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ABSTRACT
This paper deals with the computation of surface displacements, tilt and gravity variations at the Earth’s
surface produced by ocean tide loading, through two different methods. The first method consists of the
convolution between the ocean tide distribution and the corresponding Green’s functions, following the
procedure of Farrell (1972). To avoid the Gibbs effect associated to the truncation of the infinite har-
monic series, various asymptotic expressions of the load Love numbers are given. Besides, successive
improvements of the Farrell’s method are also revised. The second method is based on the preliminary
development of the ocean tides in spherical harmonics. Thereby, expressions for displacements, gravi-
ty and tilt variations in terms of the load Love numbers and the spectral amplitudes of the load are
obtained. 
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1. INTRODUCTION

The ocean tide loading is the response of the Earth to the variation of the
ocean tides, which are caused by the gravitational attraction of the Moon and
Sun. It is well known that the loading effects are comprised of three main con-
tributions. The first one is the elastic deformation of the solid Earth due to the
weight of the water load. The second contribution, which appears in the gravity
and tilt components, comes from the Newtonian (direct gravitational) attraction
of the tidal water mass. Besides, is produced a redistribution of mass within the
Earth that induced gravity changes.

The study of the deformation of the Earth associated with the loading effects
caused by the oceanic tides is a classic problem in geophysics. All highly accu-
rate observations in geodesy and geophysics are significantly affected by ocean
tidal loading (Francis & Mazzega 1990). For instance, in addition to the tides of
the solid Earth the gravity and tilt tide records contain the oceanic tidal effects.
The typical tidal gravity signal due to ocean loading and attraction is usually
between 1% and 10% of the total observed signal (Baker 1998) and the tilt load-
ing can be larger than the body tide tilt, especially at stations very close to the
coast (Pagiatakis 1990). The space geodetic measurement techniques, such as
Global Positioning System (GPS) and very long baseline interferometry (VLBI),
are also affected by the ocean tide loading, which causes vertical displacements
of more than 10 cm in some areas (Baker et al. 1995). Therefore, geodetic and
geophysics measurements should be carefully corrected for ocean tidal loading
when high precision is required.

Studies of deformations of simple Earth models associated with surface load-
ing were initiated by Slichter & Caputo (1960) and Jobert (1960). In 1960, Munk
& Mac Donald introduced the concept of loading Love numbers, and Longman
(1962) gave a theoretical solution to calculate these numbers. He used the equa-
tions of the free oscillations of the Earth derived by Pekeris & Jarosch (1958) and
by Alterman et al. (1959), and calculated the load Love numbers to the 40th order.
Typically, for computational convenience, a ‘standard’ Earth model has long
been considered. This model assumed the Earth to be spherically symmetric, non
rotating and perfectly elastic, such as the preliminary reference Earth model
(PREM) (Dziewonski & Anderson 1981). In 1972, Farrell improved the
Longman’s theory. He obtained the load Love numbers to the 10,000th order for
different Earth models, and he also calculated the loading Green’s functions for
the deformation of the Earth’s surface. Thus, a quantitative study of the ocean
tide is made possible through the convolution of the ocean tide distribution and
the Green’s functions. This Green’s functions approach (also called convolution
method) derived by Farrell have been traditionally used, and applied in various
geodetic investigations (e.g., Mangiarotti et al. 2001). An alternative approach to
compute the ocean tide loading effect is based on the initial spherical harmonic
expansion of the load. This method reduces the convolution to a single product
of the load Love numbers and the spectral amplitudes of the load for each har-
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monic degree (Le Meur & Hindmarsh 2000). This method has been used more
frequently in recent years (e.g. Elósegui et al. 2003).

In this paper we briefly outline the main equations of the deformation of the
Earth and the associated boundary conditions are introduced. The Load Love
number, considering a given model for the internal structure of the Earth, are
defined and subsequently the loading Green’s functions are derived. Also,
asymptotic expressions of various load Love numbers are given and some
remarks are made concerning to different Earth models. The displacements and
the gravity and tilt changes due to ocean tide loading effect are computed using
the Farrell’s (1972) formalism, hereafter called the Green’s functions approach or
convolution method. An alternative approach based on the spherical harmonics
method is also reviewed. For both approaches, a brief revision on which methods
have been used by authors for different geodetic applications is done.

