New Bilbilian (early Cambrian) archaeocyath-rich thrombolitic microbialite from the Láncara Formation (Cantabrian Mts., northern Spain)

Nuevas microbialitas de arqueociatos y trombolitos del Bilbiliense (Cámbrico inferior) de la Formación Láncara (Cordillera Cantábrica, norte de España)

A. Perejón1, E. Moreno-Eiris1*, T. Bechstädt2, S. Menéndez3, M. Rodríguez-Martínez4

1 Departamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid. C/ José Antonio Novais, 12, 28040 Madrid, Spain. aparqueo@geo.ucm.es; eiris@geo.ucm.es
2 Geologisch-Paläontologisches Institut, Ruprecht –Karks -Universität. Im Neuenheimer Feld 234, D-69120 Heidelberg, Germany. bechstaedt@uni-hd.de
3 Museo Geominero, Instituto Geológico y Minero de España (IGME). C/ Ríos Rosas, 23, 28003 Madrid, Spain. s.menendez@igme.es
4 Departamento de Estratigrafía, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid. C/ José Antonio Novais, 12, 28040 Madrid, Spain. martarm@geo.ucm.es

*corresponding author

Received: 29/12/2011 / Accepted: 16/06/2012

Abstract

Recent palaeontological and microfacies studies carried out on the Láncara Formation (early Cambrian) provide evidence for an interesting, previously undescribed association of archaeocyaths (Salce locality) and microbialites (Salce and Barrios de Luna localities). The archaeocyathan assemblage consists of *Archaeocyathus laqueus* (Vologdin, 1932) and *Pycnoidocyathus erbiensis* (Zhuravleva, 1955), indicating an early Bilbilian age (Stage 4, Series 2, Cambrian) for these materials. The analysis of the upper part of the lower member has allowed differentiation of eleven carbonate facies that have been grouped into: i) non-skeletal grain packstone-grainstone, ii) fenestral mudstone-packstone, iii) heterolithic stylonodular facies, iv) microbialites, v) bioclast-intraclast packstone-grainstone. Archaeocyaths occur reworked in stylonodular facies as well as forming small archaeocyaths-thrombolitic patches (centimetre-scale). The archaeocyath-rich thrombolitic microbialites from Salce were developed in very shallow subtidal conditions surrounded by other microbialites and small lenticular intertidal bars in the inner ramp. Toyonian biostratigraphic and paleobiogeographic analyses have also been carried out. After the comparison with Toyonian archaeocyathan rich facies from Gondwana, it has become evident that the early Cambrian record from the Cantabrian Mountains provides the richest generic assemblage from Gondwana for Toyonian time.

Keywords: Archaeocyaths, Microbialite, Láncara Formation, early Cambrian, Somiedo-Correcilla Subunit, Cantabrian Mountains
Resumen

Los recientes estudios paleontológicos y de análisis de microfacies de los materiales carbonatados de la Formación Láncara (Cámbrico inferior) han depurado el hallazgo de una inédita asociación de arqueociatos (localidad de Salce) y microbialitas (localidades de Salce y Barrios de Luna). La asociación de arqueociatos está constituida por Archaeocyathus laqueus (Vologdin, 1932) y Pycnoidocyathus erbiensis (Zhuravleva, 1955), lo que indica una edad Bilbilienne (Piso 4, Serie 2, Cámbrico) para estos materiales. En el análisis de los niveles carbonatados, a trecho del miembro inferior, se han distinguido once tipos de facies que han sido agrupados en: i) packstone-grainstone de granos no esqueléticos, ii) mudstone-packstone con fábrica fenestral, iii) facies estilonodulares heterolíticas, iv) microbialitas, v) packstone-grainstone bioclásticos e intraclásticos. Los arqueociatos aparecen resedimentados en las facies estilonodulares y formando pequeños parches trombolíticos (escala centimétrica). Las microbialitas de arqueociatos y trombolitos de Salce se desarrollaron en condiciones submareales muy someras rodeadas de otras microbialitas y pequeñas barras lenticulares en zonas intermareales de la rampa interna. Se han realizado análisis bioestratigráficos y paleobiogeográficos para el Toyonio. Tras comparar las facies del Toyonien ricas en arqueociatos de Gondwana, se manifiesta de manera evidente que el registro del Cámbrico inferior de la Cordillera Cantábrica aporta la asociación genérica más rica de Gondwana durante el Toyonien.

Palabras clave: Arqueociatos, Microbialitas, Formación Láncara, Cámbrico inferior, Subunidad Somiedo-Correcilla, Cordillera Cantábrica.

1. Introduction

The lower-middle Cambrian Láncara Formation (Oele, 1964) is mainly composed of dolostone, limestone and occasional shale interbeds, ranging from 150 m up to 225 m in thickness (Aramburu et al., 1992). The first stratigraphical and sedimentological analyses of the Láncara Formation were done by Comte (1937), Oele (1964), van der Meer Mohr (1969), Zamarrero and Julivert (1967) and Zamarrero (1972, 1975, 1978, 1981). The relationship between the Láncara Formation and other platforms of the western Gondwana margin was analyzed by Álvaro et al., (2000a), demonstrating that extensive evaporitic conditions were associated with these carbonate and mixed platforms, which were part of an early Cambrian arid subtropical belt.

The Cantabrian Zone records the youngest archaeocyathan biozone in Spain (X Zone, according to Perejón and Moreno-Eiris, 2006a). In fact, the occurrence of archaeocyaths had been previously reported at Esla nappe only. Debrene and Zamarrero (1970) first described the presence of Archaeocyathus cf. laqueus (Vologdin, 1932) and Pycnoidocyathus cf. erbiensis (Zhuravleva, 1955) at the Valdoré locality. Recently, Álvaro et al., (2000b) also mentioned the occurrence of these taxa at the Crèmenes locality. The most recent taxonomic study from these localities was done by Perejón and Moreno-Eiris (2003), who reported the presence of Archaeocyathus laqueus (Vologdin, 1932), Pycnoidocyathus erbiensis (Zhuravleva, 1955), Polychalama sp. and Okulitchicyathus valdorensis Perejón and Moreno-Eiris, 2003. This archaeocyathan assemblage is characteristic of an early Bilbilian or Toyonian age (Spanish and Russian stages respectively). Thus, with the exception of the occurrences in the Láncara Formation at Esla nappe (Crèmenes and Valdoré localities), the presence of archaeocyaths at Somiedo-Correcilla Subunit was unknown.

