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ABSTRACT:

Statistical downscaling models, which are applied for retrieval of small-scale geophysical fields from large-
scale fields, allow obtaining a priori estimate of variance of the solution error and some other statistical
characteristics of error. However, at given instants or even time periods the solution error of the considered
problem can be much higher than its estimate that may be very important when using the results of
downscaling. This paper is dedicated to testing the stochastic parameter known as "model reliability" as an
indicator of temporal changes of the solution accuracy. For this purpose we considered several basic
geophysical applications of downscaling. We show below that the probabilistic parameter "reliability of
model" can be used for forecasting time points when the small-scale field is retrieved with high errors.
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Estimacién de errores temporales en modelos meteoroldgicos regionales
de dowscaling estadistico

RESUMEN:

Los modelos de downscaling estadistico, que se aplican para la obtencidén de campos geofisicos de
pequefia escala a partir de campos a gran escala, permiten obtener a priori estimaciones de varianza de
los errores de las soluciones y algunas otras caracteristicas estadisticas de los errores. Sin embargo, en
determinados instantes o incluso periodos de tiempo los errores de las soluciones de los problemas
considerados pueden ser mucho mayores de lo estimado, lo cual puede ser muy importante al usar los
resultados del downscaling. Este trabajo se centra en comprobar el pardmetro estocdstico conocido
como “fiabilidad del modelo” como un indicador de los cambios temporales de la precision de la
solucién. Para este propdsito, se han considerado varias aplicaciones geofisicas bdsicas del
downscaling. Se muestra que el pardmetro probabilista “fiabilidad del modelo” se puede usar para
predecir puntos temporales donde el campo de pequefia escala se obtiene con grandes errores.
Palabras clave: Downscaling estadistico, clima regional, estimacion de errores temporales, problemas
de inversion.

1. INTRODUCTION

Resolution of modern general circulation models is about several degrees. It
seems to be enough to study global climate changes. However, if for instance, our
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purpose is the assessment of environmental changes on regional scales, then such
resolution is too coarse. Weather forecast models usually work on grids of about
half degree, but it is also not enough for predicting weather on scales of a big city.
The problem of retrieval of small-scale variability of meteorological fields from the
output of global hydrodynamic models was coined the name "downscaling".
Downscaling belongs to the class of ill-posed inverse problems. In order to predict
or retrieve various small-scale meteorological fields either high resolution
mesoscale hydrodynamic models or simple statistical models are employed.
Implementation of regional hydrodynamic models is very expensive and time
consuming, thus development of statistical downscaling models that work faster is
an important problem.

Statistical downscaling methods are based on empirical relationships between
large-scale variables and target local variables. It is assumed that global atmospheric
models can provide a realistic description of atmosphere at large-scales. Theoretical
analysis of predictability of atmospheric parameters showed (Leits 1998; Lorenz
1987; Grotch and MacCraken 1991) that one can expect a reliable long-term
forecast only of large-scale fields and states of meteorological variables averaged
over a long time interval. During the last decade a considerable progress of general
circulation models has been achieved (Diansky and Volodin 2002), however, at the
regional scales (< 2-4 thousand km) the results that were obtained in the model
experiments are questioned. Assuming existence of statistical correlation between
large-scale and regional fields of meteorological variables and employing data of
measurements we can try to retrieve the regional field from large-scale data
obtained in model experiments. In such a way (Kim et al 1984) retrieved the
detailed structures of mean monthly precipitation and temperature fields in the state
of Oregon from the spatially averaged values of these variables. A similar approach
was also realized by (Storch et al 1991), where the precipitation field over Spain
was retrieved from the large-scale pressure field over the North Atlantic. Works
(Biau et al 1999; Zorita and Storch 1999) are devoted to the retrieval of the
precipitation field over Iberia from the pressure field at sea level. Dmitriev et al.
recently reconstructed daily surface air temperature in Moscow region from the
large-scale temperature field obtained from reanalysis data (Dmitriev et al 2003).

Nowadays a number of different statistical downscaling models are developed
and adjusted for different regions (Wilby and Wigley 1997). The most part of them
allow to estimate a priori the variance of error and to calculate some other statistics
of a similar type. The variance of error characterizes the solution accuracy "in
general". It does not allow us to see if at some time points or even time periods the
error of reconstruction is extremely high. The last two words mean for instance that
the solution error is a few times higher than its a priori estimate. Predicted field of
meteorological parameters such as temperature and precipitations may be used in
critical decision making, when errors may lead to irreparable damage. So it is very
important to develop a method allowing the temporal error estimate in statistical
downscaling models.

Prediction of accuracy of each reconstructed sample seems to be impossible.
However, one does not really need to do this. It is enough to predict only the most
considerable error picks, which strongly increase the estimate of the mean-square
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solution error. The idea can be formulated as follows. Accuracy of statistical
downscaling models based on the transfer function technique depends on
homogeneity of data series used for the calibration. So it is important that
correlation links are independent on time. In practice it rarely happens. The
transition of the atmosphere from one stable state to another can cause significant
changes of links between small-scale and large-scale fields. Therefore, the
prediction of error peaks would be possible if we could recognize a priori this
transition using some parameter characterizing the spatial distribution of the large-
scale field.

