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ABSTRACT

In the past decade, ensemble forecasting has proved to be a successful way of dealing with the uncertainty
that limits the accuracy of weather and climate forecasts. However, most ensemble systems have generally
paid more attention to the uncertainty in the initial conditions (IC) than to the model error, even thought
it is now fully recognised that the representation of the uncertainty related to the use of imperfect models
is unavoidable. Here we present a stochastic physics scheme developed to represent the uncertainty arising
from sub-grid scales. The impact of this scheme on the climatology of the model and its potential for
seasonal forecasting are analyzed. It is shown that the scheme is able to impact the seasonal forecast of
the North Atlantic Oscillation (NAO) with a neutral effect on the model’s climatology.

Keywords: Ensemble forecasting, stochastic physics, model error, seasonal forecasting, North Atlantic
Oscillation

Análisis del impacto de una parametrización física estocástica en
la predicción estacional de la oscilación del Atlántico Norte

RESUMEN

Durante la pasada década, la predicción numérica utilizando ensembles ha demostrado su utilidad para tratar
la incertidumbre que limita la precisión de los pronósticos meteorológicos y climáticos. Sin embargo, aunque
está totalmente reconocido que la representación de la incertidumbre relacionada con el uso de modelos
imperfectos es inevitable, la mayoría de los sistemas de predicción por ensembles diseñados hasta la fecha
han prestado generalmente más atención a la incertidumbre debida a las condiciones iniciales que a la debida
a los errores de los modelos. Aquí presentamos un esquema estocástico de perturbación de las parametrizaciones
físicas desarrollado para representar la incertidumbre debida a las escalas sub-rejilla. El impacto de este
esquema en la climatología del modelo y su potencial para la predicción estacional son analizados. Como
se muestra, el esquema tiene un impacto en la predicción estacional de la Oscilación del Atlántico Norte
(NAO, según sus siglas inglesas) con un efecto neutral sobre la climatología del modelo.

Palabras clave: Predicción por conjuntos, física estocástica, error del modelo, predicción estacional,
Oscilación del Atlántico Norte.
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1. INTRODUCTION

The importance of the representation of model error for seasonal forecasting
can be explained by the fact that, whereas the uncertainty in the initial conditions



is only present at the beginning, the uncertainty due to model error is injected
throughout the whole simulation. But, as recognised in a recent assessment of the
status of global ensemble prediction (Buizza et al. 2004), the representation of model
errors is though to be an even greater challenge than simulating initial value related
errors. 

In terms of model formulation, there are two main sources of uncertainty: first of
all, only imperfect models are available, and second, the resolution of these models
is limited. The place where both factors more clearly come together is in what is known
as physical parameterizations (i.e. the representation of the effects of processes occurring
at unresolved scales using comparatively simple deterministic functions of the resolved
variables). In any of them, the value of a large number of empirical-adjustable parameters
and thresholds present is somewhat arbitrary, either because of being based on incomplete
physical knowledge of the process or because of having been tuned to give optimal
results for a test case that is not necessarily representative of more general applications
(Yang and Arrit 2002). Another downside of conventional or deterministic
parameterizations is that, by returning something like a mean parameterized
quantity, computed from the relevant large-scale variables, they neglect the unpredictable
fluctuations of the small-scale processes. The major problem is that, even if unresolved
scales only describe a small fraction of the total variance of the system, neglecting it
can, through the upscale of energy, lead to gross forecast errors (Palmer 2001). Therefore,
a proper representation of sub-grid scale variability is needed in order to improve the
seasonal forecast of large scale phenomenon (e.g. NAO).

Most of the research completed up to date accounted for the model error uncertainties
through the use of different model parameterizations or a multi-model approach
(Houtekamer et al. 1996; Hou et al. 2001; Mylne et al. 2001; DEMETER 2003). A
slightly different approach, using a range of plausible values for some parameters in
different schemes, was followed by Yang and Arrit (2002) or in the Quantifying
Uncertainty in Model Prediction project (QUMP; Murphy et al. 2003) for climate
prediction. In general, all these studies coincided in showing an improvement in the
skill of the system (or a better estimation of the uncertainty associated to the
forecast) when account for model error was introduced. But, as explained by Hansen
(2002), a good multi-model ensemble should consist of a series of model attractors
that systematically bound the real-system attractor. Unfortunately, the real-system
attractor is unknown, hindering the construction of multi-model systems.