The purpose of this paper is to: 1) analyze the litho- and biostratigraphic record of Lower Cambrian materials in Salce and its correlation with the closest Barrios de Luna section (reference section for the Láncara Formation in the Somiedo-Correcilla Subunit); 2) reconstruct the environmental setting of the archaeocyath-thrombolitic microbialites from the lower member of the Láncara Formation; 3) document the taxonomy of the archaeocyaths; 4) establish the biostratigraphic and paleogeographic correlations with other regions; and 5) compare the Toyonian archaeocyath-rich biofacies from Gondwana.

2. Geological Setting and Stratigraphy of the Láncara Formation

The analyzed occurrence is located in the Cantabrian Zone of the northwestern Iberian Peninsula, in the most external position in the northeastern part of the Iberian Massif (Lotze, 1945) (Fig. 1A). The Cantabrian Zone corresponds to the foreland-and-thrust belt of the northwestern Iberian Variscan Orogen (Julivert, 1971). Orogenic deformation during Carboniferous time resulted in a characteristic thin-skinned tectonic style in the Cantabrian Zone. The Cantabrian Zone has been divided into different tectonostratigraphical units (Vera, 2004; Julivert, 1967; 1971). The present work is focused on Cambrian limestone from the Láncara Formation in the Somiedo-Correcilla Subunit (Julivert et al., 1968), which is part of the Unidades Occidentales y Meridionales [Región de Piegués y Mantos according to Julivert (1967, 1971)], where practically the whole Palaeozoic succession is present. The meridional tract of the Somiedo-Correcilla Subunit (Fig. 1B) comprises the Narcea-Mora, Herreria, Láncara and Oville Formations (Proterozoic to middle Cambrian record, Fig. 2).
Archaeocyaths have been found at the Salce locality (Perejón et al., 2007) near the Barrios de Luna locality. However the Láncara Formation at Salce is not as well exposed and shows significant differences from the Barrios de Luna section (Fig. 3). To the north of Salce, the Proterozoic and Cambrian rocks are tectonically bounded between two NE-SW faults into a NW-SE nappe structure (MAGNA Sheet 102; Rodriguez Fernández et al., 1990). Along the slopes of Cerro de Valdemarzón, the geological record begins with the siliciclastic rocks of the Narcea-Mora Formation (Neoproterozoic). This is unconformably overlain by sandstone of the Herrería Formation (lower Cambrian), followed by the Láncara Formation carbonates which are in turn conformably overlain by shale of the Oville Formation.

The Láncara Formation was informally divided into two members (lower and upper) by Zamarreño (1972) and displays five distinct units (A-E in Fig. 2), various constituents of which have been named and described by several authors (Zamarreño, 1972, 1978; Álvaro et al., 2000b; Wotte, 2009). The lower member has a variable thickness from 117 m up to 223 m whereas the upper member ranges from 11 m to 48 m (Aramburu et al., 2006). The lower member exhibits two or three units (A-C in Fig. 2), which according to Zamarreño (1972) correspond to: i) yellow dolostone; ii) grey bedded limestone with birdseyes; and, in some localities, iii) an upper detrital interval up to 12 m in thickness composed of ooid limestone, sandstone and nodular limestone with archaeocyaths. The upper detrital interval has been recognized in the Esla nappe and at northward of the Esla nappe (Zamarreño, 1978) but has been never described in the Somiedo-Correcilla Subunit. The upper member corresponds to encrinitic-glaucolithic limestone and nodular-griotte limestone respectively termed Beleño and Barrios facies by Zamarreño (1972) (D-E in Fig. 2). The present paper describes the first recorded occurrence of archaeocyaths in the Somiedo-Correcilla Subunit at Salce and their lateral equivalents in the nearby Barrios de Luna section; thus carbonate facies descriptions are focused on the upper levels of the lower member of the Láncara Formation.

The top of the Láncara Formation shows three discontinuities (D1-D3 according to Álvaro et al., 2000 b) in the Crémenes and Valdoré sections (Esla nappe). The Salce section records these discontinuities as well, in fact, the archaeocyaths occur in the lenticular limestone (Level 9, Fig. 3) that are bound by the erosive surfaces D1 and D2. The lenticular limestone is succeeded by encrinitic white limestone with trilobites, which marks
316

Perejón et al. / Journal of Iberian Geology 38 (2) 2012: 313-330

In this paper the facies analysis is focused on unit B in Barrios de Luna (see Fig. 2 and Table 1) and units B and C in Salce.

3.1. Non-skeletal grain packstone-grainstone

Intraclast-oncoid grainstone (a1) is a poorly sorted fabric dominated by variously shaped small micritic intraclasts (20-35%) with a wide range of sizes, micritized aggregate grains or lumps (5%) and oncoids (5-10%).

Oncoids are spheroidal to ellipsoidal, up to 2 mm in size and formed by concentrically stacked spheroidal layers. Oncoid cortex is composed of micrite, clotted and microsparitic laminae, while the nuclei are bioclasts and intraclasts. This facies can pass abruptly to spongiostromate-oncoid packstone-grainstone. The boundary surface is a sharp, irregular micritized contact where grains may be truncated.

Spongiostromate-oncoid packstone-grainstone (a2) with poorly sorted fabric is conspicuous (Fig. 4B, facies a2 in Fig. 3 and Fig. 6). Spongiostromate oncoid reach up 15 mm size with a poorly to un laminated spongy micritic cortex. The term spongiostromate oncoid is used for micrite oncoids possessing a laminated dense micritic or
spongy fabric without visible filaments (Flügel, 2004). The oncoid nuclei are absent or partially replaced by dolospar mosaic with high content in frambooidal pyrite. Oncoids have spheroidal to ellipsoidal shapes and their surfaces are partially eroded. Spongiosiostromate oncoids represent 25-45% of rock volume, whereas bioclasts, mainly brachiopods, echinoderms, trilobites and small shelly fossils (SSF), are around 10%. The content of micritic intraclasts fluctuates between 5-10% of the rock volume.

Intraclast packstone-grainstone and intraclast-bioclast wackestone (a_3) (facies a_3 in Figs. 3 and 6) occur interbedded with intraclast-oncoid grainstone (facies a_1) and spongiosiostromate-oncoid packstone-grainstone (facies a_2). Graded bands of moderately sorted packstone-grainstone, dominated by elongated subangular small micritic intraclast (up to 500 µm), are intercalated with massive, poorly sorted intraclast-bioclast wackestone. In the latter case, the intraclasts show a wide range of sizes (but never exceeding 2 mm), shapes and orientations.