2. BASIC EQUATIONS AND BOUNDARY CONDITIONS.

The response of the Earth to ocean tide loading is described by some equa-
tions of motion, hereafter called equations of deformation. If the spherically sym-
metrical, non-rotating, perfectly elastic and isotropic (SNREI) Earth model is
adopted, to compute the load Love numbers (LLN) of degree n, the fundamental
equations of the deformation of the Earth to be solved are obtained from the
equations of equilibrium, the stress-strain relation and the Poisson’s equation.
The resulting system is a set of six linear differential equations of the first order
given by (Alterman et al. 1959; Takeuchi & Saito 1972):

[1]
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The unknowns y1, y2, y3, y4 and y5 represent the radial displacement, the ver-
tical component of stress, the tangential displacement, the horizontal component
of stress and the gravitational potential change, respectively. The fifth equation
in [1] can be understood as the definition of the variable y6. The rheological
parameters of the Earth λ, μ, and the density ρ0 are usually numerically given in
function of the distance r from the center to the Earth’s surface. G is the Newton’s
gravitational constant and g0 denotes the initial gravitational acceleration of the
Earth. 

The SNREI model has a solid inner core, a liquid outer core and a solid (elas-
tic) mantle. Therefore, the above equations system should be solved by appropri-
ate boundary conditions at all internal boundaries and at the surface of the Earth.
Longman (1962) stated the formulation of the boundary conditions associated to
the equations of deformations system [1]. In the liquid core µ = 0 and the system
becomes a reduced set of 4 equations. At the solid-liquid boundaries the variables
y1,…, y6 are continuous and at solid-solid boundaries all y1,…, y6 are continuous
except for y3. At the Earth’s surface (r = a), the boundary conditions are given by:

where g0 (a) is the acceleration due to gravity at the Earth’s surface.

3. COMPUTATION OF THE LOAD LOVE NUMBERS

The dimensionless load Love numbers (LLN), originally defined by Love
(1909) and Shida & Matsuyama (1912), define the response of the Earth model
to a surface mass load forcing. The LLN of different orders are computed direct-
ly from the solution of the differential equations system [1] according to the relat-
ed boundary conditions and integrated numerically from the center up to the
Earth’s surface. For a purely elastic Earth the LLN are essentially independent of
the tidal frequency. They are defined by:
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These parameters are determined by the internal structure of the Earth and they
are greatly affected by the structure of the crust and mantle, particularly in the
region close to the load. Therefore, different values can be obtained according to
various Earth models. The PREM model yields LLN almost identical to those
determined by Farrell for the Gutenberg-Bullen A Earth model (Lambeck 1988).
Generally, differences in the LLN due to different SNREI Earth models are
assumed to be on the order of 1-1.5 percent (van Dam et al. 2003). Differences
in the LLN can also appear due to how the equations in [1] are integrated and the
application of different boundary conditions. Usually, the system have been
solved by recurrent methods based on Runge-Kutta method. More recent, Guo et
al. (2004) solved the fundamental equations of the deformation of the Earth using
the Chebyshev-collocation method.

4. GREEN’S FUNCTIONS

The Green’s functions, which describe the deformation of the Earth induced
by the ocean tide loading, depend on the properties of the Earth through the
above LLN. For the displacements, gravity and tilt components at the Earth’s sur-
face the Green’s functions have the following expressions (Farrell 1972):
The radial (i.e. vertical) displacement:

The horizontal displacement:

where vθ(Ψ) and vλ(Ψ) are the horizontal components of the displacement for the
North-South (NS) and the East-West (EW) directions, respectively. Note that
there is no horizontal displacement for n = 0.
The gravity (positive upwards):

