrow et al., 2006; 
Perini and Timmerman, 2008), which intrude about 35 Ma af-
ter the Variscan gabbros are emplaced (305-300 Ma; Villase-
ca et al., 2011), in a fairly different tectonic regime. Some of 
these alkaline dykes display isotopically depleted signatures 
(eNd ~ +7; Orejana et al., 2008), which suggests that meta-
somatism in the source mantle likely occurred shortly before 
alkaline melt generation (Orejana et al., 2008). The Variscan 
basic magmatism at ca. 300 Ma would register a previous 
and different mantle source. This transformation of the lithos-
pheric (and asthenospheric) mantle under central Spain has 
been associated with delamination of dense crustal blocks in 
the thickened Variscan collisional belt, which is supported 
by Sm–Nd isotopic signatures of pre-Variscan, Variscan and 
post-Variscan basic magmas (e.g., Villaseca et al., 2004; Ore-
jana et al., 2008; Gutierrez–Alonso et al., 2011).

7. Conclusions

The Talavera and La Solanilla gabbroic intrusions display 
a heterogeneous mineral composition, including incompat-
ible trace element-rich interstitial phases, such as amphibole, 
phlogopite and other accessory minerals (ilmenite, zircon, 
apatite, baddeleyite, titanite). Major element composition of 
the main minerals show a high degree of variation: for in-
stance, plagioclase show zoning patterns ranging from Ca-
rich cores to Na-rich overgrowths and clinopyroxene zoning 
seems to be related to disequilibrium reactions, leading to re-
placement by amphibole at crystal rims.

Trace element contents in clinopyroxene from both gab-
bros towards a more evolved composition accounts for a 
progressive enrichment of the residual melt in incompatible 
elements. However, this tendency is clearly modified by co-
precipitation of phases with high partition coefficients for 
specific elements, such as apatite (LREE), zircon (Zr, Hf, Th, 
U), baddeleyite (Zr, Hf, U), amphibole (Nb) and phlogopite 
(Ba, Nb, V). A simple mass balance calculation indicates 
that the distribution of most trace elements is controlled by 
minerals crystallised from the interstitial liquid (amphibole, 
phlogopite and accessory phases).

The use of the Equilibrium Distribution Method of Bédard 
(1994) highlights that the very high LILE and LREE contents 
in clinopyroxene from both gabbroic samples can not be ex-
plained exclusively by an in-situ crystallization process in a 
closed-system situation. Positive correlation between La/Sm 
normalised ratios and La and Na contents, in clinopyroxene 
and plagioclase respectively, serve as evidence of contamina-
tion with an external evolved liquid, likely associated with 
granite melt hybridization, as stated by previous isotopic 
studies.

Petrographic features (e.g., presence of orthopyroxene, late 
precipitation of amphibole) and mineral composition (e.g., 
trace element-enriched clinopyroxene and amphibole com-

external components during emplacement, might have led 
to subsequent enrichment in incompatible elements, includ-
ing volatiles, and melt saturation in amphibole. The highly 
enriched trace element composition of most minerals in the 
studied gabbros (e.g. LREE in plagioclase, REE in orthopy-
roxene, clinopyroxene and amphibole) exclude the possibil-
ity of an initial tholeiitic magma, and are very similar to the 
composition of clinopyroxene and amphibole in other calc-
alkaline post-orogenic Variscan gabbros (e.g. the Corsica–
Sardinia batholith; Renna et al., 2006). 

Apart from the late growth of Ti-rich minerals, no strong 
evidence against a dominant calc-alkaline affinity in the SCS 
gabbros is apparent. The last events of the Variscan orogeny 
are characterised in central Spain (and in many other western 
Variscan massifs) by a widespread felsic magmatism, with 
abundant granite intrusions emplaced in the range ~310–298 
Ma (e.g., Orejana et al., 2012; Merino Martínez et al., 2014, 
and references therein). Late Variscan magmatism, including 
both the felsic magmas and the accompanying scarce basic 
melts, could have been originated by adiabatic decompres-
sion as lithosphere experienced considerable thinning during 
the orogen collapse (e.g., Orejana et al., 2009; Scarrow et 
al., 2009). Whole-rock geochemistry of the primitive olivine-
bearing gabbros, such as negative Nb–Ta and Ti anomalies, 
LILE enrichment and low Ta/Yb and Ce/Pb ratios, points to 
a calc-alkaline nature (Orejana et al., 2009). Furthermore, 
other basic rocks that intruded as large dyke swarms in the 
SCS in a later stage (~290 Ma; Galindo et al., 1994), show 
similar calc-alkaline fingerprints as those described above 
(Gb2 and Gb3 series in Villaseca et al., 2004). Accordingly, 
we think that a lithospheric mantle metasomatised by crustal-
like (collisional?) components would be the source of these 
post-collisional basic magmas.

The involvement of an alkaline component in the origin of 
the SCS primitive gabbros is not obvious. Their whole-rock 
composition is difficult to reconcile with a possible magma 
mixing process involving an alkaline basic melt and a felsic 
component. The concentration of some major and trace ele-
ments in the SCS gabbros do not plot in an intermediate posi-
tion between that of a possible felsic melt (e.g., the SCS felsic 
Variscan magmatism) hybridized with an alkaline basic mag-
ma. Recent studies have highlighted the importance of crystal 
transfer as a mechanism capable of producing non-linear el-
emental correlations between felsic and mafic magmas (e.g., 
Ubide et al., 2014). However, the SCS gabbros display lower 
or overlapping contents in some minor and trace elements 
(Ti, Nb, Zr) with respect to granite composition. This fea-
ture implies a notable deviation from an alkaline composition 
and, accordingly, would mean a significant crystal transfer, if 
this process had been important during mixing. The primitive 
nature of the analysed olivine-bearing gabbros, together with 
the absence of felsic minerals showing disequilibrium tex-
tures, prevents significant mixing with coeval granite mag-
mas and supports that the calc-alkaline signature in the SCS 
gabbros could be considered as a primary feature.
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position) in the primitive SCS gabbros, seem to favour an 
original calc-alkaline geochemical affinity, instead of alka-
line or tholeiitic. The bulk rock composition of the SCS gab-
bros and possible felsic and basic alkaline magmas go against 
a possible mixing process in their origin. Available isotopic 
data from the literature also suggest that mantle metasoma-
tism beneath central Spain, before the end of the Variscan 
orogeny, is more likely caused by continental crust compo-
nents, probably associated with delamination of dense crustal 
blocks from the thickened Variscan collisional belt. 
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