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ABSTRACT
The application of robust estimation to geodetic networks is analysed versus the classical least-squares
approach. In case of gross or systematic errors appearance either in the mathematical model or in the
observations to be adjusted, least-squares estimation along with detection statistical tests over the
results present considerable problems for isolating them and avoiding their influence. Conversely,
robust estimation provides a maximum-resistance solution and therefore the capability of identifying
and quantifying them. Finally, we show the advantages of dealing with robust estimation as a global
optimization problem rather than as an iteratively reweighted least squares scheme.
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1. INTRODUCTION

When computing and adjusting geodetic networks error diagnostics is a pri-
mary matter. It is conducted to ensure that the considered observations are free
from gross and systematic errors and therefore the result is only affected by the
inevitable random errors that are present in every measuring process.

Obviously, precaution in the observation process has to be the first measure
to avoid undesirable error appearance. Moreover, an adequate data filtering pre-
vious to the adjustment, checking reciprocal observations, closures and even with
more detailed schemes, see e.g. (Cen et al. 2003; Romero and Sevilla 1990), is a
suitable routine to be adopted in order to detect and eliminate the wrong obser-
vations. However, in certain unfortunate occasions, some gross or systematic
errors may slip into the adjustment process.

As usually considered (Berber and Hekimoglu 2003) there are two main fun-
damental approaches to deal with these undesirable errors: the application of
detection statistical tests and the use of robust estimation.

Since Baarda’s pioneer work (Baarda 1968) several statistical tests have been
developed for the detection of systematic and gross errors starting from the
adjustment results. Their performance is not always satisfactory, mainly because
the adjustment they are based in has been yet contaminated. These tests perform
especially ineffective if there is a considerable amount of gross errors; in this case
they can remain undetected and, conversely, even correct observations may be
wrongly declared as unacceptable. 

On the contrary, robust estimation procedures were developed to oppose
maximum resistance in the solution towards the influence of gross and systemat-
ic errors. Consequently, they are not only error detection tools but estimation pro-
cedures that provide the least-affected solution.

Though the term “robust” was first used in the work of Box (1953) many
later contributions have given form to the present theory: (Andrews et al. 1972;
Huber 1981), etc. In geodesy and related sciences it has been widely applied in
the last decades: (Krarup et al. 1980; Fuchs 1982; Xu 1989; Krauss 1992; Harvey
1993; Yang 1999; Domingo 2001; Wieser and Brunner 2001, 2002), etc.
Nevertheless there is also a place for new methodological developments such as
the case that we will present later: solving the estimation problem by global opti-
mization techniques. 

Hence, the comparison between classic least-squares estimation and robust
estimation may be stated as following:

– When the model is correct and the observations are affected only by ran-
dom errors then the classic least-squares estimation yields the most like-
ly solution. Robust estimation will provide a suboptimal result close to it.

– When systematic or gross errors affect the observations, or the model is
not correct but only approximately correct or even incorrect, robust esti-
mation will provide the best possible solution, whereas least-squares will
yield a highly contaminated solution. However, as we will see, comput-
ing robust estimation by means of a global optimization technique rather
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than by iteratively reweighted least-squares (which is the usual routine)
will prove often to be essential.

Finally, examples of real geodetic networks will be given to illustrate those
critical advantages of robust estimation versus least-squares estimation in case
that undesired errors enter into the adjustment stage. 

Therefore we will consider as the most suitable methodology for the geodet-
ic network adjustment the joint use of classic least-squares estimation and robust
estimation. Thus, in case there are only present random errors then least-squares
will provide the best solution whereas robust estimation will give a result very
close to it, so that it will support its validity. Conversely, if systematic and/or
gross errors affect the observations, and/or there is a systematic error in the
model, least-squares will prove to be inadmissible whereas robust estimation will
provide the best possible solution so that the errors rest isolated and quantified.

2. LEAST-SQUARES ESTIMATION AND STATISTICAL ERROR
TESTS

Let us summarize briefly the formulation in use when computing a classic
geodetic network adjustment.