3.2. Fenestral mudstone-packstone

Depositional texture ranges from dense to clotted micritic mudstone up to peloidal intraclast wackestone-packstone. Clotted micritic mudstone is taken here as mudstone composed by microbial peloids with a clotted fabric. In this fabric the microbial peloids are densely packed and forming amalgamated clots surrounded by micrite matrix. In the microfacies peloidal intraclast wackestone-packstone we consider peloid as microbial peloids (Flügel, 2004, 116 p.). Fenestral fabric is well developed and fenestrae show an average size of 0.5 mm up to 5 mm, forming around 25% of the rock volume (Fig. 4C, facies b_1 and b_2 in Fig. 3 and Fig. 6). Fenestrae are concordant to bedding, as well as irregularly oriented. The upper part of the lower member of the Láncara Formation displays irregular laminoid fenestral fabric type b_1 and b_2 (Tebbutt *et al*., 1965; Müller-Jungbluth and Toschek, 1969). The type b_1 occurs in mudstone (facies b_1), while the type b_2 is characteristic of wackestone-packstone (facies b_2). These two depositional textures are vertically arranged in centimetre scale cycles (1-5 cm) in metre scale beds and occur interstratified with microbialitic facies. The fenestral mudstone-packstones are partially dolomitized, forming coarsening upwards cycles from fine-grained to grain-supported fabrics. Larger fenestrae occur at the base, however, the connectivity between fenestrae increases towards the top together with the degree of dolomitization.

3.3. Heterolithic stylonodular facies (pelletoid grainstone; archaeocyathan wackestone and dolosparitic nodules)

This lithofacies assemblage occurs at the top of the lower member of the Láncara Formation and displays massive to stylonodular structure with irregular anastomosing spongy fabric without visible filaments (Flügel, 2004). The oncoid nuclei are absent or partially replaced by dolospar mosaic with high content in frambooidal pyrite. Oncoids have spheroidal to ellipsoidal shapes and their surfaces are partially eroded. Spongiosiostromate oncoids represent 25-45% of rock volume, whereas bioclasts, mainly brachiopods, echinoderms, trilobites and small shelly fossils (SSF), are around 10%. The content of micritic intraclasts fluctuates between 5-10% of the rock volume.

Intraclast packstone-grainstone and intraclast-bioclast wackestone (a_3) (facies a_3 in Figs. 3 and 6) occur interbedded with intraclast-oncoid grainstone (facies a_1) and spongiosiostromate-oncoid packstone-grainstone (facies a_2). Graded bands of moderately sorted packstone-grainstone, dominated by elongated subangular small micritic intraclast (up to 500 µm), are intercalated with massive, poorly sorted intraclast-bioclast wackestone. In the latter case, the intraclasts show a wide range of sizes (but never exceeding 2 mm), shapes and orientations.

3.2. Fenestral mudstone-packstone

Depositional texture ranges from dense to clotted micritic mudstone up to peloidal intraclast wackestone-packstone. Clotted micritic mudstone is taken here as mudstone composed by microbial peloids with a clotted fabric. In this fabric the microbial peloids are densely packed and forming amalgamated clots surrounded by micrite matrix. In the microfacies peloidal intraclast wackestone-packstone we consider peloid as microbial peloids (Flügel, 2004, 116 p.). Fenestral fabric is well developed and fenestrae show an average size of 0.5 mm up to 5 mm, forming around 25% of the rock volume (Fig. 4C, facies b_1 and b_2 in Fig. 3 and Fig. 6). Fenestrae are concordant to bedding, as well as irregularly oriented. The upper part of the lower member of the Láncara Formation displays irregular laminoid fenestral fabric type b_1 and b_2 (Tebbutt *et al*., 1965; Müller-Jungbluth and Toschek, 1969). The type b_1 occurs in mudstone (facies b_1), while the type b_2 is characteristic of wackestone-packstone (facies b_2). These two depositional textures are vertically arranged in centimetre scale cycles (1-5 cm) in metre scale beds and occur interstratified with microbialitic facies. The fenestral mudstone-packstones are partially dolomitized, forming coarsening upwards cycles from fine-grained to grain-supported fabrics. Larger fenestrae occur at the base, however, the connectivity between fenestrae increases towards the top together with the degree of dolomitization.

3.3. Heterolithic stylonodular facies (pelletoid grainstone; archaeocyathan wackestone and dolosparitic nodules)

This lithofacies assemblage occurs at the top of the lower member of the Láncara Formation and displays massive to stylonodular structure with irregular anastomosing spongy fabric without visible filaments (Flügel, 2004). The oncoid nuclei are absent or partially replaced by dolospar mosaic with high content in frambooidal pyrite. Oncoids have spheroidal to ellipsoidal shapes and their surfaces are partially eroded. Spongiosiostromate oncoids represent 25-45% of rock volume, whereas bioclasts, mainly brachiopods, echinoderms, trilobites and small shelly fossils (SSF), are around 10%. The content of micritic intraclasts fluctuates between 5-10% of the rock volume.

Table 1: Lithofacies assemblages in the lower member of the Láncara Formation according to several authors.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Several localities</td>
<td>Oosparite; sandstone; nodular limestone with archaeocyaths</td>
<td>Ooidal to bioclastic grainstone; sandy channels; archaeocyathan-microbial reefs; hyolith-rich wackestone</td>
<td>Oolitic bioclastic floatstone ($L7^1$)</td>
</tr>
<tr>
<td>B</td>
<td>Grey bedded limestone with birdseyes; algal mats; stromatolites; intrapelsparrudite</td>
<td>Fenestral, peloidal and microbial grainstone; ooidal grainstone; bioclastic wackestone to mudstone</td>
<td>Non-laminated ($L6^1$); laminated ($L5^1$); aggregated grainstone; laminated mudstone ($L3^1$); claystone ($L1^1$);</td>
<td>Fenestral mudstone-packstone($L7^2$); cryptite or massive microbialite($L6^2$); digitate thrombolites($L5^2$); Intraclast-oncoid grainstone($L4$); spongiosiostromate-oncoid packstone-grainstone($L3^2$); intraclast packstone-grainstone and intraclast-bioclast wackestone($L2$)</td>
</tr>
<tr>
<td>A</td>
<td>Massive and laminated dolomericite; pelsparite; pelsmicrite; intrapelsparite; oosparite; cryptalgal laminates</td>
<td>Recrystallized mudstone ($L2$); oolitic bioclastic floatstone ($L7^2$); laminated mudstone with laminoid fenestral fabrics ($L4$);</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
sets (pressure-solution structures).