A different approach is to develop explicit stochastic parameterizations. This could
have the advantage of allowing the forecast ensemble to explore important nearby
regions of phase space that the deterministic parameterization would not reach.
Interestingly, in spite the idea of stochastic parameterizations was suggested at least
thirty years ago (Lorenz 1975), fewer attempts have been done in this direction. The
ECMWF pioneered this approach by including a stochastic perturbation to the net
effect of parameterized physical processes in their ensemble prediction system (Buizza
et al. 1999). ECMWF forecasts were improved with respect to ensemble spread and
rms error of the ensemble mean (Buizza et al. 1999). Lin and Neelin (2002) introduced
a stochastic component to the convection scheme by using a first-order autoregression
model and their results show that, by adding the stochastic scheme, the GCM simulates
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part of the low-frequency convective variance normally underestimated by GCMs.
Bright and Mullen (2002) extended this approach to the Convection and Planetary
Boundary Layer schemes of the fith-generation Pennsylvania State University-National
Center for Atmospheric Research Mesoscale Model (MM5) showing a slight increase
in forecast skill. A more complex approach was developed by Gray and Shutts
(2002) through their «Stochastic Convective Vorticity» (SCV) scheme. Their results
over a set of case studies showed that the scheme was able to produce realistic
perturbations (Gray and Shutts 2002) and preliminary tests within an ensemble showed
an increase in the spread of the system (J. Delnholm-Price, personal communication). 

In this study we combine the SCV with a new Random Parameters scheme (RP)
with the aim to create a more complete stochastic physics scheme for the Met Office
Unified Model (UM). By combining both, we attempt to better explore the uncertainty
arising from the unresolved sub-grid scales and, therefore, to improve the representation
of the total variance of the system. This, in turn, could result in a better forecast of
large-scale patterns such as the NAO, which are of fundamental importance for the
seasonal forecasting in the North Atlantic region (Rodwell and Folland 2002).

This paper is organized as follows: the system and experiments are described in
section 2. The analysis of the results, including a verification of the current climate
and the analysis of the impact of the stochastic scheme is presented in section 3. Finally,
conclusions are presented in section 4.

2. SYSTEM DESCRIPTION

The stochastic physics scheme employed in these experiments consists of the
combination of two different schemes: the Stochastic Convective Vorticity and the
Random Parameters schemes. 

2.1. THE STOCHASTIC CONVECTIVE VORTICITY (SCV) SCHEME 

The main aim of the SCV scheme (Gray and Shutts 2002) is to represent a Potential
Vorticity (PV) anomaly dipole similar to the one typically associated to a Mesoscale
Convective System (MCS) in a GCM. As shown in observational studies (Bartels and
Maddox 1991), MCSs possess an upper level anticyclone, associated with the cirrus
outflow or anvil, and also a smaller scale mid-level cyclonic vortex near the freezing
level. However, given that MCSs may be only partially resolved in the model, the
PV dipole generated by them may not be well represented. Consequently, the GCM
may not transfer as much of the subgrid diabatic heating into resolved balanced motions
as would be suggested from high resolution modelling studies (Gray 2001). It has been
also shown that PV anomalies associated with MCSs could have a significant impact
on the forecast evolution, especially when located close to baroclinic areas (Beare et
al. 2003).

In the SCV scheme the PV dipole is formed by two vortices, one mid-level
cyclone representing the positive PV anomaly and one upper-level anticyclone



representing the negative PV anomaly, the scales of which are determined using a
randomised function. Because the application of a PV anomaly through a PV inverter
would make the scheme prohibitively expensive, a simpler approach, just modelling
the vorticity part of the PV anomaly, was used. Also, it appears from Gray (2001)
that the vorticity is more important in perturbing the forecast than the stratification,
so this simplification is not expected to be detrimental to the overall impact of the
scheme.