The functional or mathematical model, which expresses the relationships
between observed data and unknowns, can be defined by the system of equations

(1)

where A is the coefficient matrix for the x vector of unknowns, l represents the
vector of observed data, or differences between observed and approximate data,
and v is the residuals vector.

Observations are commonly supposed to follow normal distributions and
therefore their statistical behaviours are modelled by means of a variance-covari-
ance matrix that is usually noted by Σ1. Its inverse provides the weighting matrix 

(2)

Thus, the most likely solution for the system (1) along with the weighting
matrix (2) is obtained by the least-squares estimator

(3)

which provides the unknowns vector 

(4)
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If the appearance of any gross error in the observations is suspected it is pos-
sible to apply the classic τ-test from the adjustment results. This test analyses the
studentized residual

(5)

where σ̂ is the standard deviation obtained after adjustment for the residual vi and
τn-r denotes the τ-distribution with n – r degrees of freedom, which is related to
the Student’s t-distribution by

(6)

Observation i is rejected at a significance level of α (for instance α = 0.05)
if the studentized residual τi exceeds a critical limit c being α = P [τ > c]. The sig-
nificance level represents then the probability for a type I error to have taken
place.

If |τi| < c then the zero hypothesis (no gross error is present at i observation)
is admitted at a level of significance α. Otherwise the zero hypothesis is rejected
and the alternative admitted at a level of significance α.

It has been demonstrated (Baselga 2003) that this procedure is affected by a
critical limitation. For a particular network and a particular observation affected
by a gross error, |τi| converges to a maximum value. Sometimes this value will be
lower than any critical value c that can be sensibly chosen (for instance α = 0.05
yields c = 3.57). Therefore in some cases, which we should be aware of, the τ-
test will not be significant.

Hence, if the observable i is affected by a gross error then 

(7)

where this constant is of critical interest for each case in relation with the adopted
c value. Denoting by e the gross error, a compact expression can be obtained for
this limit in terms of matrices of the observing equations: 

(8)

where ei represents the null vector except by the ith-element which equals one.
The subsets ii or i represent the corresponding elements of a matrix or vector.

In general, it is possible for statistical error tests applied over the least-
squares solution to fail in the correct blunder detection just because the least-
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squares solution they rely on has been yet contaminated. Moreover, as it is well-
known, the detection becomes much more difficult in case that not only but many
undesired errors are present. Correlation between the residuals makes hard to
detect the observables with error and however, it is possible for correct observa-
tions to have the largest residuals (Chen et al 1987, Núñez-García 1989, Berber
and Hekimoglu 2003).

As a consequence, other reliable approach should be provided at least as a
complement to these statistical tests applied over the least-squares solution.

3. ROBUST ESTIMATION

In every adjustment process of some observational data to a predefined
model there are inevitably some apriori assumptions. First, the proposed model
is a mere hypothesis establishing the way observations and unknowns are relat-
ed. Also the observations underlying distribution and the independence of data
are usually postulated.

All of these assumptions are not exactly correct, but simplifications of a
much more complex reality, perhaps not capable of being perfectly represented
by means of algebraic equations (much arguing could be devoted to this topic).
However, a main principle underlies the adoption of the adjustment model (both
in its mathematical and statistical parts) and the derived results: the minimum
discrepancies versus the reality only cause minimum variations in the solution.

Unfortunately this is not always the case. In particular, the least-squares
adjustment considerably amplifies the apriori existing differences. Therefore
robust estimation should be used instead. 

Let us remember that an estimator for the parameter x based on the variables
m1, m2, …, mn is a function which has been defined for every possible set of val-
ues m1, m2, …, mn

x̂ = x̂ (m1, m2, ..., mn) (9)

The obtained value for the set m1, m2, mn is known as estimation.
An estimator is unbiased if its expected value equals the estimated parame-

ter

E (x̂) = x (10)

Besides, an estimator is said to be consistent if it tends exactly to the estimat-
ed parameter as the sample becomes larger, i.e.