In this paper we introduce the stochastic parameter known as the "model
reliability" and check on various examples if it can be considered as an indicator of
temporal changes of the solution accuracy. For this purpose we considered several
different basic geophysical applications of downscaling. We demonstrate how this
parameter works in statistical downscaling models for reconstructing local climatic
and meteorological fields. We show below that the "model reliability" can be used
for forecasting the strongest peaks of error, i.e. such time points, when the small-
scale field is reconstructed with high errors.

2. METHODS

Most methods applied for downscaling are founded on three basic techniques:
weather generators, transfer functions and weather typing (IPCC report 2001). All
of them have their own advantages and disadvantages in representing the local
climate. In this paper we consider the most frequently used methods, which are
related to the transfer functions technique. Applying statistical downscaling
methods we imply that geophysical parameters can be represented as a random
function X(s,¢) depending on the space coordinate s and time ¢. If this function
corresponds to the stationary ergodic stochastic process, we can consider global and
local-scale geophysical fields as random vectors. Only when the spatial correlation
length of this process is different from zero, one can assume existence of correlation
links between large-scale and small-scale fields.

2.1. BASIC STATISTICAL DOWNSCALING MODELS

To outline the ideas, let us consider the linear problem
E=Af+v (1

where & € R" is a known stochastic vector of a large-scale field, f & R™ is an
unknown vector of a small-scale field, A is a linear operator, so-called observation
matrix (Talagrand 1997), which acts from R” to R" and v € R" is a random noise
with an expectation Ev = 0 equals to zero. In the framework of the considered
inverse problem it may represent averaging or linear relations between small-scale
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and large-scale fields of different nature. In the former case the operator A is usually
known and in the latter case, as a rule, it is unknown. In practice one often does not
need to reconstruct the whole small-scale field, but only some of its patterns.
Therefore we introduce a linear operator U acting from R™ to R¥, where k < m and
define sought vector Uf € R¥ as a predictand and the known vector & as a predictor.

If the vector & is unknown, the equation (1) describes "averaging problem",
which is the well posed problem in considered case. The equation (1) with unknown
& is a forward problem, while the same equation (1) with known & is the inverse
problem, or the problem of downscaling.

The solution of the inverse problem (1) consists in constructing such an operator
R, which would allow us to obtain an optimal estimate Uf of vector Uf from the
known vector & If Ef = EfvT = 0, then under the "optimal estimate" we will
understand the estimate with the minimum variance of error or, more exactly with
the minimum norm of cross-covariance matrix of errors. So in the case when the
operator A is known, the operator R can be found by minimizing the functional

D, (R)=trE[(RA-U)f+Rv] [(RA-U)f+Rv]T (2)

Pytiev (Pytiev 1989) found that the solution of the minimization problem (2) is
specified by the operator

R, = UC,AT (AC,AT + C,) 3)

where C,= Effl and Cv = Evv! are the covariance matrices of fand v, and the superscript
(...) signify pseudo-inversion (see appendix). Thus the optimal solution of the inverse
problem (1) and corresponded covariance matrix of errors &£ € R¥ take the form

Of=R& C,=U(C;-RAC)UT )

In this case we assume that the model [A, U, Cf C,l is defined.
If the operator A is unknown, we minimize the functional

D, (R) = tr E(RE- Uf) (RS- UP)" &)

Equation (5) is equivalent to (2), but does not contain the operator A. The
solution of the minimization problem (5) (Chavro and Dymnikov 2000) is specified
by the operator

R, = Cye C, (6)

U

where Cppe = E UFET is a cross-covariance matrix of random vectors Uf and E. The
solution of the considered problem and the covariance matrix of error have the form
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Of=RyE C,=Cyp-RyCeyy (7)

When the operator A is unknown, the covariance matrix of noise C,, also can not
be specified. Therefore, in this case we consider the model /C up, Ce, Cy uf ]

The operators R; and R, are called "reduction operators" and the methods
described above are known as the “reduction methods” (Pytiev 1989). It is worth to
note that if the covariance matrix C. is non-singular then the solution obtained by
reduction method completely coincides with the solution obtained by multiple
linear regression (Storch and Zwiers 1999), thus the reduction method can be
interpreted as the generalized multiple linear regression.

2.2. FILTERING OF THE PREDICTOR VECTOR

In practice, one does not know exact values of statistical moments for a high-
dimensional predictor vector but only their estimates obtained from a finite data
series of measurements. In this case, solving equation (1) by the method of
reduction may lead to the well-known overfitting problem. This problem arises
because estimates R] and R2 of the linear operators R; and R,, respectlvely, are
sensitive to small variations of estimate C.. of the predlctor covariance matrix Ce.
It means that the regression estimate is not robust. To overcome this difficulty,
filtering of noninformative components of high-dimensional predictor is usually
applied before statistical downscaling. Usually statistical downscaling models
based on simple multiple regression are more sensitive to filtering of high-
dimensional predictor than reduction methods. One of the best-known techniques
of such filtering is founded on the EOF analysis of a predictor (Obukhov 1960;
Storch and Zwiers 1999). The predictor vector can be decomposed into
eigenvectors { @,/ ; of the matrix C g and represented as an expansion in finite
series

§=2n:((pp &) %Efai(pi
i=1 i=1

that provides maximum convergence rate of given series. Variances of random
variables a; are equal to the corresponding eigenvalues A.. Regions of higher
variability of geophysical parameters of interest stronger affect their average values
that have to be retrieved.