The tilt:

where tθ(Ψ) and tλ(Ψ) are the NS and EW tilt components, respectively.
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In equations [4] to [7], me, a and g0(a) are, respectively, the mass of the Earth, its
mean radius and the gravity at the Earth’s surface. Pn is the Legendre polynomial
of degree n and, hn’, ln’ and kn’ are the load Love numbers of degree n defined by
[3], with the prime distinguishing Love numbers used in loading theory from those
used in tidal theory. At the Earth’s surface, these functions depend on the angular
distance Ψ between the load and the observation point, which is given by:

α is the azimuth of the load at the observation point, computed clockwise from
North. Frequently, the Green’s functions are written in a general form as:

being SL the combination of trigonometric functions of the azimuth, which is
necessary to compute a vector load as in equations [5] and [7].

As the Green’s function are formed by weighted infinite sum of the load
Love numbers, it is necessary to truncate n at some limited value. This truncation
at finite n causes problems in the loading computation in coastal regions (so
called Gibb’s effect). This problem can be solved having into account that when
n gets large enough hn’, nln’ and kn’ become constant. Farrell (1972) derived the
approximated expressions for these limits, called asymptotic values of the LLN:

where ρ and ρ̂ are the density at the Earth’s surface and a mean value, respec-
tively. If different asymptotic expressions are calculated differences in the LLN
can appear. For example, Guo et al. (2004) computed the asymptotic values of
the LLN by searching directly the asymptotic solutions of the fundamental equa-
tions of the deformation of the Earth [1]. They obtain more accurate LLN than
those of Farrell (1972) by an order of 1/n.

Taking into account the asymptotic values of the LLN in [10] and the called
‘Kummer’s transformation’, the radial displacement in [4] can be written as:
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Although the second sum terminates after a finite number of term, it still con-
verges rather slowly. Therefore, Farrell (1972) introduced a ‘converging disc fac-
tor’ and applied the Euler’s transformation technique for speeding the conver-
gence of the series. In the same way that for the vertical displacement, the hori-
zontal displacement can be expressed as a sum, where the first term can be deter-
mined exactly, and the second sum is evaluated as explained before.
Following the same technique for the gravity and tilt effects, they can be respec-
tively written as:

where the first term (corresponding to the exact solution) in each equation, denot-
ed with the superscript N, is the direct, or Newtonian, acceleration:

The second term in the equations [12] and [13] corresponds to the elastic effects
arising from the Earth deformation:
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where the last term of the expansion is usually taken for degree 10,000.
Finally, to avoid the singularity at the origin the Green’s functions are nor-

malized. For the radial and horizontal displacements the normalizing functions
are given, respectively, by:

The gravity and tilt are normalized with respect to the direct attractions of the
load, equations [14] and [15].

The Green’s functions computed for different SNREI Earth models only
show discrepancies for small angular distances between the load and the obser-
vation points. This is due to the fact that these Earth models differ essentially at
the crust and upper mantle (Francis & Mazzega 1990). van Dam et al. (2003) car-
ried out a comparison between Green’s functions derived from 4 different SNREI
Earth models. They obtained differences in radial deformations always less than
0.04 mm, indicating that the choice of LLN for an SNREI model will not have a
significant influence on the estimated loading effects.

The classical results of Farrell have been modified to describe more realisti-
cally the response of the Earth to the tidal loading. For instance, Pagiatakis
(1990) considered the Green’s functions taking into account the viscoelastic
behaviour of the Earth, which become in this case complex and frequency
dependent. He found that viscoelastic Green’s functions differ at a maximum of
1.5% in amplitude and 0.3º in phase in comparison with a purely elastic Earth.
He extended also the theory to a self-gravitating, anisotropy and rotating Earth.
These realistic Earth models and those that take into account the mantle hetero-
geneity and Maxwell rheology (e.g. Mitrovica 1994) have been used mainly in
loading studies on very slow deformations, such as the post-glacial rebound.