Pelletoid grainstone (c1) displays massive fabric at the base and are mainly composed of very well sorted, round to elongated, recrystallized micritic grains or pelletoids (Flügel, 2004, 112 pp) with vague residual internal structures and diffuse margins, and sizes between 200 µm and 500 µm. Pelletoid volume can reach 55% of rock volume (facies c1 in Fig. 4D, Figs. 3 and 6). The bioclast content ranges between 5% and 10% and consists of brachiopods, echinoderm plates, trilobites and reworked fragments of archaeocyaths (Fig. 7H). Where the bioclast content is low, shells are oriented parallel to bedding, whereas a
greater proportion of bioclasts shows an irregular distribution of orientations that is linked to the presence of intraclasts, cortoids and reworked spongiostromate oncoids.

Archaeocyath wackestone and dolosparitic nodules (c2) show a stylonodular structure (Logan and Semeniuk 1976). Archaeocyath wackestone are nodules composed of reworked archaeocyaths, scattered bioclasts and partially dolomitized matrix (facies c2 in Figs. 5A, 6, 7A and 7B), whereas the centimeter to decimeter scale dolosparitic nodules are formed by inequigranular hypidiotopic dolomite.

The vertical arrangement of this lithofacies assemblage starts with massive pelletoid grainstone beds which grade into interbedded stylonodular levels where the nodules are composed of pelletoid grainstone, achaeocyath wackestone and dolospar. Detrital quartz grains (sand to silt size) occur as accessory to minor component dispersed within nodules and also concentrated in the stylolaminated intervals.

3.4. Microbialites

Microbialite is taken here sensu Burne and Moore (1987, p. 241-242) as organosedimentary deposits that have accreted as a result of benthic microbial community trapping and binding detrital sediment and/or forming the locus of mineral precipitation. The microbialites in the upper part of the lower member of the Láncara For-

![Image of carbonate microfacies](image-url)
Fig. 5.- Carbonate microfacies from the upper part of the lower member of the Láncara Formation. A. Archaeocyath wackestone with stylo-nodular fabric. SAL9/1-1. B. Massive peloidal microbialite. Note the presence of peloidal crusts binding spongiostromate oncoinds. Scale divisions correspond to 0.5 mm. BL2/233A. C. Laminated peloidal crust binding fenestral wackestone-packstone. BL1/33D. D. Columnar mesoclots of a digitate thrombolite. Scale divisions correspond to 0.5 mm. (E-G) Archaeocyath-rich thrombolitic microbialite. SAL6/1. E. General view of archaeocyaths surrounded by dense dark clotted micrite. SAL/1-1a. F. Stromatactoid cavity with branching, shrub-like forms of *Epiphyton* on the ceiling. SAL/1-1b. G. Bioclast pocket mostly composed of echinoderm remains and quartz silt grains. SAL/5-2. (A, E-G) *Archaeocyathus laqueus* (Vologdin, 1932) are present.

Fig. 5.- Microfacies carbonatadas a techo del miembro inferior de la Formación Láncara. A. Wackestone de arqueociatos con fábrica estilomodular por presión-disolución. SAL9/1-1. B. Microbialita peloidal masiva. Nótese la presencia de costras peloidales encostrando oncoinds de tipo spongistromata. Cada división de la escala corresponde a 0.5 mm. BL2/233A. C. Costras peloidales laminadas encostrando wackestone-packstone fenestrales. BL1/33D. D. Mesoclots columnares de un trombolito digitado. Cada división de la escala corresponde a 0.5 mm. (E-G) Microbialita trombolítica rica en arqueociatos. SAL6/1. E. Vista general de arqueociatos rodeados de de fábricas densas y oscuras de tipo ‘clotted micrite’. SAL/1-1a. F. Cavidad estromatactoidea con formas arborescentes y ramosas de *Epiphyton* en el techo. G. Acumulación de bioclastos compuesta mayoritariamente por restos de equinodermos y granos de cuarzo. SAL/5-2. (A, E-G) Los cálices que aparecen son *Archaeocyathus laqueus* (Vologdin, 1932).
mation show three different mesostructures (scales of observation following Shapiro, 2000): i) cryptic or massive microbialite; ii) digitate thrombolite (sensu Aitken, 1967); and iii) archaeocyath-rich thrombolitic microbialite and spongiostromate-oncoid peloidal microbialite.

Cryptic or massive microbialite (d1) are built up by a mosaic of peloidal fabrics, forming massive homogeneous coarse-peloidal patches or pockets as well as wavy to irregular laminated peloidal crusts (Fig. 5B, facies d1 in Fig. 3 and Fig. 6). The microbial peloids have an average size of 60 µm. The massive homogeneous coarse peloidal patches are similar to those microstructures described as Spongiostroma ovuliferum and Chondrostroma problematicum by Gürich (1906) from Visean material. The peloidal laminated crusts possess accessory detrital quartz silt and encrust spongiostromate oncoids (Fig. 5B) as well as patches of peloid-intraclast wackestone-packstone with irregular laminoid fenestral fabric (Type h2) (Fig. 5C).

Digitate thrombolite (d2) is composed of minicolumnar mesoclots 1-3 mm wide and up to 20 mm high (Fig. 5D, facies d2 in Fig. 3 and Fig. 6). The microstructure of mesoclots corresponds to massive to crudely laminated microsparr. The intercolumnar space is filled by massive dense to peloidal micritic intervals covered by finely laminated intervals that laterally link the minicolumnar mesoclots. These laminated intervals are composed of alternating microsparitic and dense micritic laminae. In some cases, the microstructure of mesoclots is well preserved, showing their peloidal character and finely laminated dense micrite. The digitate thrombolites occur associated with spongiostromate-oncoid packstone (a2) and commonly with cryptic or massive microbialite (d1).

Archaeocyath-rich thrombolitic microbialite (d3) comprises small lenticular patches (up to 15 cm high and around 20 cm wide) formed by densely packed dark mesoclots (up to 40% of rock volume) surrounding small branched colonies of archaeocyaths, which constitute 25% of the rock volume (Fig. 5E, facies d3 in Figs. 3 and 6). The main genus is Archaeocyathus. The microstructure of mesoclots is partially recrystallized, but still displays branching, shrimp-like forms of Epiphyton. Dense patches of mesoclots are the dominant fabric and the occurrence of hyoliths is sporadic. Cavities do not exceed 10% and show stromatoid shapes with flat bases and irregular roofs. They are about 5 mm wide and are filled by internal sediment and prismatic and equant calcite cements, now partially recrystallized (Fig. 5F). Clusters of mesoclots also occur pendent from cavity roofs and encrusting the outer walls of archaeocyaths. The encrustations around them are asymmetric, showing a preferential growth direction, indicating current influence during accretion. Intermesoclot spaces are filled by peloidal micrite (10-20%) and recrystallized, partially dolomitized micrite with quartz silt. There are pockets of bioclast packstone with eocrinoid arm plates (up to 5%), plus brachiopod and trilobite fragments (Fig. 5G).