In the framework of considered problem, it appears that the most informative
predictor components that contribute to the regression estimate are EOF harmonics
with largest variability. Having found the threshold A, . , which determines the noise
level, one can assume that more noisy harmonics with a small variability A < A .
have to be removed from the predictor. Let 7 be the number of EOF harmonics
retained as a result of predictor reduction or, in other words, the dimension of the
predictor after reduction of its original dimension. Then, the parameter
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o (i) = (:Z]’A) ([:Zn;kl.)_]

introduced, in (Chavro and Dymnikov 2000), determines the contribution of the
first 7 harmonics to the variability of the predictor before its filtering. If the
number 7 yields a minimum in la(7i) - 0.951 for all 7 € [1,n], the EOF filtering of
the predictor is said to be done at the 95% level (usually this is denoted as EOF
95%).

In this paper we suggest also an alternative method for estimating the optimal
number 7i of EOF harmonics. Considering only the data remained for the calibration
of the statistical model, we start from 7i = / and increase it until the norm of the
solution error covariance matrix C, continues decreasing. It is important to exclude
from consideration samples used for estimating the matrix C, into the calibration
set. Thus samples of the solution error vector € must be determined, for example, by
cross validation method (Storch and Zwiers 1999). This allows us to avoid the
overfitting problem, when the matrix C, is estimated.

Another type of filtering consists in rejecting spurious components of the
predictor vector. For this purpose, the recurrent reduction (RR) method is used
(Pytiev and Chulichkov 1989). This method is a recurrent procedure with the
maximum number of steps equals the dimension of the predictor vector &. Let us
consider the model [A,U,C,,C ] and suppose that the noise vector components
V}, V..., V, are not correlatec{, operator AC, AT + C, is not degenerated and [1Ull<,
then the solution of the problem (1) and the estimate of the covariance matrix of
errors (4) can be derived from recurrent relations

Ek - (ak,f(k-l))

k _ 1
(ar, CFD ap) + of

f10) = plked) 4 C}k—]) a

3)
(C;k']) ak) (C}k']) ak)T

(@, CFV ) + of

%) — D)
G =G

in n steps with initial conditions f* = 0, C{% = C,. Therefore Uf = Uf™,
C, = UC™ U7, vectors a are the transposed lines of the matrix A and the
condition’(a;, C*V a;) + of > 0 is satisfied for all steps k = 1,2,...,n.

At each step k one can determine an influence of each coordinate of the vector §
on the solution of the inverse problem (1) using the recurrent reduction method. For
this purpose we introduce the statistical parameter

tr [(UCHD a) (UCKD )]

(a;, C¥Va) + of

€))

ﬂk (i) =
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called the informativeness. Using this parameter we can construct the following
algorithm of filtering. At the first step of the recurrent reduction, i.e. when k=1, we
find the number i € [1,n] of the predictor vector component having maximum
infomativeness. The chosen component is removed from the current predictor vector
and it will be the first component of the new predictor. Thus the current predictor
has dimensionality n-/. At the next step (k=2) we also find corresponding to the
component §; with maximum of infomativeness, but now we already search in the
subset of the remained n-1 components. The newly found component &; is also
removed from the current predictor vector and it will be the second component of
the new predictor. And so on. This process provides the largest decrease of the norm
of error covariance matrix and, therefore, the maximum convergence rate at the each
step k of recurrent reduction. When on some step k the informativeness of all
residuary &, becomes statistically insignificant, the process stops. Using this
algorithm we can avoid the overfitting problem and obtain the relatively stable
solution of the inverse problem (1). It should be noted that the recurrent reduction
algorithm does not use a matrix inversion, which makes it more preferable
computationally.

2.3. MODEL RELIABILITY

In order to verify agreement of a statistical downscaling model with its input data
we applied the theory of testing of statistical hypotheses. Distribution function of
vector &, which represents the output data of large-scale model, is determined by
properties of the model and the distribution function of vector fis determined by
real physical processes and methods of measurements. We consider below the case
when the operator A and covariance matrices C,and C,, are known and thus the
statistical model [A,U,C,,C, ] is specified. We would like to note that matrices C
and C,, can be evaluated ffrom various samples and for each sample may be different.
Then we obtain different models: i, = [A,U, C]{I ),C(D], 1y = [AU, Cjﬁz), C?], ... and
different reduction operators respectively. In other Words, we obtain a certain class
of models M.