(11)
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An unbiased estimator is said to be more efficient as its variance is smaller.
In particular, if  and are estimators of x with s1

2 and s2
2 variances then the first

will be said to be more efficient than the second if

σ1
2 < σ2

2 (12)

Finally, an estimator is sufficient if it considers all the information contained
in the sample, i.e. x̂ = x̂ (m1, m2, ..., mn) is sufficient if P (m1 = M1, m2 = M2, ...,
mn = Mn | x̂ = a) does not depend on x.

Robustness can be added to these classical desirable properties for estima-
tors.

An estimator is more robust the greater it is its insensitiveness towards the
apriori assumption variations. These discrepancies may derive from the non-ful-
filment of the statistical model (observations affected by gross and/or systematic
errors) or the functional model (which is also a systematic error). Therefore, not
only we are seeking the most insensitiveness towards possible gross errors in the
observations, (Huber 1981) denotes this feature as resistance, but also the under-
lying distribution and the mathematical model are being questioned.

Notice that in robust estimation the main principle is “security” rather than
“efficiency”. As a consequence, an estimator that provides a non-optimal solution
close to the correct value is preferred instead of a much efficient estimator that
provides an absurd solution when any assumption does not fulfil.

The classic mathematical definition of a robust estimator is that provided by
(Hampel 1971) which is summarized next.

Being the independent observations m1, m2,…, mn with common distribution
f and the sequence of estimations

x̂i = x̂i (m1, m2, ..., mn)      i = 1, 2,..., t

This sequence is said to be robust for f=fo if the sequence of distribution
applications                 is equicontinuous in fo; that is if for each ε > 0 exists δ >
0 and no > 0, so that for any f and any n > no

where d* is any metric generating weak topology.
In the study of a robust estimator performance it is essential the influence

curve analysis. This function, also following (Hampel 1971), is

(13)

Other derived functions (Tukey sensibility curve, jacknife, etc.) are beyond
the scope of the present paper. For further explanations refer to specific bibliog-
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raphy, for instance: (Huber 1981), (Hampel 1971), (Andrews et al. 1972) and
especially (Davies 1993) who provides a thorough and updated view.

Robust estimators can be classified as:
– M-estimators or Maximum likelihood estimators.
– L-estimators or Linear combination of order statistics estimators.
– R-estimators or Rank-test derived estimators.

Among them, M-estimators are the most flexible and the easiest to general-
ize to multiparameter cases. This is why they are the most commonly used and
the ones we shall refer to. Some of them are:

– Lp-norms: as for instance the L1-norm which yet Laplace proposed to use
long ago and the L2-norm that in fact is very little robust.

– The Huber estimator
– The Andrews estimator
– The Danish method
– Other: Geman-McClure, Tukey o Welsch estimators.

The general scheme for the use of an M-estimator is the following.
Let O1, O2,... , Om be independent observations to be adjusted following cer-

tain established model (1). The residuals of the adjustment are obtained by means
of

(14)

where the score function ρ(v) is an estimator characteristic. For the case of least-
squares ρ(v) = Σvi

2.
Then the influence curve (13) can be represented as:

(15)

3.1. Solution by Iteratively Reweighted Least-Squares (IRLS)

In order to solve the mathematical model (1) along with the minimum con-
dition (14) for the selected robust estimator, the iteratively reweighted least-
squares (IRLS) method is the most usual choice. The score function ρ(v) is then
the used for classic least-squares considering the following weights

(16)
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Some widely used robust estimators are presented in Table 1 with its corre-
sponding score functions ρ and equivalent weight functions ω.

The procedure can be summarized as follows
1) First a classic least-squares adjustment using unit weight (or apriori esti-

mated weights) is performed.
2) From the adjustment residuals new weights are computed by means of the

corresponding estimator weight function (or the apriori estimated
weights are rescaled by that value)

3) A new least-squares adjustment is performed along with the new weights.
Then one must return to step 2 until two consecutive solutions are con-
sidered to be identical.