Archaeocyath-rich thrombolitic microbialite occurs at the top of the lower member of the Láncara Formation at Salce. It is laterally gradational into pelletoid-intraclast grainstone (c1) and bioclast-intraclast grainstone (e) (Figs. 7E and 7F). This lateral change is irregular and locally abrupt. In other cases, archaeocyath-rich thrombolitic microbialite grades into spongiostromate-oncoid peloidal microbialite (d3), which are gradually overlain by pelletoid-bioclast grainstone (c1). The spongiostrome-oncoid peloidal microbialite is composed of 40% spongiostromate oncoids, paraautochthonous archaeocyaths (10%) and hyoliths (5%), all surrounded by homogeneous fine peloidal micrite (40% of the rock volume – microbial peloids up to 40 µm in size). Shelter porosity associated with spongiostromata oncoids and archaeocyaths represents around 10% of rock.

3.5. Bioclast-intraclast packstone-grainstone

Bioclast-intraclast packstone-grainstone (e) occurs surrounding the patches of archaeocyath-rich thrombolitic microbialite (Figs. 3 and 6). It is characterized by a poorly sorted fabric with high skeletal content, up to 25% of rock volume with remains of brachiopods, eocrinoderms, trilobites and archaeocyaths. Intraclasts are conspicuous and their internal fabric shows clothed textures resembling those observed in mesoclots from archaeocyath-rich thrombolite. Pelletoids can attain up to 10-15% of rock volume and spongiostromate oncoids are accessory components.

4. Environmental setting of archaeocyath-rich thrombolitic microbialites

The lower member of the Láncara Formation shows sedimentary and paleontological features linked to tidal plain environments (Zamarreño, 1972, 1975; Aramburu et al., 1992) developed in a homoclinal ramp (Aramburu, 1989). The upper part of the lower member is characterized by the occurrence of non-skeletal grain-rich facies, fenestral mudstone-packstone and microbialites (Fig. 6), whereas skeletal-rich facies are minor deposits. The microbial activity was significant and widespread, forming several types of structures (massive and microlaminated peloidal fabric, stromatolites, thrombolites, calcimicrobial remains), and was also linked to the formation of such non-skeletal grains as spongiostromate oncoids and microbial peloids (Flügel, 2004). Spongiostromate oncoids
Fig. 6.- Depositional model for the upper part of the lower member of the Láncara Formation showing the distribution of skeletal and non-skeletal components. A Barrios de Luna (32 and 33 intervals in Figure 3) and B Salce (7-9 intervals in Figure 3) localities: (a1) Intraclast-oncoid grainstone; (a2) Spongiostromate oncoid packstone-grainstone; (a3) Graded intraclast grainstone and massive intraclast-bioclast wackestone; (b1) Mudstone with irregular laminoid fenestral fabric; (b2) Wackestone-packstone with irregular laminoid fenestral fabric; (c) Heterolithic stylonodular facies: (c1) Pelletoid grainstone, and (c2) Archaeocyath wackestone nodules and dolosparitic nodules; (d1) Massive microbialites; (d2) Digitate thrombolites; (d3) Archaeocyath-rich thrombolitic patches; (e) Bioclast-intraclast packstone-grainstone.

Fig. 6.- Modelo deposicional de facies mostrando la distribución de los componentes esqueléticos y no esqueléticos de la parte superior del miembro inferior de la Formación Láncara. Localidades Barrios de Luna (A, tramos 32 y 33 en Figura 3) y Salce (B, tramos 7-9 en Figura 3): (a1) Grainstone intraclástico-oncolítico; (a2) Packstone-grainstone de oncolitos tipo Spongiostromata; (a3) Grainstone intraclástico gradado y wackestone intraclástico-bioclastico masivo; (b1) Mudstone con fábrica fenestral laminoide irregular; (b2) Wackestone-packstone con fábrica fenestral laminoide irregular; (c) Facies nodulares heterolíticas: (c1) Grainstone de pelletoides, y (c2) nódulos wackestone con arqueociatos y nódulos doloesparíticos; (d1) Microbialitas masivas; (d2) Trombolitos digitados; (d3) Parches trombolíticos ricos en arqueociatos; (e) Packstone-grainstone bioclástico-intraclástico.

occur mostly in lacustrine and transitional marine environments and they are commonly associated with stromatolites in settings with a relatively fast rate of deposition (Peryt, 1981). Spongiostromate oncoesoids exhibit a great variety of microstructures but cyanobacterial remains are unrecognizable because of their rapid transformation (Krumbein and Cohen, 1977).

Grain-dominated lithofacies are local in the upper part of the lower member (Fig. 6) and correspond to: i) poorly sorted fabrics generated by high-energy sedimentation as intraclast-oncoid shoals (a1-a2), ii) graded storm deposits (a3), and iii) very well sorted, pelletoid-rich, lenticular (centimetre scale), intertidal bars (c1). On the contrary, the typical and most extended facies assemblage is formed by massive to fenestral mudstone-packstone (b1 and b2) and microbialites (d). Fenestral fabrics are characteristic structures in peritidal environments and they have been related to degassing of decaying organic matter, gas bubbles, burrowing, soft-deformation, wetting and drying of carbonate mud in supratidal environments (Shinn, 1968), and drying of cyanobacterial mats (Davies, 1970) as they commonly occur in association with microbial mats and microbialites.