In order to choose appropriate solution of the inverse problem we introduce the
concept of "model reliability", which was suggested in (Pytiev 1989). If one
assumes that the vector v has a normal distribution N(0O, C ) in the model
[A, U, C C, ] defined for the problem (1), then calculation of model reliability is
reduced to testing the null hypothesis H,- & ~ N(0,C.) against the alternative
hypothesis H;: {§ ~ M(a, C ) llall =0, IIC§II > IICEII} To test the hypothesis H, we
construct a stochastlc Value

£, = 11172 &2 (10)

1, must have the x-distribution if the hypothesis H is accepted. For the considered
model the matrix €2 takes the form Q2 = (AC AT + C,), but if the model is
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[ CUf, Ce CUﬁ el then € is reduced to Cg. In general, the statistics 7, may take any
non-negative value, however for some intervals the hit probability is very small.
These intervals form so-called critical region. The theoretical probability P(z, > 1)
that z, lies in the critical region is given by

P(t,> 1) :tafpgc’})(x) dx, (11)

where a € [0,1] is the significance level specified a priori, t7is a boundary of the
critical region and pgc’;) is the probability density of the y’-distribution with n degrees
of freedom. The equation (11) allows computing the parameter #&if the significance
level a is specified. The equation (10) allows to evaluate ¢, in terms of known &. The
hypothesis H,, should be rejected if 7, > 1 (7, belongs to the critical region),
however, if 7, <t then the hypothesis does not contradict to downscaled realization
& of the large-scale model.

In contrast with the significance level a, the model reliability T is determined as
a function of known vector &

7 (9) = Jpip(o) d (12)

One can see from the equation (12) that the model reliability can be interpreted
as a minimum probability of the erroneous rejection of the hypothesis H,. The
model reliability is a probability measure, so its values belong to the interval [0,1].
Models with low values of reliability are usually should be rejected.

Solving the inverse problem we can use the model reliability parameter for
selection of a best model u from the model class M. The selection algorithm based
on the principle of maximum model reliability (Pytiev 1989), can be formulated as
following optimization problem

uo=T, (E)zmax{ryi lu; € M} (13)

We would like to note that for it’s realization we use only observations of vector
. Also we can set a minimum reliability threshold 7, and select for the
interpretation only those events for whicht> 7. .

The statistics 7,(&) also allows us to construct an indicator (&) for optimal
choice of the model for downscaling. In this section we show that the parameter

3 sign (5)
B(E=t—

n
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can be used to distinguish extreme fluctuations of atmospheric parameters. Using
values ¢,(§) and 3(5) we divide the dataset of vectors f'and &, reserved for calibration
of the statistical downscaling model, into four subsets

So=1f & 1,(8) < Et, (§)}

S;=1{f &p(§=1andt, (§)> Et, (§)}
S;=1{f & B (8 =-Iandt,(§) > Et, (§)}
S;={f &-1<f(5<1andt, (§ > Et,(§)}

Subsets S, S, and S; contain realizations of vector & having unusual spatial
distribution and we associate them with extreme situations. Constructing individual
statistical models for each of the subsets §; we can improve solution of the inverse
problem (1) if the correlation links between vectors f and & significantly vary from
one subset to the other.

3. NUMERICAL EXPERIMENTS

In this section we illustrate the methods described above on a few basic
examples. We considered statistical downscaling of the fields of a temperature,
pressure and precipitations. These fields have different spatial correlation length.
The problem is solved at several temporal scales ranging from a day to a season. In
each example we evaluated the model reliability and verified if it links with the
accuracy of the solution.

3.1. RECONSTRUCTION OF MONTHLY MEAN AIR TEMPERATURE AT
THE METEOROLOGICAL STATIONS OF CIS

As a first example we considered reconstruction of the mean monthly surface air
temperature field at meteorological stations of Commonwealth of Independent
States (CIS) from averaged values of this field at scales of 2000-4000 km. We
analyzed data provided by the All-Union Scientific Research Institute of
Hydrometeorological Information-World Data Center on mean monthly air
temperature measured at 98 weather stations of the CIS for the period of about 35
years from January 1957 to April 1993. The root-mean-square error of
measurements is about 0.13°C. Observation data for the first 32 years (384 samples)
were used for calibration of the statistical model and the remaining 40 samples were
reserved for independent validation of the proposed method. The territory of CIS
was subdivided into 15 regions of similar sizes and thus we simulated the global
field at the scales > 2000 km. We calculated the annual variation of mean monthly
temperature and then subtracted it from observations, so that the inverse problem (1)
was solved for temperature anomalies. We considered the model [A,U,C,,C i since
in this case we know exactly the averaging operator A. We considered only the
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northern part of Western Siberia and in order to separate components of the
predictand vector f corresponding to this region, we constructed the operator U. The
natural variability of mean monthly temperature in this region rised up to 3.27°C.
The a priori estimate of the solution error equals 1.03°C, so we are able to retrieve
approximately 70% of temperature variations in this region.

For independent validation of the statistical model we used 40 samples which were
not included in the calibration ensemble. Since inverse problem is usually used in
conjunction with general circulation models, it is essential to estimate sensibility of
the solution error to the accuracy of input data that usually are output of GCM. This
analysis allows us to specify requirements to GCM in order to determine its relevance
for downscaling. We performed the test of relevance of input data set of 40 samples
perturbing large scale fields by white noise. The result is pseudo-random vector
normally distributed with zero expectation and variance with pairwise uncorrelated
components. The inverse problem (1) was solved. The RMS error of the large scale
field, obtained from GCM, a priori estimate of RMS error and the independent
estimate of the RMS error were evaluated. The results are presented in the Table 1.