Schematically, the upper-level anticyclone is of depth da, centred at height za and
consisting of a zero PV core of radius a. The mid-level cyclonic vortex is of depth dc,
centred at height zc and is of radius ha, where h is some constant between 0 and 1.
Therefore, we have six parameters, a, da, dc, za, zc, and h that determines the size, shape,
position and magnitude of the vorticity dipoles. In implementing a stochastic scheme
all six could be given some form of random element but, given that the size of the MCS,
a, is clearly the parameter which has the largest range in the atmosphere and in order
to simplify the SCV scheme for initial implementation only a will vary stochastically.
As suggested by Shutts (1987), the parameter a is related to the value of CAPE
(Convective Available Potential Energy) according to the following formula:

(1)

Where c is a non-dimensional constant containing the random element of the
scheme, and linked to the convection scheme by making it proportional to the magnitude
of the diagnosed convective rain rate. A more complete description of the SCV scheme
can be found in Gray and Shutts (2002).

2.2. THE RANDOM PARAMETERS (RP) SCHEME 

Unfortunately, because of our incomplete knowledge of the atmospheric and oceanic
processes, the simplification of the equations that need to be solved or the limited
computing resources, only imperfect models are available, and the physical
parameterizations are the best example of this imperfectness. In any of them a large
number of empirical-adjustable parameters and thresholds are given values somewhat
arbitrary. Our aim in the RP scheme is to account for the uncertainty associated to these
empirical parameters and, also, to simulate the nondeterministic processes that are not
explicitly accounted for by the different parameterizations. Thus, each parameter value
is calculated using a first-order auto regression model (Wilks 1995) as given by:

(2)

Where Pt is the parameter value at time t, m is the mean value of the parameter, r
is the autocorrelation of P and e is the stochastic shock term. 

 P r Pt t= + =m m e( ± )±1
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=
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A total of 10 parameters from 4 different physical parameterizations are included
in the 2004/05 version of the scheme. In order to avoid unrealistic values, each parameter
is bound by a minimum and maximum value as estimated by experts in each field
(Table 1). The stochastic shock term, e, is sampled from a uniform distribution between
± (Pmax – Pmin)/3, and the autocorrelation r has been given a value of 0.90. Because no
knowledge exists a priori of e and r values, both were determined empirically after
some limited tuning of the RP scheme. Finally, the parameters’ values are the same
for all grid points (i.e. the spatial correlation is 1).

2.3. EXPERIMENTS DESCRIPTION 

Two 3-year simulations, a control run and a run including stochastic physics scheme,
were completed using the HADGAM1 version of the Met Office Unified Model.
HADGAM1 is an atmospheric only model evolved from HADCM3, the model used
operationally by the Hadley Centre until 2003. The horizontal resolution is 3.75 ¥ 2.5
degrees (lon-lat) with 38 levels in the vertical. SSTs were prescribed using observed
data.

Although three years is too short for a full quantitative analysis of climate differences
between the two runs, it is long enough to spot any significant systematic changes that
the presence of the stochastic scheme may cause.

3. ANALYSIS OF THE RESULTS

To evaluate how well both simulations reproduced climate we used the Climate
Prediction Index (CPI; Sexton et al. 2002). The CPI measures how well a climate model

Table 1. Parameters affected by the RP scheme. The Physics parameterization to
which parameter belongs is indicated in the central column. The minimum and
maximum values that bound each parameter´s value in the RP scheme are
shown in the right column, together with the standard value in the UM

Parameter Scheme Min/ std*/Max values

Entrainment Rate Coefficient Convection 2 / 3 / 5
Cape timescale (closure) Convection 30 / 30 / 120 (min)
Critical Relative Humidity Large Scale Cloud 0.6 / 0.8-0.85 / 0.9
Cloud to rain conversion threshold (land) Large Scale Cloud 1E-4 / 8E-4 / 1E-3
Cloud to rain conversion threshold (sea) Large Scale Cloud 5E-5 / 2E-4 / 5E-4
Parameter controlling ice fall speed (CI) Large Scale Cloud 17 / 25.2 / 33
Flux profile parameter Boundary Layer 5 / 10 / 20
Neutral mixing length Boundary Layer 0.05 / 0.15 / 0.5
Gravity wave constant Gravity wave drag 7.5E4 / 7E4 / 1.3E4
Froude number Gravity wave drag 2 / 2 / 4



reproduces various aspects of the climate system such as atmospheric radiation and
clouds, atmospheric dynamics, the hydrological cycle and surface fluxes. A complete
list of all variables used can be found on x-axis in Figure 1. 