The patches of archaeocyath-rich thrombolitic microbialites (d3 in Fig. 6) occur only at Salce, surrounded by massive microbialites (d1) and small, lenticular, pelletoid-rich intertidal bars (c1). Between the small centimeter-scale patches, filter feeders increase (e), reflecting more suitable conditions for colonization of substrate by a diverse benthic biota such as brachiopods, trilobites, echinoderms and hyoliths. Archaeocyathan microbialites occur also at the Esla nappe at Crémenes.
and Valdoré. They appear as small mounds up to 0.5 m thick and 1.2 m wide, growing interbedded with ooid and bioclast grainstone, with high siliciclastic input. These meter-sized bioherms grew in shallow-water, protected back-shoal environments, which offered suitable conditions of stability and lack of significant bottom currents (Debrenne and Zamarreño, 1970; Álvaro et al., 2000b; Perejón and Moreno-Eirís, 2003). Crémenes and Valdoré...
mounds are also characterized by branching colonies of *Archaeocyathus laqueus* (Vologdin, 1932), as observed at Salce. However, the calcimicrobes are best preserved at Crémenes and Valdoré, where archaeocyaths appear colonized by thick envelopes of *Renalcis, Epiphyton* and *Girvanella*. The archaeocyathan biodiversity in the Esla nappe is higher because the floatstone lithofacies surrounding the mounds records the presence of *Polythalamia* sp., and *Okulitchicyathus valdorensis* Perejón and Moreno-Eiris, 2003 (Debrenne and Zamarreño, 1970; Perejón and Moreno-Eiris, 2003). In the Somiedo-Corre-
cilla Subunit and the Esla nappe, the occurrence of *Pycnoidocyathus erbiensis* (Zhuravleva, 1955) is linked to the surrounding muddy facies and not to the microbialitic frameworks.

5. Systematic paleontology

Phylum Porifera Grant, 1836
Class Archaeocyatha Bornemann, 1884
Order Archaeocyathida Okulitch, 1935
Superorder Archaeocyathina Okulitch, 1935
Superfamily Archaeocyathoidea Hinde, 1889
Family Archaeocyathidae Hinde, 1889
Genus *Archaeocyathus* Billings, 1861

Type species: *Archaeocyathus atlanticus* Billings, 1861

Diagnosis: Cups with centripetal outer wall; inner wall with one row of pores per intersept, bearing, upwardly projecting pore tubes; coarsely porous pseudotaenial network; centripetal segmented tabulae (Debrenne et al., 2002).

Archaeocyathus laqueus (Vologdin, 1932)
Figures 5 A, E-G, 7 A-G

1932 *Retecyathus laqueus* Vologdin. p. 20-21; Pl. II, fig. 5v y 6-8; Fig. 14a.
1937 *Retecyathus laqueus* Vologdin. Vologdin, p. 458; Pl. I, fig. 2.
1940 *Retecyathus laqueus* Vologdin. Vologdin, p. 44; Pl. IV, fig. 1-2; Fig.17.
v 1970 *Archaeocyathus* cf. *laqueus* (Vologdin). Debrenne & Zamarreño, p. 7-9, Fig. 5.
1985 *Archaeocyathus laqueus* (Vologdin). Debrenne & Gandin, p. 538; Pl.II, fig. 4.

1992 *Archaeocyathus cumfundus*? (Vologdin). Debrenne & Zhuravlev, p. 120.
v 2003. *Archaeocyathus laqueus* (Vologdin, 1932). Perejón & Moreno-Eiris, p. 56-58; Fig. 3. Lám. III, figs. 1-3; Lám. IV, figs. 1-4; Lám. V, fig. 1 a.

Holotype. Not designated.

Lectotype. A. G. Vologdin, 1932, p. 20, Lám. II, figs. 6,7; Fig. 14a, Altai, Karagan River. Lower Cambrian (Fonin, 1985, p. 70).

Material. 38 thin sections.

Diagnosis amended. Species of genus *Archaeocyathus* usually with a modular habit, forming branching colonies by budding. Central cavity narrow, sometimes non-existent and occupied by vesicular tissue and thickened interval elements. The presence of vesicular tissue determines the thickening of the taeniae (stereoplasma).

Description. Cups small, solitary or modular with a variable number of individuals. In the youngest branches and basal areas of the cups the outer wall is imperforate, and in adults it has centripetal porosity. Interval presents alveolated with large pores, sometimes thickened and linked by synapticulae and vesicular tissue, which can be very abundant. In many sections of small diameter, the interval presents alveolar structure and only in cups of larger diameter do taeniae have a clearly radial development. The inner wall has one pore per intertænia, bearing a projecting short tube, although in many sections this wall is not well defined. The central cavity is small and in many cups does not exist, in these cases the space is occupied by intervallar elements and vesicular tissue. In some sections exocyathoids buttresses are developed on the outer wall.

Dimensions in mm. Cup: D 1.52 to 14.22; I 0.44 to 1.91; ds 0.12 to 0.63; IK 0.50 to 0.34; IC variable. Outer wall centripetal: d 0.06; i 0.03; e 0.03. Inner wall: n 1; d 0.12 to 0.25; i 0.08 to 0.12; e 0.04 to 0.12-0.20. Taeniae: n 4 to 6; d 0.24x0.12 to 0.36x0.42; i 0.04 to 0.12; e 0.04 to 0.12. Synaptae: e 0.04 to 0.08.

Discussion. The abundant material is assigned to the species *A. laqueus* (Vologdin) on the basis of the similar structure of the cups in which the dimensions and ratios are consistent with the limits of variability of the species described in other similarly-aged locations in the Cantabrian Mountains. For further observations and a more complete discussion see Perejón and Moreno-Eiris (2003).

Geographic and stratigraphic distribution. RUSSIA: Western Sayan, Kazilik River; East Sayan, Kazyr River, Tuva, Irbitei River; Altirgan, Altai, Karagan River.

Genus Pycnoidocyathus Taylor, 1910

Type species: Pycnoidocyathus synapticulosus Taylor, 1910.

Diagnosis. Cups with centripetal outer wall; inner wall with one row of pores per intersert, bearing straight, upwardly projecting pore tubes; coarsely porous taeniae linked by synapticulae at the base, taeniae becoming progressively less porous, more planar and without synapticulae (Debrenne et al., 2002).

Pycnoidocyathus erbiensis (Zhuravleva, 1955)

Figure 7 H

1955 Archaeocyathus erbiensis Zhuravleva. Zhuravleva, p. 20, Fig. 1.
1964 Archaeocyathus erbiensis Zhuravleva. Repina et al., p. 241, Pl. 30, fig. 5.
1985 Pycnoidocyathus erbiensis (Zhuravleva). Fonin, p. 104, Pl. 15, fig. 4; Pl. 16, fig. 1.
1992 Pycnoidocyathus erbiensis (Zhuravleva). Debrenne & Zhuravlev, p. 129
1997 Archaeocyathus erbiensis (Zhuravleva). Zhuravleva et al., p. 162, Pl. 12, fig. 5.

Holotype. PIN 494, obr. 1000a.

Material. One thin section: SAL9/4-2/1.