5. THE GREEN’S FUNCTIONS APPROACH

The loading effects are computed by the convolution between a numerical
global model of the ocean tides and the Green’s functions as follows (e.g. Baker
1984):
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where L(θ,λ) is the loading effect at the observation point on the Earth’s surface,
being θ and λ the colatitude and longitude, respectively. ρw is the density of the
ocean water and �(θ’,λ’) is the height of the ocean tide at the loading point. G is
the appropriate Green’s function (equations [4] to [7]) evaluated on the angular
distance Ψ between the observation and the load points given by [8]. 

The convolution integral [20] is evaluated of over all the oceans. Usually, for
its numerical computation, the oceans are divided into a set of cells for which
tidal amplitudes and phases are obtained from an ocean tide model. Therefore,
the convolution integral can be replaced by a sum over all cells as follows:

where N is the total number of oceanic cells of the tidal model, ΔSi(θ’,λ’) is the
area of the cell centred at the load point of index i. The tabulated values of the
Green’s functions are interpolated for the corresponding angular distance Ψi.

This Farrell’s method has successively been refined by other authors to sim-
plify the computations. E.g. Goad (1980) and Agnew (1996) improved the
method by using the so called integrated Green’s functions and their normaliza-
tions. The Goad’s technique uses azimuthal and geocentric angles rather than lat-
itude and longitude, which is known as template method (Heiskanen & Moritz
1967). So, taking into account the Green’s function expressed as [9] over surface
ring sectors forming a template centred on the observing site, the convolution
integral [20] can be written in terms of the angular distance Ψ and the azimuth α
as follows:

Thus, the Green’s functions are replaced by their integral over a template element
in which the tidal heights are assumed to be constant. So that, the integral [22]
becomes a sum. Finally, in order to use the already tabulated Green’s functions
given by Farrell (1972) and to remove the singularity in Ψ = 0 in the Goad’s
method, Agnew (1996) normalized the tabulated Green’s functions as follows:
For displacements and the elastic component of gravity:

For the elastic component of tilt:
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with K = 1012 (SI units) and K = 1018 for gravity.
The integrated Green’s functions for the Newtonian part for a point at eleva-

tion h above the sea level are:

where ε = h/a and GN is the gravitational constant. Setting ε = 0 in this equations

and taking into account that                            , results the integrated Green’s

functions for the equations [14] and [15], respectively. In equations [25] and [26],
for small distances Ψ, it is possible to approximate sinΨ = Ψ, so that they can be
exactly integrated.

In the computation of the loading effects using the convolution method there
are two main error sources. The first source arises mainly to uncertainties in the
ocean tide model, more than errors to inaccuracy of the Earth model through the
Green’s functions. As we mentioned before, the results using Green’s functions
for recent Earth models show a discrepancy which probably never exceeds 2%.
As the ocean tides are spatially variables, the ocean tide loading effects depend
on the global spatial distribution of the ocean tides relative to the observation
point (Baker 1984). It is known that the waters adjacent to the observing site have
the largest influence on the displacements, gravity and tilt changes due to ocean
loading. Scherneck (1991) states that about half of the tidal loading effect arises
from tides within 2000 km of the site considered. Besides, in shallow waters such
as along coastlines and on continental shelves the tides vary highly (Penna &
Baker 2002). Therefore, accurate modelling of the tides in the surrounding area
is crucial for near coastal sites. Because of the low resolution of the global ocean
tide models, they are often supplemented with specific regional and local ocean
models. Moreover, a fine subdivision of the grid for the sea cells adjacent to the
observation point is needed to provide better accuracy in the convolution inte-
gral.

The Green’s functions approach has been traditionally used and applied in
various geodetic investigations. For instance, Wang et al (2002) used this method
to estimate the loading effects on GPS, gravity and tilt measurements. Their
numerical results show that the three modelled quantities, displacements, gravi-
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ty and tilt, vary dramatically as the water level increases. They showed also that
loading effects would hinder the detection of signal associated with earthquakes
and landslides from the observed data based on geodetic techniques in their area
of study. Besides, Zerbini et al. (2002) estimated the seasonal oceanic loading
effects on continuous GPS and gravity observations, following the Green’s func-
tions approach. For instance, they found amplitudes of the seasonal signals in the
range of 1-2 mm for ocean loading effects on the height series and for gravity,
amplitudes for the annual waves between 0.4 – 0.6 µGal (1 µGal = 10-8 ms-2).