In the case of correlated observations two different approaches can be fol-
lowed. One (Baselga 2003) is to first diagonalize the weight matrix and accord-
ingly transform the system of equations, then solve as an independent observa-
tions problem and finally undo the transformation. Another possibility is to adopt
a convenient procedure that accounts for correlated data, see the studies by (Xu
1989), (Yang 1994), etc.

This is the common procedure to calculate the robust estimation. However,
one must notice that solving the robust estimator by means of different weighted
least-squares adjustments, although easy to compute, undermines robust estima-
tion capabilities. 

José Luis Berné Valero - Sergio Baselga Moreno Robust estimation in geodetic networks

Física de la Tierra
2005, 17   7-22

14

Table 1. Some M-estimators.

Estimator ρ(v) ω(v)

Huber If |v| ≤ kσ v2/2 1
If |v| > kσ kσ(|v| – kσ/2) kσ/|v|

L1 |v| 1/|v|

L1 – L2

Fair c2[|v|/c - log(1+|v|/c)] 1/(1+|v|/c)

Geman-McClure

Tukey If |v| ≤ c c2/6.(1 – [1 – (v/c)2]3) [1 – (v/c)2]2

If |v| > c c2/6 0
Welsch c2/2.[1 – exp(–(v/c)2)] exp(–(v/c)2)



Hence, to a certain extent, one is recovering the least-squares main problem:
its easiness in spreading undesirable errors all along the solution. In fact, the
weighting process accounts for eliminating the influence of gross or system
errors but the weights are always computed from a previous and possibly highly
contaminated least-squares adjustment. 

Therefore, IRLS though easy to compute may not be the best option to per-
form robust estimation when the real solution lies far away from the initial solu-
tion of the perturbed system and observations. As we will see in the examples, in
certain cases robust estimation is not that robust unless considered as a Global
Optimization (GO) problem rather than as an IRLS problem, which only seeks
the local optimum. Therefore we have concentrated on applying GO techniques
to robust estimation and testing how far it is an improvement on the IRLS
approach.

3.2. Solution by Global Optimization techniques (GO)

Instead of following the classical procedure for computing robust estimation
by means of an iterative least-squares process with variable weights, we propose
an improvement in the process robustness: the application of global optimization
techniques (GO) to the robust estimation computing process.

GO techniques can be divided in three major categories: simulated anneal-
ing, genetic algorithms and interval arithmetic based techniques.

Simulated annealing was first proposed by (Metropolis et al. 1953) as an
iterative heuristic method analogous to the process of crystalline network self-
construction. This Monte Carlo nature method was then exploited by
(Kirkpatrick et al. 1983), who established the present form of the algorithm.
Since then it has been widely applied in a variety of GO problems, see e.g. (Berné
and Baselga 2004) in which formulation is explained and later applied to the
First-order design problem.

Genetic Algorithms were proposed by (Holland 1975) to emulate the natural
evolution of species. Natural selection rules are applied in this iterative and
heuristic method to search for the global optimum. Thus, this more adaptive indi-
vidual is found after the evolution of a system in which heredity, crossing, muta-
tion and survival rules have been implemented. For further details consult the
specific book by (Man et al. 1999). 

Finally, interval arithmetic based techniques, whose foundations lie in
(Moore 1966), are very reliable although sometimes very inefficient determinis-
tic methods for finding the global optimum. A comprehensive explanation is
given in the book by (Floudas 2000). 

Recently Xu (2002, 2003) proposed a new successful hybrid global opti-
mization method consisting in finding first one point in each nonconvex feasible
region and then applying a local optimization procedure.
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Any of these GO methods will prove to be useful in solving the functional
model defined by the system (1) along with the considered robust estimation
function (Table 1), which reads

(17)

In the following example we will see the clear advantages of solving the sys-
tem of equations (1) by robust estimation rather than by least squares estimation.
Besides, once robust estimation has been established as the most convenient
alternative, we will contrast the improvement of solving robust estimation sys-
tem (17) by a GO method rather than by IRLS techniques as usually proposed.