Description. Solitary cup that in longitudinal section shows the outer wall with transverse undulations that do not affect the inner wall. Outer wall centripetal and inner wall with one single tube between every two tae-

niae, short and directed upwardly. Variable interval with taeniae straight or wavy, sometimes thickened and with irregular structure towards the outer wall. Taeniae may have thickening by successive layers (stereoplasma) and are joined by synapticulae. The pores of the taeniae are arranged in rows diverging upward from the inner to the outer wall; and into the top of the cup. Occasionally vesicular tissue may appear on the outside of the intervallum.

Dimensions in mm. Cup: D 12.96 to 17.05; I 3.32 to 6.47; N 42; ds 0.47; IK 0.26 to 0.19; RK 3.24 to 2.46; IC 1:7. Outer wall centripetal: d 0.08 to 0.12; i 0.02 to 0.04; e 0.04 to 0.08. Inner wall: n 1; d 0.41; i 0.08 to 0.24; e 0.24 to 0.40. Tube length 0.40 to 0.80. Taeniae: n 6; d 0.40x0.56 to 0.48x0.80; i 0.12; e 0.04 to 0.12. Synapticulae: e 0.08.

Discussion. The studied specimen is assigned to the genus Pycnoidocyathus based on the structure of the walls and intervallum. Due to its size, structural characteristics and coefficients, the specimen is included in the species P. erbiensis (Zhuravleva, 1955, Fig. 4), although the diameter of the present cup is smaller and the outer wall is corrugated, though not the inner wall. We also assign to this species the material from Tuva, described by Zhuravleva et al. (1967) as P. cf. erbiensis, although the central cavity is filled with secondary skeletal elements.

6. Biostratigraphic and paleobiogeographic correlation with other Toyonian localities

Archaeocyath-bearing microbialites had a wide distribution through the early Cambrian with a maximum development during the Atdabanian and Botomian. In the early Toyonian, all but a few species of archaeocyaths vanished, reducing the diversity dramatically (Perejón and Moreno-Eiris, 2006b). Such low-diversity assemblages are also recorded in the Spanish Toyonian archae-
ocyathans from the Cantabrian Mountains, where the archaeocyathan assemblage comprises four genera: *Archaeocyathus, Pycnoidocyathus, Okulitchicyathus* and *Polythalamia*. This assemblage characterizes the Spanish Zone X of Bilbilian age (Spanish stage), equivalent to the Toyonian age (Toyonian 1-2, Russian stage) according to Perejón and Moreno-Eiris (2006a), which corresponds to the Stage 4 within the Cambrian Series 2 (ICS, 2010). However, the first occurrence of *Okulitchicyathus* is in Zone I (early Ovetian age, Spanish stage). The Toyonian Iberian species are *Archaeocyathus laqueus*, *Pycnoidocyathus erbiensis*, *Polythalamia* sp., and *Okulitchicyathus valdorensis* (Debrenne and Zamarreño, 1970; Perejón and Moreno-Eiris, 2003).

The archaeocyathan assemblage of Sardinia consists of *Angaricyathus tener*, *Archaeocyathus laqueus*, *A. kusmini*, *A. cumfundus* and *Pycnoidocyathus erbiensis* (Debrenne and Gandin, 1985). The *Angaricyathus*, *Archaeocyathus*, and *Pycnoidocyathus* assemblage defines Sardinia assemblage 7 (S7), equivalent to Spanish Zone X according to Perejón and Moreno-Eiris, 2006a. *Archaeocyathus* is the only ubiquitous genus in the remainder of Gondwana: *A. yichangensis* occurs in the Tianheban Formation in China (Debrenne et al., 1991), and *A. abacus* and *Ajacicyathus* sp. appear in the Wirrea Limestone in Australia (Kruse, 1991). Additionally, other species of *Archaeocyathus* have been recorded outside of Gondwana in several regions (Siberian Platform, Altai Sayan, Transbaykalia and Laurentia) during Toyonian time.

The characteristic Toyonian taxa in other geographic areas outside of Gondwana are the following. In Laurentia we can distinguish, firstly, Labrador and western Newfoundland with *Archaeocyathus atlanticus*, *Archaeocyathus* sp., *Retilamina debrenneae* (Debrenne and James, 1981; Mansy et al., 1993), secondly, Greenland with *Pycnoidocyathus pearlandicus*, *Tegerocyathus greenlandensis* and *Vologdinocyathus inesoni* (Debrenne and Peel, 1986; Mansy et al., 1993), thirdly, the Great Basin with *Archaeocyathus* sp., *Pycnoidocyathus* sp. and *Retilamina debrenneae* (Savarese and Signor, 1989; Debrenne et al., 1990; Mansy et al., 1993), and finally, Sonora (Mexico) with *Archaeocyathus* sp. and *Retilamina debrenneae* (Debrenne et al., 1989; Mansy et al., 1993).

In the Siberia plate we can distinguish on the Siberian Platform: *Irinaecyathus schabanovi*, *Archaeocyathus okulitchi*, *Tegerocyathus edelsteini* and *Vologdinocyathus borovikovi* (Osadchaya et al., 1979; Debrenne and Zhuravlev, 1992); in Altai Sayan and Kuznetsk Alatau: *Tegerocyathus edelsteini*, *Vologdinocyathus borovikovi*, *V. expansivus*, *V. erbiensis*, *Claruscoscinus billingsi*, *Irinaecyathus ratus*, *Archaeocyathus kusmini* and *Pycnoidocyathus erbiensis* (Repina et al., 1964; Osadchaya et al., 1979; Zhuravleva et al., 1997); in Transbaikalia: *Angaricyathus cyrenovi*, *Claruscoscinus billingsi* (Yazmir et al., 1975; Debrenne and Zhuravlev, 1992).

During the Toyonian, the global maximum generic diversity was recorded in western Newfoundland (six genera), whereas the maximum diversity within Gondwana corresponds to the Cantabrian Mountains record (four genera). Only the ubiquitous genera *Archaeocyathus* and *Pycnoidocyathus* show a broad distribution in Laurentia, Siberian Platform and Gondwana in this age.

7 Comparison with Toyonian Archaeocyath-rich facies from Gondwana

As mentioned above, the archaeocyath-rich facies in the Cantabrian Mountains are low-diversity, centimeter-scale thrombolitic microbialite generated in a peritidal environment (Salce) and moderate-diversity calcimicrobial-archaeocyathan mounds (meter-scale) in a back-shoal environment (Esla nappe). The calcimicrobes were the main framebuilders of Toyonian bioconstructions, where *Archaeocyathus* could play a significant role forming branching modular framework. However, archaeocyaths were not only framebuilders, as they also colonized muddy environments, where they were subject to encrustation by calcimicrobes without producing true biocstructions. In the Cantabrian Mountains, *Pycnoidocyathus erbiensis* occurs as solitary cups in the muddy deposits surrounding the small calcimicrobial mounds; however the isolated cups were not encrusted by calcimicrobes. On the other hand, in Sardinia, *P. erbiensis* appears in *Renalcis* boundstone and oncoid-bioclast grainstone, and they grew in a humid tropical Bahamian-type platform, though not forming biocstructions or meadows according to Debrenne and Gandin (1985).