For each modelled seasonal means (DJF, MAM, JJA, SON) each variable is
compared against the appropriate observational or reanalysis data set using a normalised
version of root-mean square error. This statistic penalises bias, differences in the spatial
variances of the observed and modelled means and poor patterns correlations. The
closer the CPI values to 0 the better.

The CPI values for both simulations are similar, 2.461 for the control run and 2.534
for the stochastic physics run, values that can be both considered very good (typical
values for the HADCM3 were around 3.0 depending on the configuration). The total
CPI value for the control run is slightly better than the stochastic run, mainly due to
the contribution from the relative and specific humidity components of the CPI (see
Figure 1). This is caused by the impact of the stochastic scheme on the «critical relative
humidity» parameter (it seems that the minimum value for this variable inside the
RP scheme is too low), something that could be tuned in future versions of the scheme
to produce better results. However, there are other variables in which the stochastic
run is outperforming the control run, especially in the «dynamical» variables, such as,
250mb velocity potential or the different stream function components. 

An example of how similar both simulations are is shown in Figure 2, where the
3-year average values of mean sea level pressure (PMSL) during the DJF season are
presented. As it can be seen, there are little differences between both simulations, which
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Figure 1. Climate prediction index values for all analyzed
variables (x-axis) in the control and stochastic (RP18SCV) runs.
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Figure 2. Climatological (3-year) mean of seasonal (DJF) PMSL for the control
(top) and  stochastic (center) runs. Differences are plotted in the bottom figure.
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Figure 3. PMSL seasonal (DJF) mean at year 3 for control (top) and
stochastic (center) runs. Differences are plotted in the bottom figure.
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also agree well with climatological distributions (e.g. ECMWF 15-year reanalysis, not
shown). Therefore, we can conclude that both simulations are correctly representing
the current climate and that the stochastic scheme is not having a noticeable impact
(either positive or negative) on the model climate. This is very encouraging, especially
considering that we are comparing the stochastic scheme against a well tuned control
version of the model.

Having ascertained that the stochastic scheme is having a neutral impact on the
model’s climate, we still need to verify if, as intended, it is capable to impact the forecast
evolution on seasonal time-scales. One way of addressing this is to analyse the seasonal
differences between both simulations. If the scheme is successfully feeding back the
sub-grid scale variability onto the resolved flow we should be able to find significant
differences (i.e. larger than in the climate means) between the control and the stochastic
runs. Figure 3 shows the PMSL fields for DJF at year 3. The top panel corresponds
to the control run, the middle one to the stochastic physics run, and the differences
between both are shown in the bottom panel. As it can be seen, differences are substantial.
In fact, each run is simulating a different phase of the NAO. Thus, whereas the control
run is simulating a positive NAO phase, with stronger winds crossing the Atlantic
Ocean on a more northerly track, the stochastic physics run is simulating a negative
NAO phase, with winds following a more west-east pathway. 

4. DISCUSSION AND CONCLUSIONS

In this work the RP+SCV stochastic scheme has been shown to be able to
perturb forecasts on a seasonal timescale whereas having a neutral impact on the
model’s climatology. Our analysis shows that, even when the initial and boundary
conditions (SSTs) are kept unchanged, the inclusion of sub-grid scale variability
may have a substantial impact on the large-scale flow characteristics such as the NAO.
A plausible hypothesis is that the RP+SCV scheme is seeding disturbances in the
synoptic scales resolved by the model, where they amplify by extracting energy from
the large-scale background flow as proposed by Tribbia and Baumhefner (2004).

This suggests that an explicit representation of model error (caused by unresolved
or unknown processes) is unavoidable in ensemble systems designed for seasonal
forecasting.
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