Table 1.- Dependence of inverse problem solution error on input data error.

Root-mean-square An a priori of Root-mean-square error
error of large-scale root-mean-square obtained from independent
fields, °C error, °C validation, °C

0.000 1.032 1.093

0.130 1.146 1.109

0.173 1.056 1.117

0.548 1.213 1.250

1.000 1.144 1.474

1.225 1.553 1.585

2.500 2.050 2.079

From the Table 1 one can see that the proposed method allows us to retrieve
more than 30% of the variations of temperature anomalies if the input data error
does not exceed 2.5°C. Natural variability of monthly mean temperature in the
considered region rises up to 3°C that is in agreement with estimate 2.5°C. F-test
showed that the difference between the errors on calibration and validation periods
is not significant. It is an additional evidence of the stability of the statistical
downscaling model. Typical examples of reconstruction of small-scale monthly
mean temperature fields in the north part of Western Siberia are shown in Fig. 1.
The error of reconstruction for these samples is close to its root-mean-square value
for the whole validation period. We can see that in spite of significant differences in
absolute values of real and reconstructed temperature, the structure of the field is
reproduced rather well.
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d 7¢° ha ¥
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66

62

Figure 1.- Reconstruction of monthly mean temperature anomalies in the north part of Western
Siberia. On the left - exact fields, on the right - reconstructed fields. a), b) - February 1992; c), d) -
November 1992.

We evaluated the model reliability 7 for the whole validation period using the
equation (12). Let us see now if this parameter can be considered as a measure of
agreement between the statistical model and input data. The specific values of
solution errors in the north part of Western Siberia and the model reliability are
shown in Fig. 2. Obviously there is a negative connection between error and model
reliability. The correlation coefficient is relatively low, its value is -0.43. However
we can see that the strongest peaks correspond to the almost zero model reliability,
without exceptions. It means that the model reliability can be used for filtering
samples, which are reconstructed with unusually low accuracy. Of course there is a
chance to reject "well-reconstructed" samples applying this approach. However
from the practical point of view it is better to reject erroneously good samples than
to pass even one wrong sample.

Analysis of this figure shows that we need to introduce a set of models. One can
see that the model reproduces the monthly temperature much better in summer than
in winter when the model has low accuracy. So we divided the initial a priori
ensemble into the summer and winter periods, specified the reliability level 0.1 and
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Error, °c Reliability, T
5 I I

Number of sample (months)

Figure 2.- The error of reconstruction of monthly mean temperature anomalies in the northern part of
Western Siberia (solid line) and the model reliability (dashed line).

eliminated events with the model reliability < 0.1. After that the solution error
decreases to the value 0.7°C.

3.2. RECONSTRUCTION OF NEAR-SURFACE TEMPERATURE IN THE
MOSCOW REGION

Another kind of downscaling is the interpolation of output data of weather
forecast models to location points of meteorological stations. The modern short-
term forecast models have a resolution of about 0.5 degrees which is not high
enough, to describe the weather changes at the scales of a big town so that the
downscaling should be applied. Here we consider the test of statistical
downscaling of minimum, maximum and daily near-surface temperature in
Moscow region. We used the dataset provided by Hydrometeorological center of
Russia. It contains six- and three-hourly values of surface air temperature
measured at 16 meteorological stations in Moscow region for the period from
January 1936 to December 1980. Six meteorological stations are located in
Moscow and others are in suburban area. As a predictor for daily temperature we
used reanalysis data obtained in cooperation with the U.S. National
Meteorological Center (now the National Center for Environmental Prediction,
NCEP) and the National Center for Atmospheric Research, NCAR). This project
will be referred to as the NCAR/NCEP reanalysis (Batist and Chelliah 1997). In
present study we used these data taken on a rather course grid (~ 2.5 x 2.5°),
which does not correspond to the resolution of weather forecast models, but it
seems to be enough for present example.
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The dataset with observations at meteorological stations in Moscow region
contains a lot of gaps, but after calculating daily mean temperatures their number
decreases. Therefore when we reconstructed the small-scale daily temperature we
calibrated the statistical model within the first 35 years (1936-1970) and the
remaining 10 years (1971-1980) were used for verification. For the reconstruction
of extreme temperatures we considered only the period from 1965 to 1974 year.
Indeed, for estimating minimum and maximum daily temperature, we need to have
available whole measurements during a day, because in this case the interpolation
cannot be applied successfully. We have defined the calibration period from 1965 to
1969 and the validation period from 1970 to 1974.

Our goal is to reconstruct minimum, maximum and daily near-surface
temperatures at 6 meteorological stations in Moscow. As a predictor we used
observations in Moscow region and for reconstruction of daily temperature we used
also the NCAR/NCEP reanalysis. The predictors have the similar spatial scales, but
observations in Moscow region reproduce the observations in Moscow much better
than the reanalysis. To make our test more realistic we have perturbed the data in
Moscow region with a white noise 50%. It means that the noise has the same
variance as clear signal, thus the contribution of noise raises to one half of the total
signal. This level of noise corresponds to the level of error of 3-day forecast of the
temperature. To reduce the influence of within-year variability on the estimate of
statistical parameters we calculated annual variations of the considered fields with
regard to the leap years. The inverse problem (1) was solved for temperature
anomalies. The results are presented in the Table 2.