The archaeocyaths from the Chinese Tianheban Formation appear as small branching colonies and solitary cups. The colonies of stick-shaped cups surrounded by *Epiphyton*, *Renalcis*, *Girvanella* and *Praulopora* form small calcimicrobial mounds, whereas solitary cups occur in fine-grained sediments around the small mounds. The small mounds were developed in low-energy conditions, in a shallow water continental shelf in a warm climate (Debrenne et al., 1991). Gandin and Luchinina (1993) described the observed archaeocyath-calcimicrobe relationships in the Tianheban Formation. They detailed how the solitary archaeocyath cups that occurred in wackestone facies are encrusted by *Epiphyton*, *Renalcis* and *Girvanella* (ERG assemblage) in the Huangshangong section, whereas the ERG calcimicrobial bioconstruc-
tions with colonial archaeocyaths occurred in the Huang-
gling section. Recently, Gandin & Debrenne (2010) clas-
sified the small mounds from the Tianheban Formation as
Type 2: “calcimicrobial thrombolitic framestone com-
posed mainly of dominant Renalcis meadows associated
with low diversity clusters of small regular or modular
aracheocyaths”. They described the Type 2 mounds as
associated with high-energy ooid and skeletal/ooid shoal
complexes, where they formed as “isolated patch reefs or
laterally continuos biostromal bodies in rather restricted
back-shoal settings”.

The Toyonian archaeocyath-bearing bioconstructions
in the Wirrealpa Limestone in Australia are cyanobacteri-
al-archaeocyath-radiocyanath bioherms and cyanobacte-
rial-archaeocyathan bioherms. These can attain up 3 m
 Thickness and 36 m in length and, in both cases, the primary
framework corresponds to Epiphyton thrombolitic strom-
atolite framestone (Kruse, 1991). These bioherms were
developed in subtidal, open marine but calm and shallow
waters (Kruse, op. cit.).

Summarizing, the development of the Toyonian archaeocyath-rich facies in Gondwana was limited to small and
low-diversity calcimicrobial-archaeocyathan mounds or
solely archaeocyaths in muddy sediments, with the
exception of the Australian case, where meter-sized cal-
cimicrobial-archaeocyathan bioherms were well develop-
oped. Regarding the palaeoenvironmental conditions, the
archaeocyath bioconstructions colonized from peritidal
environments to shallow subtidal open marine environ-
ments as well as in protected back-shoal settings.

8. Conclusions

The upper part of the lower member of the Láncara
Formation shows a varied assemblage of microbial and
 grain-dominated facies that were deposited in an inner
ramp during early Cambrian times. The water-sediment
interface was prolifically colonized by microbial ben-
 thic communities that built up a variety of micro- and
mesostructures such as microbial peloids, calcimicrobes,
spongiostromata oncoids and a diversity of microbialites
(massive and laminated peloidal fabrics, stromatolites
and thrombolites).

In the Somiedo-Correcilla Subunit, the occurrence of
patches with archaeocyath-rich thrombolitic microbial-
ites is recorded for the first time at Salce. The archaeocy-
 ath-rich thrombolitic microbialites are mainly composed of
mesoclots of shrub-like forms of Epiphyton (40%) and
branching modular archaeocyaths framework (25%),
while intermesoclots spaces are filled by peloidal micrite
(10-20%), small cavities (10%) and pockets of skeletal
remains.

The diverse occurrence of archaeocyath-rich biocon-
structions in different sub-environments from the Cam-
 brian record in the Cantabrian Mountains is adding new
information to future paleogeographic reconstructions. In
Salce, the patches grew in a peritidal environment in very
shallow subtidal conditions and surrounded by cryptic
massive microbialites and small lenticular pelletoid-rich
intertidal bars, whereas at the Esla nappe, the archaeoc-
yath-bearing microbialites formed larger patch reefs and
grew between ooid shoal complexes. In both localities
the archaeocyath-bearing microbialites were dominated
by branching colonies of Archaeocyathus laqueus (Vo-
logdin, 1932), although archaeocyathan diversity was
higher in the adjacent Esla nappe. On the other hand,
Salce record resembles in part the lithofacies assemblage
described from other localities (unit C in Fig. 2, and Table
1) but without either ooid and bioclastic shoal complex
development or channelized siliciclastic deposits.

This new find increases the number of known archaeo-
cyath localities in the upper member of the Láncara For-
mation in the Cantabrian Zone and allows us to assign an
age of early Bilbilian (Spanish archaeocyathan Zone X),
Stage 4, Series 2, Cambrian.

When the archaeocyaths decreased dramatically dur-
 ing the Toyonian, the maximum diversity was recorded in
Laurentia. In Gondwana, the Cantabrian Mountains
and Sardinia record the greatest numbers of genera (four
and three respectively), and both areas have in common
the occurrence of Archaeocyathus laqueus and Pycnoico-
cyathan erbiensis. In Gondwana, the archaeocyaths oc-
curred as solitary cups and secondary framebuilders in
low-diversity calcimicrobial-archaeocyathan biocon-
structions (from centimeter-scale thrombolitic patches to
large bioherms).

Acknowledgements

This work is a contribution to Projects CGL2006-
12245BTE and CGL2009-07073BTE. We thank D. Car-
los Alonso for his effective cooperation in the prepara-
tion and processing of fossil images for publication. We
appreciate the helpful reviews of the manuscript by an
anonymous reviewer and Dr. Álvaro (INTA).

References

Aitken, J.D. (1967): Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the
Cambrian and Ordovician of SW Alberta. Journal of Sedimentary
Petrology 37, 1163-1178. doi:10.1306/74D7185C-2B21-11D7-
8648001002C1865D.
Álvaro, J.J., Vennin, E. (1996): Tectonic control on Cambrian sedi-
mntation in South-Western Europe. Eclogae geologicae Helvetiae

Müller-Jungbluth, W.U., Tischek, P.H. (1969): Karbonatsedimento-

Vologdin, A.G. (1935): Cyathospongia - a new class of Porifera to in-