4. EXAMPLE

The following network has been observed partly with GPS techniques
(Northern part) and partly with classical terrestrial observations (Southern part).
Its average distance is about 1 km and can be considered as a least-constrained
network for its point E belonging to the regional 4th order Comunidad Valenciana
network is the only fixed point (Fig. 1).
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Figure 1. Network plot



Firstly, let us consider the network adjustment for observations only affect-
ed by random errors. As known, the classic least squares adjustment provides the
most likely solution whereas any robust estimator yields a sub-optimal solution
close to the least-squares estimation. We will consider along with the least-
squares estimator the least sum of residuals estimator (i.e. the L1 norm) and the
Huber estimator as representing robust estimators.

Secondly we investigate the case when a gross observing error has slipped
into the adjustment phase. The least-squares estimation may then be more or less
sensitive to this error depending on its magnitude, network redundancy and the
particular observation that is affected. If a single error provides a whole contam-
inated least-squares solution and the classical detection tests over this solution
fail to detect the gross error (remember there is a problem with the variable con-
vergence) then robust estimators will be the only successful alternative.

Finally, if there are many observing errors or they are located in observations
with very low redundancy, the correct solution may lie far away from the initial
least squares solution and therefore robust estimation based on IRLS may not
result in the global optimum but only in a local one. In this case robust estima-
tion will only be truly robust if considered as a GO problem.

4.1. Initial case

If the observations are only affected by random errors, the least squares estima-
tion is the most likely solution. In Table 2 adjusted coordinates are given for the least
squares solution and some robust estimates: the Huber estimator obtained by IRLS,
the L1 norm obtained by IRLS and the L1 norm computed by simulated annealing.
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Table 2. Adjustment results with the Least Squares estimator, Huber estima-
tor, L1 estimator and L1 estimator solved by a Global Optimization method.

LS estimator Huber estimator L1 estimator L1 estimator (GO)
XA 4918540.874 4918540.874 4918540.870 4918540.864
YA -22596.126 -22596.126 -22596.125 -22596.126
ZA 4047070.304 4047070.304 4047070.301 4047070.296
XB 4918149.238 4918149.238 4918149.240 4918149.242
YB -20624.838 -20624.838 -20624.840 -20624.838
ZB 4047551.407 4047551.407 4047551.411 4047551.407
XC 4917831.564 4917831.564 4917831.563 4917831.565
YC -21669.275 -21669.275 -21669.278 -21669.275
ZC 4047939.889 4047939.889 4047939.893 4047939.890
XD 4918746.721 4918746.721 4918746.741 4918746.737
YD -21622.251 -21622.251 -21622.250 -21622.251
ZD 4046821.884 4046821.884 4046821.898 4046821.895



Least square results are satisfactory, with sensible residuals and an accept-
able reference factor variance of σ0

2 = 0.70. However, robust estimation proce-
dures yield sub-optimal solutions, i.e. they are only relatively close to the least
squares result, which is the most likely and therefore the correct one.

4.2. Synthetic case: a single gross error

Let us simulate a gross error in a single observable, for example the hori-
zontal direction from D to A, which has medium redundancy (ri = 0.43). We will
show that this single error spreads through all the least-squares solution and
remains undetected by the τ-test even for an infinite error value. Conversely,
robust estimators will find a solution least affected by the presence of this error,
which will be confined to its residual.

Table 3 shows the different residuals for the observation affected by a gross
error of + 100 centesimal seconds, +500 centesimal seconds and finally +5 cen-
tesimal degrees. The least-squares residuals are quite far from the simulated
errors. Discrepancies between simulated values and adjusted values are expected
as representing the random error of the observation; however, the observed dis-
crepancies between least-squares residuals and simulated values are high and
therefore unacceptable as representing random errors in the observations.
Furthermore, residuals for the remaining observations increase significantly
making the whole solution unacceptable. Moreover, the τ-test is unable to detect
any gross error in this observation, even for an infinity error value, which accord-
ing to (8) will yield τ = 2.6458, far from any sensible critical value that could be
set (for instance, α = 0.05 gives c = 3.57).
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Table 3. Adjustment results with the Least Squares estimator, Huber
estimator, L1 estimator and L1 estimator solved by a Global
Optimization method, for three different simulated errors in the same
observation. Values in centesimal seconds.