Table 2.- Results of near-surface air temperature reconstruction in Moscow.

Absolute Relative | Correlation

A priori of A priori of error error between the
absolute lati . d . d del
Predictor error relative es.tm.late es.tln.late moce’
estimate error within the | within the | reliability
°C > |estimate, % | validation | validation and the
period, °C | period, % error
Minimum daily temperature
noise 0% 1.27 23.8 1.22 22.8 -0.55
noise 50% 2.06 38.6 1.98 37.2 -0.20
Maximum daily temperature
noise 0% 1.16 22.5 1.02 19.8 -0.47
noise 50% 1.96 38.0 1.85 359 -0.31
Daily mean temperature
noise 0% 0.73 15.1 0.79 16.5 -0.41
NCAR/NCEP 1.84 38.3 2.09 43.4 -0.38
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Natural variability of the daily temperature in Moscow is approximately
4.8°C and for extreme temperature it is a little more than 5.2°C. Our
experiments show that in real downscaling of the weather forecast output we
can hope to retrieve more than 60% of variations of small-scale temperature
field. We can see that the reconstruction of daily temperatures is more accurate
than the reconstruction of extreme temperatures. The daily temperature field is
smoother and has larger spatial correlation length then the extreme values of
temperature that explains more accurate retrieval of daily temperature. Root-
mean-square errors estimated using validation data set, in general, correspond
to a priori estimates. But in some experiments the difference is significant. We
revealed that this difference can not be explained by fluctuations of statistical
moments only, but rather related to gaps in the data sets. Indeed, the mean-
square solution error differs from one station to the other by 0.7°C. It means
that if, for instance, there is a long series of missing data at one or more
stations in the validation period and in the calibration period we have another
gap pattern, then the general mean-square error will be shifted to the value at
one of stations.

The model reliability T was calculated for all reconstructed temperature fields. In
Figs. 3 and 4 the parameter 7 is shown only partially, but the correlation coefficients
between the model reliability and the solution error were calculated in the whole

a) Error, °C Model reliability, T ¢)  Error, °C Model reliability, T
4, T T T g r T x
+-downsealling error,’C ~+-downscalling error,°C

35 l ~+model resiability | 7 ~+~model reliability

~* downscalling em)r,DC “*“downscalling t'r\:l,DC
=+=model reliability 5! =+model reliability

b) o d)

0 7 14 21 28 35 42 49 55 63 70 77 B4 91 © 7 14 21 28 35 42 49 5 63 70 77 84 91
Number of sample Number of sample

Figure 3.- The error of reconstruction of extreme near-surface air temperature at the
meteorological station in Moscow (dashed line) and the model reliability (solid line). a)-
reconstruction of the minimum daily temperature at 0% noise level; b) - the same, but at 50%
noise level; ¢) - reconstruction of the maximum daily temperature at 0% noise level; d) - the same,
but at 50% noise level.
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validation period. The results are presented in table 2. In this case we also can see
the negative association between error and model reliability. Correlation coefficients
are similar to the previous example. However, the correlations strongly decrease
when the predictor is perturbed by white noise. From the Fig. 3 we can conclude
that in this case the model reliability can not be successfully used even for
predicting error peaks.

The correlation coefficient between the model reliability and the error remains
almost the same in both cases, when the NCAR/NCEP reanalysis data are used as
the predictor and for reconstruction of daily temperature in Moscow from the
observations in Moscow region. Furthermore, at Fig. 4 we can see that all
strongest peaks of the solution error are reproduced by the model reliability.
Therefore the question is: why the behavior of the model reliability is so different
in these two cases? As a matter of fact this happens, because the NCAR/NCEP
reanalysis data are based on the physical rules in contrast to the white noise. Of
course the reanalysis may reproduce the real data with large errors, but at the
same time it preserves characteristics responsible for the spatial distribution, for
instance, such as the correlation range. The white noise has the spatial correlation
length equals to zero, which is never realized for real temperature fields. Adding
white noise to the predictor we affect the spatial distribution of large-scale
temperature field and therefore break prerequisites, which were used in the
definition of the model reliability. So in this sense the reconstruction small-scale
temperature field in Moscow from the NCAR/NCEP reanalysis data is more
accurate as a test, than the reconstruction from noisy observations in the Moscow
region.

Error, °C Model reliability, T Error, °C Model reliability, T
10

1 11 21 31 41 51 61 71
Number of sample Number of sample

Figure 4.- The left plot represents the reconstruction error of daily near-surface air temperature at
weather stations in Moscow (solid line) obtained from averaged observation data in Moscow region
and the model reliability (dashed line). The right plot represents the reconstruction error of daily near-
surface air temperature at weather stations in Moscow (solid thin line) obtained from NCAR/NCEP
reanalysis and the model reliability (thick line).
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3.3. RECONSTRUCTION OF DAILY AIR PRESSURE AT STATION LEVEL IN
THE CENTRAL REGION OF RUSSIA

A downscaling of the near-surface pressure is not the subject of wide discussion.
However we would like to consider this field because it is smooth enough and we
will see how the behavior of the model reliability changes under different spatial
correlations of the reconstructed field. We used the data measured of air pressure at
stations level provided by All-Russian Research Institute of Hydrometeorological
Information World Data Centre (RIHMI-WDC). The measurements were made 4
and 8 times per day at 233 meteorological stations in the territory of CIS in the
period from 1936 to 1986 year. We disregarded the data from 1984 to 1986 year,
because of the huge number of gaps in that period. After the calculation of daily
pressure its accuracy amounted to 0.1 mb.