6. THE SPHERICAL HARMONIC APPROACH

The ocean load �(θ’,λ’) can be initially represented in terms of a spherical
harmonics expansion (Le Meur & Hindmarsh 2000):

being the load completely defined by the spectral coefficients   . The spherical
harmonic            of degree n’ and order l’ are fully normalized, as defined in
Edmonds (1960), in the sense of:

Next, an equivalent convolution to the first method can be carried out. In order
to simplificate the notation, following Mitrovica (1994), the Green’s functions
[4] to [7] can be expressed symbolically of two forms:
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where [4] and [6] are of the form [29], whereas the vector Green’s function for
the horizontal displacement [5] and tilt [7] are of the form [30]. The symbol 

denotes the gradient operator.
Δ



Let us consider the form [29]. With this approach, the equivalent of [20] by
replacing [27], becomes:

Thus, taking into account [28] and the following addition theorem of spherical
harmonics (e.g., Jackson 1975):
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in [31] yields:

[33]

Therefore, the response of the Earth to the load can be expressed as:

[34]

where:

represents the set of spherical harmonic coefficients.
An analogous procedure is applied to the Green’s functions of the form [30],
which gives the following expression for the Earth’s response to the load:

[35]

with the spherical harmonics coefficients given by:

[37]

[36]



The computation of the spherical harmonics derivatives            in [36] with respect
to θ, can be easily done following the recursion relationships given by Edmonds
(1960) for the associated Legendre’s functions.

As in the Green functions approach, the problem of computing the infinite
harmonic series [34] and [36] may be considered. Le Meur & Hindmarsh (2000)
showed the power of the spherical harmonic approach, which can exhibits a very
fast converge depending on the geometrical properties of the loading function.

The spherical harmonic approach has been frequently used in recent years in
many geophysical applications. Elósegui et al. (2003) investigated the Earth’s
crust displacements associated to localized loads, such as the Great Salt Lake,
through the spherical harmonic formalism. More recently, Blewitt (2003) recom-
mend the spherical harmonics approach to study the interaction between loading
dynamics and the terrestrial frame, although the Green’s functions approach
would be also applied. An interesting and recent application of the spherical har-
monic approach on gravitational consistency and mass conservation on loading
models can be found in Clarke et al. (2005).

7. DISCUSSION

This paper deals with two ways for computing the Earth crust displacements
and the change in gravity and tilt at the Earth’s surface produced by ocean load-
ing effect. The first one, consist of the classical convolution between the ocean
tides and the Green’s functions (Farrell 1972). The second one, it is based on the
preliminary development of the ocean tide in spherical harmonics (Mitrovica
1994; Le Meur & Hindmarsh 2000). There are specific advantages and disad-
vantages for the two approaches, which in principle seems difficult to determine
which method provides the best solution.

The first approach leads very sensitive to the total number of harmonic
degrees used to obtain the Green’s functions. In practice, this problem can be
solved by taking into account the asymptotic expressions of the LLN and the
Kummer’s transformation. The second method is less sensitive to the problem
associated with the truncation in the infinite harmonic series, where the trunca-
tion level is chosen depending on the loading function. The main disadvantage of
this method is that its spatial resolution is independent of the position (Mitrovica
1994). As a consequence, a high spatial resolution at one location forces the same
resolution for other regions, which increases the computational time. Particularly,
in the ocean tide loading problem some authors (e.g. Houze & Weijian 1987; van
Dam et al. 2003) propose a hybrid method. Thus, one may divide the surface of
the Earth into two regions for every station: a local region containing the station
and a distant region. When computing the contribution from the local region, the
Green’s function approach should be applied. For distant regions the loading
effect should be computed using the spherical harmonic approach. This hybrid
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method increased the speed of the computations and the main disadvantages of
each method are compensated by using the other one.
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