Simulated 
gross error in LS estimator Huber estimator L1 estimator L1 estimator (GO)
D-A direction
Residual τ Residual Residual Residual

+100 -43 -2.3703 -72 -89 -99
+500 -216 -2.6325 -472 -489 -501

+50000 -21560 -2.6457 -49972 -49989 -50001



Conversely, the Huber estimator performs well and even much better the L1
norm in its two calculations.

4.3. Synthetic case: two gross errors, one with low observing redundancy

Let us add a second gross error to the network and evaluate the different
solutions. If we choose an observable with very little redundancy the network
will be much less influenced by this wrong observation, but the error will remain
undetectable... at least by classical IRLS robust estimation and obviously by sta-
tistical tests over the least-squares adjustment.

Zenithal angle from E to A has a very low redundancy (ri = 0.08) in the net-
work adjustment. Along with the former +100 centesimal seconds gross error in
D-A horizontal direction let us simulate another error of +500 centesimal seconds
in E-A zenithal angle. This second error will prove to be totally undetectable for
the τ-test over the least-squares estimation and even for robust estimation per-
formed by IRLS due to the fact it has little influence on the network inner con-
sistence. However, results in terms of parameters can significantly vary and
therefore the most reliable adjustment has to be ensured. Such an adjustment has
to search for the score function global optimum and not only for a local optimum
in the neighborhood of the initial most perturbed least-squares solution provided
by IRLS.

If we compare the results of Table 4 we can conclude that the values for the
horizontal direction are almost the same as in the previous example, i.e. unac-
ceptable results for least-squares estimation and acceptable for IRLS Huber and
especially for IRLS L1-norm and L1-norm with GO methods. However, for a very
low-redundant observable such as E-A zenithal angle, least-squares solution is
very far from the correct value and therefore Huber and L1-norm estimators
based on this first solution are not able to find the global optimum (indeed
attained by GO), which is much farther away than the local optimum they obtain.
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Table 4. Adjustment results with the Least Squares estimator, Huber
estimator, L1 estimator and L1 estimator solved by a Global
Optimization method, for two simulated errors. Values in centesimal
seconds.

Observation Simulated LS estimator Huber estimator L1 estimator L1 estimator (GO)
gross error residual residual residual residual

D-A hor. 
direction +100 -44 -73 -90 -101
E-A zenithal
angle +500 -31 -13 0 -516



5. CONCLUSIONS

Least-squares adjustment of a geodetic network is the best alternative when
neither gross nor systematic errors affect the observations nor the mathematical
model. The least-squares adjustment provides then the most likely solution for
the network.

On the contrary, i.e. if any systematic and/or gross error has occurred, the
least-squares solution will prove to be very perturbed by them and provide thus
unacceptable results. In that case, statistical tests for error detection can be
applied over this solution but its efficiency is often limited, whereas robust esti-
mation will offer maximum resistance against these undesired errors in the cor-
rect solution determination.

Moreover, it has been experienced that the usual procedure for computing
the robust estimator by means of a iteratively reweighted least-squares adjust-
ment (IRLS) becomes less effective in problematic cases due to the fact that actu-
ally it relies on the contaminating least-squares adjustment process. Instead, we
concluded that robust estimation is only truly robust if dealt with as a global opti-
mization problem (GO) and consequently proposed to directly solve the robust
estimation by means of global optimization techniques.

Finally, as a summary, we propose the joint use of least-squares and robust
estimators (by GO) for the geodetic network adjustment problem. When only
random error occurs the least-squares adjustment will yield acceptable and sen-
sible results, as being the most likely solution, whereas robust estimators will
give suboptimal values very close to that of least-squares thus reinforcing their
validity. If, conversely, any system or gross errors have affected either the math-
ematical model or the observations, robust estimation will be able to obtain the
correct solution and also to identify this errors.
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