The large-scale field was simulated by means of interpolation from stations
to the grid 10° x 10° using the near-neighbour method. For the validation of
statistical downscaling model we chose the central region of Russia. There are
49 meteorological stations in this region, which are almost uniformly
distributed with a small thickening in areas with complex orography, and it
seems to be enough for the reliable validation of our methods. The first 35 years
(the period from 1936 to 1970) were used for the calibration of the statistical
model and the next 13 years were used for the independent validation. An a
priori estimate of the solution error amounted to 2.1 mb. The natural variability
of the near-surface daily pressure is about 8.7 mb in this region and it means
that we can reproduce approximately 75% of variations of this field. The
difference between the mean-square error estimated at the validation period,
which equals to 2.3 mb, and the a priori error is small but significant, since
both calibration and validation periods contain a huge number of samples. This
is caused by strong within-year variability of the covariance between small-
scale and large-scale fields of pressure.

We applied two different methods for the downscaling of daily near-surface
pressure anomalies in the central region of Russia. The first one consists in the
simple bilinear interpolation. Since there is no large-scale data on the west part of
the border of this region, we applied the Cressman analysis (Cressman 1959) for the
extrapolation. The other method is based on the recurrent reduction, which is
described above. A typical reconstruction is shown in the Fig. 5. This example
shows that the simple linear interpolation cannot be successfully applied even for
downscaling of such smooth value as near-surface pressure, because the whole
small-scale structure is lost (see Fig. 5). The result of statistical downscaling
appears much better than the bilinear interpolation in spite of the significant error of
statistical downscaling, which is comparable in magnitude with the error of bilinear
interpolation. The spatial variations of the pressure field are slightly smoothed, but
the small-scale structure is reproduced well. We also tried to correct the solution
employing the pressure field from the previous day, but the improvement was not
significant.

The validation period contains so many samples that it would be hard to compare
visually the model reliability and the solution error. However, since the covariance
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Figure 5.- Fields of daily near-surface pressure anomalies in the central region of Russia. a) - exact; b)
- reconstructed by combined linear interpolation (bilinear interpolation and Cressman analysis); ¢) and
d) - reconstructed by recurrent reduction method without and with the use of measurements from
previous day, respectively.

between small-scale and large-scale fields of pressure undergoes strong within-year
changes, then it is natural to expect strong within-year changes of the solution error
and the model reliability. These characteristics were smoothed by Gaussian filter
mean and represented on the Fig. 6. We can see that there is a strong negative link
between error and model reliability. If one rejected non-homogeneity between 1000
and 1500 samples, the correlation coefficient equals to -0.85. The state and
variability of the atmosphere in the middle latitudes are considerably different in
summer and winter periods. Thus the correlation links between small-scale and
large-scale near-surface pressure fields undergo significant seasonal variations. This
is the cause of seasonal fluctuations of the solution error, which are successfully
reproduced by the model reliability.
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Figure 6.- The error of reconstruction of daily near-surface pressure in the central region of Russia
(upper curve) and the model reliability (lower curve). Both parameters were smoothed by Gaussian
filter.

3.4. RECONSTRUCTION OF WINTER PRECIPITATION IN EUROPE FROM
PRINCIPAL EOFS OF THE SEA-LEVEL PRESSURE IN THE NORTH
ATLANTIC

One of the most difficult problems in geophysics is the modeling of precipitation.
It is especially difficult to reconstruct precipitation observed at meteorological
stations. We used the dataset maintained by the Global Historical Climatology
Network (GHCN), which can be obtained from the website of the National Climatic
Data Center. It contains monthly precipitation measured at ~20000 meteorological
stations for the period from 1697 to 2000. In Europe there is a great number of
meteorological stations, but at many of them the precipitations were not observed
regularly. So we have chosen 271 stations that provided series of monthly
precipitation data with no more than 5 gaps for the period from 1950 to 2000.

As a predictor for winter precipitation in Europe we used NCAR/NCEP reanalysis
data of monthly sea-level pressure obtained in cooperation with the National Center for
Environmental Prediction (NCEP) and the National Center for Atmospheric Research
(NCAR). The data set covers the period from 1950 to 2000, so we have 51 samples of
mean winter sea-level pressure. Instead of the global pressure field we considered only
that part, which related to the North Atlantic and to Europe, and therefore the predictor
is specified at 348 grid points. The spatial dimension of the predictor is much more than
the number of samples and thus it is necessary to apply filtering. We used the EOF
decomposition to reduce the dimension of the predictor. The number of principal
components was calculated individually for each station by the method based on the
principles of cross validation, which is described above. Since the number of samples is
relatively small, we verified our statistical model also by the cross validation method.
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Figure 7.- Relative errors of the reconstruction of winter precipitation in Europe.

Mean-square errors of the reconstruction of winter precipitation in Europe normalized
on the station values of natural variability are presented in Fig. 7.

The numerical experiments have shown that the solution accuracy is very low
and we can not reconstruct more then 55% of the natural variability of precipitation.
The best results can be obtained for the west coast of Europe, especially for Spain,
the North of England and the western side of the Scandinavian Peninsula. In these
areas it was possible to use the most number of EOFs. In Eastern Europe the
reconstruction accuracy is very low.

The model reliability must be calculated individually for each station, because
the dimension of the predictor varies from one station to the other. The correlation
coefficients between the model reliability and the solution error are shown in Fig. 8.
They vary in the interval from -0.4 to 0.3, but in general the correlations are either
positive or so low that we can not prove their significance.

We can not see the results obtained in the previous examples even for the stations
at which the correlation takes considerable negative values. For instance, the
solution error and the model reliability for the station Bodo, presented in the Fig. 9
(left) do not reveal considerable negative association. Many error peaks correspond
to high values of the model reliability. At the same time the correlation coefficient
between them is about -0.31. In contrast with this example, the comparison of the
model reliability and the error averaged for all stations in Spain reveals much
stronger negative association (see Fig. 9 right). In this case the correlation
coefficient amounts to -0.51 and peaks of error correspond to minimums of the
model reliability. However, for predicting high solution errors we need to define a
critical value and to rejects realizations, which correspond to the model reliability
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Figure 8.- Correlation coefficients between the solution error and the model reliability.

lower than this value. Looking at the Fig. 9, it is difficult to decide how to choose
correctly the critical value, because the model reliability corresponding to the
strongest peaks of errors varies in a wide range. So we can conclude that, for the
time being, the temporal error control for downscaling of precipitation is
questionable and we need to construct another characteristic for such kind of
problems. Also the considered example shows that the model reliability can not be
used to predict the solution error peaks at individual stations, but only in a region.
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Figure 9.- The model reliability (solid line, the both plots) and the solution error (dashed line)
calculated for the station Bodo (the left plot, see Fig. 8) and the mean error for Spain (the right plot).
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4. CONCLUSIONS

In this paper we considered the problem of temporal error estimate for statistical
downscaling models. We have introduced the probabilistic characteristic named "the
model reliability” and studied the possibility to use it for predicting temporal
changes of the solution accuracy. For this purpose we have considered several
typical problems of statistical downscaling at different temporal and spatial scales.
The numerical experiments have shown that there is an obvious negative association
(or mutual correspondence) between the model reliability and the solution error. It
seems to be possible to recognize a priori such cases when the statistical
downscaling model reconstructs the small-scale field with a high error. This
considerably improves an estimate obtained from the calibration period. At the same
time we see that the correlation coefficient between the model reliability and the
error has relatively low values. This means that we can not estimate all variations of
the error. Otherwise, we could use the model reliability as an alternative predictor.
At present we can dependably predict only the strongest peaks of the solution errors.

We considered here several typical problems of downscaling to illustrate the idea
that variations of spatial distribution of large-scale fields may be a sign of changes
of correlation links between geophysical fields at different scales. The given
examples show that the use of the model reliability in statistical downscaling is
justified when a reconstructed field has considerably large spatial correlation length,
but we have seen that the practical utility of the model reliability was questionable
when we considered the reconstruction of winter precipitation in Europe from near-
surface pressure patterns that have much shorter spatial correlation range. We are
sure that the usage of model reliability is a promising approach in the statistical
downscaling of temperature fields obtained both from general circulation models
and from weather forecast models. We hope that the concept proposed in this paper
will be deepened and extended to other meteorological fields.
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6. APPENDIX. PSEUDO-INVERSION, DEFINITION AND GENERAL
PROPERTIES OF THE MORE-PENROSE MATRIX

In the framework of this article it is enough to consider only the space of real
matrices. Let us consider a matrix A €M,  and its singular value decomposition
A = VAVT. The matrix A" = WA V! is called the More-Penrose matrix or the pseudo-
inverted matrix (Horn and Johnson 1990), if A" is obtained from A through the
transposition and the substitution of its positive elements on inverted values. This
matrix has following properties:

Fisica de la Tierra 239
2007, 19 219-241



E.V. Dmitriev, I.V. Nogotkov, V.S. Rogutov, G. Khomenko and A.I. Chavro Temporal error estimate for...

1) (AA)T = AA and (AA)T = A A,
2) AAA = A;
3) AAA =A.

These properties uniquely define the matrix A'.

It is easy to show that A7 = A (ATA)/ in the case m >n. Indeed

AATA) ! = VAWT (WATVIVAWT )1 = VAATA) ! W = VATWT = (WA V)T = AT,

This matrix also has another useful property. For the system of linear equations
Ax = b, the vector X = A'b minimizes the Euclidean norm of the discrepancy llAx - bll,
and £ is known as the least square solution. For example if matrices F' and = rows of
which are realizations of stochastic vectors fand & then the estimate of the reduction
operator reads

R,=Fl' E(ElE)! = FIET
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